Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 36(6): e22347, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35579659

RESUMEN

C1q/TNF-related proteins (CTRP1-15) constitute a conserved group of secreted proteins of the C1q family with diverse functions. In vitro studies have shown that CTRP11/C1QL4 can inhibit adipogenesis, antagonize myoblast fusion, and promote testosterone synthesis and secretion. Whether CTRP11 is required for these processes in vivo remains unknown. Here, we show that knockout (KO) mice lacking CTRP11 have normal skeletal muscle mass and function, and testosterone level, suggesting that CTRP11 is dispensable for skeletal muscle development and testosterone production. We focused our analysis on whether this nutrient-responsive secreted protein plays a role in controlling sugar and fat metabolism. At baseline when mice are fed a standard chow, CTRP11 deficiency affects metabolic parameters in a sexually dimorphic manner. Only Ctrp11-KO female mice have significantly higher fasting serum ketones and reduced physical activity. In the refeeding phase following food withdrawal, Ctrp11-KO female mice have reduced food intake and increased metabolic rate and energy expenditure, highlighting CTRP11's role in fasting-refeeding response. When challenged with a high-fat diet to induce obesity and metabolic dysfunction, CTRP11 deficiency modestly exacerbates obesity-induced glucose intolerance, with more pronounced effects seen in Ctrp11-KO male mice. Switching to a low-fat diet after obesity induction results in greater fat loss in wild type relative to KO male mice, suggesting impaired response to obesity reversal and reduced metabolic flexibility in the absence of CTRP11. Collectively, our data provide genetic evidence for novel sex-dependent metabolic regulation by CTRP11, but note the overall modest contribution of CTRP11 to systemic energy homeostasis.


Asunto(s)
Complemento C1/metabolismo , Complemento C1q , Dieta Alta en Grasa , Animales , Complemento C1q/metabolismo , Metabolismo Energético/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Testosterona
2.
Mol Cell Biochem ; 424(1-2): 57-67, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27734226

RESUMEN

C1ql-like (C1QL)-1 and -4 proteins are encoded by homologous genes that are highly expressed in brain and adipose tissues. However, functional properties of C1QL proteins outside of the brain and adipocytes remain unknown. Here, we report that the globular domain of C1ql1/Ctrp14 and C1ql4/Ctrp11 proteins directly stimulate the angiogenesis of endothelial cells. In this study, soluble C1ql1/CTRP14 and C1ql4/Ctrp11 proteins, produced in prokaryote expression system, are co-cultured with human umbilical vein endothelium cells (HUVECs), which phenotype is identified with von Willebrand factor antibody. C1ql1/Ctrp14 and C1ql4/Ctrp11 promote the migration and capillary tube formation of HUVECs in a dose-dependent manner. During this process, phosphorylation of c-Raf, MEK1/2, ERK1/2, and p90RSK are activated by C1ql1/Ctrp14 and C1ql4/Ctrp11. MEK1/2 inhibitor, U0126, blocks C1ql1/Ctrp14-, and C1ql4/Ctrp11-induced capillary tube formation and cell migration. Moreover, the immunoreactivity of the receptor of C1QL1-C1QL4, brain-specific angiogenesis inhibitor 3 (BAI3), is detected in HUVECs, suggesting that BAI3 may mediate C1QL1/CTRP14- and C1QL4/CTRP11-induced angiogenesis. Meanwhile, C1ql1/Ctrp14 and C1ql4/Ctrp11 exposure also causes a stimulatory response of angiogenesis in chick yolk sac membrane. These data demonstrate that C1ql1/Ctrp14 and C1ql4/Ctrp11 stimulate the new blood vessel growth by activation of ERK1/2 signal pathway. The proangiogenic activity of C1ql1/Ctrp14 and C1ql4/Ctrp11 provides novel insights into the new opportunities for therapeutic intervention by targeting C1QLs in tumorigenesis, tissue regeneration, and recovery of ischemic heart disease.


Asunto(s)
Complemento C1q/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas del Tejido Nervioso/metabolismo , Dominios Proteicos
3.
Antioxidants (Basel) ; 12(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37371880

RESUMEN

Paralytic shellfish toxins (PST) could be accumulated in bivalves and cause safety problems. To protect public health, bivalves are examined for PST contamination before entering the market, usually by high-performance liquid chromatography (HPLC) or LC-tandem mass spectrometry (LC-MS/MS) in the lab, which needs PST standards not all available and is time-consuming for large sample sizes. To detect PST toxicity in bivalves rapidly and sensitively, a biomarker gene is highly demanded, but the related study is very limited. In this study, we fed a commercially important bivalve, Patinopecten yessoensis, with the PST-producing dinoflagellate Alexandrium catenella. After 1, 3, and 5 days of exposure, both PST concentrations and toxicity levels in the digestive gland continuously increased. Transcriptome analysis revealed that the differentially expressed genes were significantly enriched in oxidation-reduction process, which included the cytochrome P450 genes (CYPs), type I iodothyronine deiodinase (IOD1s), peroxidasin (PXDN), and acyl-Coenzyme A oxidase 1 (ACOX1) at day 1 and a superoxide dismutase (SOD) at day 5, highlighting the crucial roles of these genes in response to oxidative stress induced by PST. Among the 33 continuously upregulated genes, five showed a significant correlation between gene expression and PST concentration, with the highest correlation present in PyC1QL4-1, the gene encoding Complement C1Q-like protein 4, C1QL4. In addition, the correlation between PyC1QL4-1 expression and PST toxicity was also the highest. Further analysis in another aquaculture scallop (Chlamys farreri) indicated that the expression of CfC1QL4-1, the homolog of PyC1QL4-1, also exhibited significant correlations with both PST toxicity and concentration. Our results reveal the gene expression responses of scallop digestive glands to PST-producing algae and indicate that the C1QL4-1 gene might be a potential biomarker for PST monitoring in scallops, which may provide a convenient way for the early warning and sensitive detection of PST contamination in the bivalves.

4.
Front Oncol ; 13: 1192482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324011

RESUMEN

Background: The stemness characteristic of breast cancer (BC) is a crucial factor underlying cancer recurrence and metastasis after operative therapy and chemoradiotherapy. Understanding the potential mechanism of breast cancer stem cells (BCSCs) may ameliorate the prognosis of patients. Methods: We collected clinical specimens of BC patients for staining and statistical analysis to verify the expression status and clinical significance of complement C1q-like 4 (C1ql4). Western blot and qRT-PCR were employed to detect the expression of molecules. Flow cytometry was used to examine cell cycle, cell apoptosis and the portion of BCSCs. Wound healing and Transwell assays were used to detect cell metastasis. The effect of C1ql4 on breast cancer progression in vivo was examined in a nude mouse tumor bearing model. Results: Our clinical analysis showed that C1ql4 was highly expressed in BC tissues and cell lines, and the high expression of C1ql4 was significantly corelated with the malignancy of BC patients. Moreover, we also found that C1ql4 was overexpressed in BCSCs. C1ql4 knockdown suppressed the BCSC and EMT properties, promoted cell cycle progression, enhanced BC cell apoptosis, and inhibited cell migration and invasion, whereas the C1ql4 overexpression exhibited the opposite effects. Mechanistically, C1ql4 promoted the activation and nuclear location of NF-κB and the expression of downstream factors TNF-α and IL-1ß. Moreover, inhibition of PI3K/AKT signaling suppressed the C1ql4-induced stemness and EMT. Conclusions: Our findings suggest that C1ql4 promotes the BC cell stemness and EMT via modulating the PI3K/AKT/NF-κB signaling, and provides a promising target for BC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA