Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phytopathology ; 111(9): 1583-1593, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33586995

RESUMEN

This work established a hyperspectral library of important foliar diseases of wheat induced by different fungal pathogens, representing a time series from infection to symptom appearance for the purpose of detecting spectral changes. The data were generated under controlled conditions at the leaf scale. The transition from healthy to diseased leaf tissue was assessed, and spectral shifts were identified and used in combination with histological investigations to define developmental stages in pathogenesis for each disease. The spectral signatures of each plant disease that indicate a specific developmental stage during pathogenesis, defined as turning points, were combined into a spectral library. Machine learning analysis methods were applied and compared to test the potential of this library to detect and quantify foliar diseases in hyperspectral images. All evaluated classifiers had high accuracy (≤99%) for the detection and identification of both biotrophic and necrotrophic fungi. The potential of applying spectral analysis methods in combination with a spectral library for the detection and identification of plant diseases is demonstrated. Further evaluation and development of these algorithms should contribute to a robust detection and identification system for plant diseases at different developmental stages and the promotion and development of site-specific management techniques for plant diseases under field conditions.


Asunto(s)
Enfermedades de las Plantas , Triticum
2.
Theor Appl Genet ; 132(10): 2809-2814, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31280341

RESUMEN

KEY MESSAGE: The leaf rust resistance gene Lr64 in the Thatcher wheat RL6149 was mapped to chromosome 6AL with SNP and KASP markers and a second leaf rust resistance gene was mapped to chromosome 1DS. RL6149, a near-isogenic line of Thatcher wheat, carries leaf rust resistance gene Lr64 on chromosome arm 6AL. The objective of this study was to develop molecular markers that can be easily used to select wheat lines with Lr64. RL6149 was crossed with Thatcher and F2 plants derived from a single F1 plant were advanced to F6 lines by single seed descent. The 100 F7 recombinant inbred lines (RIL) were inoculated with two races of P.triticina that differed widely for virulence in order to identify resistant and susceptible RIL. Thirty RIL that differed for resistance and the parental lines were genotyped with the 90 K Infinium iSelect single nucleotide polymorphism (SNP) array to find closely linked markers with Lr64. Seven linked SNPs on chromosome arm 6AL were converted into Kompetitive Allele Specific PCR (KASP) markers that were genotyped on the 100 RIL. A genetic linkage map for the seven KASP markers spanned 19.1 cM on chromosome arm 6AL. KASP marker K-IWB59855 was tightly linked to Lr64. A second unexpected gene for leaf rust resistance also segregated in the F7 lines. Four KASP markers that spanned 18.6 cM located the gene on chromosome 1DS. The KASP marker K-IWB38437 was tightly linked to the second leaf rust resistance gene.


Asunto(s)
Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Marcadores Genéticos , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Ligamiento Genético , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Triticum/microbiología
3.
Plant Cell Rep ; 36(11): 1775-1783, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849385

RESUMEN

KEY MESSAGE: Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Plantas Modificadas Genéticamente/genética , Saccharum/genética , Actinas/genética , Adenina Fosforribosiltransferasa/genética , Destrina/genética , Dosificación de Gen/genética , Reacción en Cadena de la Polimerasa , Transgenes/genética
4.
Proteomics ; 15(7): 1307-15, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25546510

RESUMEN

Puccinia triticina causes leaf rust, a disease that causes annual yield losses in wheat. It is an obligate parasite that invades the host leaf and forms intracellular structures called haustoria, which obtain nutrients and suppress host immunity using secreted proteins called effectors. Since effector proteins act at the frontier between plant and pathogen and help determine the outcome of the interaction, it is critical to understand their functions. Here, we used a direct proteomics approach to identify effector candidates from P. triticina Race 1 haustoria isolated with a specific monoclonal antibody. Haustoria were >95% pure and free of host contaminants. Using high resolution MS we have identified 1192 haustoria proteins. These were quantified using normalized spectral counts and spanned a dynamic range of three orders of magnitude, with unknown proteins and metabolic enzymes as the most highly represented. The dataset contained 140 candidate effector proteins, based on the presence of a signal peptide and the absence of a known function for the protein. Some of these candidates were significantly enriched with cysteine, with up to 13 residues per protein and up to 6.8% cysteine in composition.


Asunto(s)
Basidiomycota/química , Proteínas Fúngicas/aislamiento & purificación , Proteoma/aislamiento & purificación , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Proteínas Fúngicas/química , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Proteoma/química , Proteómica , Espectrometría de Masas en Tándem , Triticum/microbiología
5.
Plant Pathol ; 72(3): 536-547, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38516179

RESUMEN

Crop diseases can cause major yield losses, so the ability to detect and identify them in their early stages is important for disease control. Deep learning methods have shown promise in classifying multiple diseases; however, many studies do not use datasets that represent real field conditions, necessitating either further image processing or reducing their applicability. In this paper, we present a dataset of wheat images taken in real growth situations, including both field and glasshouse conditions, with five categories: healthy plants and four foliar diseases, yellow rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to train a deep learning model. The resulting model, named CerealConv, reached a 97.05% classification accuracy. When tested against trained pathologists on a subset of images from the larger dataset, the model delivered an accuracy score 2% higher than the best-performing pathologist. Image masks were used to show that the model was using the correct information to drive its classifications. These results show that deep learning networks are a viable tool for disease detection and classification in the field, and disease quantification is a logical next step.

6.
J Fungi (Basel) ; 9(3)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983556

RESUMEN

Puccinia triticina is a major wheat pathogen worldwide. Although Iran is within the Fertile Crescent, which is supposed to be the center of origin of both wheat and P. triticina, the knowledge of the genetic variability of local populations of this basidiomycete is limited. We analyzed 12 inter simple sequence repeats (ISSRs) and 18 simple sequence repeats (SSRs) of 175 P. triticina isolates sampled between 2010 and 2017 from wheat and other Poaceae in 14 provinces of Iran. SSRs revealed more polymorphisms than ISSRs, indicating they were more effective in differentiating P. triticina populations. Based on a dissimilarity matrix with a variable mutation rate for SSRs and a Dice coefficient for ISSRs, the isolates were separated into three large groups, each including isolates from diverse geographic origins and hosts. The grouping of SSR genotypes in UPGMA dendrograms was consistent with the grouping inferred from the Bayesian approach. However, isolates with a common origin clustered into separate subgroups within each group. The high proportion of heterozygous alleles suggests that in Iran clonal reproduction prevails over sexual reproduction of the pathogen. A significant correlation was found between SSR and ISSR genotypes and the virulence phenotypes of the isolates, as determined in a previous study.

7.
Cells ; 11(8)2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35455953

RESUMEN

The majority of released rye cultivars are susceptible to leaf rust because of a low level of resistance in the predominant hybrid rye-breeding gene pools Petkus and Carsten. To discover new sources of leaf rust resistance, we phenotyped a diverse panel of inbred lines from the less prevalent Gülzow germplasm using six distinct isolates of Puccinia recondita f. sp. secalis and found that 55 out of 92 lines were resistant to all isolates. By performing a genome-wide association study using 261,406 informative SNP markers, we identified five resistance-associated QTLs on chromosome arms 1RS, 1RL, 2RL, 5RL and 7RS. To identify candidate Puccinia recondita (Pr) resistance genes in these QTLs, we sequenced the rye nucleotide-binding leucine-rich repeat (NLR) intracellular immune receptor complement using a Triticeae NLR bait-library and PacBio® long-read single-molecule high-fidelity (HiFi) sequencing. Trait-genotype correlations across 10 resistant and 10 susceptible lines identified four candidate NLR-encoding Pr genes. One of these physically co-localized with molecular markers delimiting Pr3 on chromosome arm 1RS and the top-most resistance-associated QTL in the panel.


Asunto(s)
Basidiomycota , Secale , Basidiomycota/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/genética , Puccinia , Secale/genética
8.
Genes (Basel) ; 13(1)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052360

RESUMEN

A population of 239 perennial ryegrass (Lolium perenne L.) genotypes was analyzed to identify marker-trait associations for crown rust (Puccinia coronata f. sp. lolii) and brown rust (Puccinia graminis f. sp. loliina) resistance. Phenotypic data from field trials showed a low correlation (r = 0.17) between the two traits. Genotypes were resequenced, and a total of 14,538,978 SNPs were used to analyze population structure, linkage disequilibrium (LD), and for genome-wide association study. The SNP heritability (h2SNP) was 0.4 and 0.8 for crown and brown rust resistance, respectively. The high-density SNP dataset allowed us to estimate LD decay with the highest possible precision to date for perennial ryegrass. Results showed a low LD extension with a rapid decay of r2 value below 0.2 after 520 bp on average. Additionally, QTL regions for both traits were detected, as well as candidate genes by applying Genome Complex Trait Analysis and Multi-marker Analysis of GenoMic Annotation. Moreover, two significant genes, LpPc6 and LpPl6, were identified for crown and brown rust resistance, respectively, when SNPs were aggregated to the gene level. The two candidate genes encode proteins with phosphatase activity, which putatively can be induced by the host to perceive, amplify and transfer signals to downstream components, thus activating a plant defense response.


Asunto(s)
Resistencia a la Enfermedad/genética , Lolium/genética , Enfermedades de las Plantas/genética , Basidiomycota/patogenicidad , Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Desequilibrio de Ligamiento/genética , Lolium/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple/genética , Puccinia/patogenicidad , Sitios de Carácter Cuantitativo/genética
9.
Vavilovskii Zhurnal Genet Selektsii ; 25(7): 701-712, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34950842

RESUMEN

Wheatgrass Thinopyrum intermedium is a source of agronomically valuable traits for common wheat. Partial wheat-wheatgrass amphidiploids and lines with wheatgrass chromosome substitutions are extensively used as intermediates in breeding programs. Line Agis 1 (6Agi2/6D) is present in the cultivar Tulaykovskaya 10 pedigree. Wheatgrass chromosome 6Agi2 carries multiple resistance to fungal diseases in various ecogeographical zones. In this work, we studied the transfer of chromosome 6Agi2 in hybrid populations Saratovskaya 29 × skaya 10 (S29 × T10) and Tulaykovskaya 10 × Saratovskaya 29 (T10 × S29). Chromosome 6Agi2 was identif ied by PCR with chromosome-specif ic primers and by genomic in situ hybridization (GISH). According to molecular data, 6Agi2 was transmitted to nearly half of the plants tested in the F2 and F3 generations. A new breeding line 49-14 (2n = 42) with chromosome pair 6Agi2 was isolated and characterized in T10 × S29 F5 by GISH. According to the results of our f ield experiment in 2020, the line had high productivity traits. The grain weights per plant (10.04 ± 0.93 g) and the number of grains per plant (259.36 ± 22.49) did not differ signif icantly from the parent varieties. The number of grains per spikelet in the main spike was signif icantly higher than in S29 ( p ≤ 0.001) or T10 ( p ≤ 0.05). Plants were characterized by the ability to set 3.77 ± 0.1 grains per spikelet, and this trait varied among individuals from 2.93 to 4.62. The grain protein content was 17.91 %, and the gluten content, 40.55 %. According to the screening for fungal disease resistance carried out in the f ield in 2018 and 2020, chromosome 6Agi2 makes plants retain immunity to the West Siberian population of brown rust and to dominant races of stem rust. It also provides medium resistant and medium susceptible types of response to yellow rust. The possibility of using lines/varieties of bread wheat with wheatgrass chromosomes 6Agi2 in breeding in order to increase protein content in the grain, to confer resistance to leaf diseases on plants and to create multif lowered forms is discussed.

10.
Plants (Basel) ; 10(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34961257

RESUMEN

Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes' activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.

11.
Plant Dis ; 89(8): 809-814, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30786510

RESUMEN

Leaf rust, caused by Puccinia triticina, has become an important disease of durum wheat (Triticum turgidum) in Mexico since the detection in 2001 of BBG/BN, a new race virulent on all common cultivars and on more than 80% of CIMMYT's durum wheat collection. We investigated the genetic basis and diversity of resistance in nine durum genotypes that are highly resistant to the new race. These resistant durums were crossed with the susceptible cv. Atil C2000 and intercrossed in a half diallel arrangement. Five diverse sources of resistance were identified by evaluating parents, F1, F2, and F3 populations in greenhouse and/or field trials under artificial epidemics of race BBG/BN. The same pair of partially dominant complementary genes determined resistance in Jupare C2001, Hualita, and Pohowera. Somateria and Llareta INIA shared the same dominant resistance gene, whereas a partially dominant gene conferred resistance in two sister lines, Guayacan 2 and Guayacan INIA. A different partially dominant gene present in Storlom was linked in repulsion to another partially dominant gene in Camayo. These diverse resistance genes can be used effectively to control leaf rust, preferably by deploying them in combinations.

12.
Annu Rev Phytopathol ; 53: 565-89, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26047566

RESUMEN

Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.


Asunto(s)
Basidiomycota/fisiología , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Basidiomycota/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/economía
13.
New Phytol ; 104(4): 601-612, 1986 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33873853

RESUMEN

The rate of photosynthesis was examined in whole leaves of barley infected with brown rust (Puccinia hordei Otth.) and within localized regions of the infected leaf, within brown rust pustules and in regions between them, from flecking to green island formation. In addition, oxygen evolution was measured from localized regions of a rusted leaf after feeding with inorganic phosphate (Pi) to investigate the hypothesis that fungal sequestration of Pi from the host cytoplasm may, totally or partially, be responsible for the decline in photosynthesis. The rate of net photosynthesis and the quantum yield of oxygen evolution declined in whole infected leaves as the disease progressed. However, the rate of gross photosynthesis (per unit chlorophyll) was increased in rusted leaves. Autoradiographic and oxygen evolution studies showed that the decline in net photosynthesis could be attributed largely to a reduction in the rate of photosynthesis in the regions between pustules. Within areas of the leaf invaded by the fungus, gross photosynthesis was increased in comparison to control tissue. Feeding leaf tissue with Pi did not significantly increase the rate of photosynthesis in pustules or regions between pustules, implying that Pi was not previously limiting the rate of photosynthesis. Possible mechanisms underlying the increase and decrease in photosynthesis in different regions of an infected leaf are discussed.

14.
New Phytol ; 101(3): 495-505, 1985 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33874230

RESUMEN

Serial sections were taken through colonies of brown rust (Puccinia hordei Otth.) on barley leaf blades. Fungal haustoria occurred in cells of the mesophyll, parenchymatous bundle sheath and epidermis (excluding guard cells) but not within the mestome sheath or vascular bundles. Within a colony, each cell contained 1.2 to 2 haustoria; each colony had about 104 haustoria on a total hyphal length of about 1 m. Surface areas of haustoria and intracellular hyphae were calculated and used to show that all of the hexose needed to sustain fungal growth and respiration could be taken up through either cell type.

15.
Plant Dis ; 88(7): 703-708, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30812479

RESUMEN

Durum wheat (Triticum turgidum var. durum) is the main irrigated winter crop in northwestern Mexico. Historically, leaf rust, caused by Puccinia triticina, had not induced significant losses to durum production in the area until 2001. That year, a new race, designated as BBG/BN, was detected that caused the most widely grown cultivar, Altar C84, which had remained resistant for 16 years, to become susceptible. Other recommended cultivars also became either moderately susceptible or susceptible. Detailed characterization of avirulence/virulence characteristics on Lr genes indicated that this race possibly did not evolve from the older races, but may have been introduced. Rust epidemics during the 2000-2001, 2001-2002, and 2002-2003 crop seasons have caused estimated losses of at least US$32 million. Although a majority of cultivars from 31 different countries, including the United States and Canada, and most of CIMMYT's durum wheat germ plasm were highly susceptible, diversity for both race-specific resistance and moderate levels of slow rusting resistance were identified. Jupare C2001, a resistant cultivar released in 2001, showed high levels of resistance and negligible losses in grain yield in a trial where Altar C84 suffered over 27% losses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA