Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Virol ; 96(9): e29894, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39206838

RESUMEN

A substantial body of literature, including our own, points to a connection between hepatitis B virus (HBV) infection and the development of drug resistance in hepatocellular carcinoma (HCC), particularly against sorafenib. However, the influence of HBV on resistance to regorafenib, another therapeutic agent, has been less studied. In this study, we used the GEO database (GSE87630) and clinical samples to demonstrate that C-C motif chemokine receptor 9 (CCR9) was highly expressed in HBV-related HCC and predicted poor overall survival. Its overexpression correlated with HBsAg-positive HCC patients. Both univariate and multivariable Cox regression analysis elucidated CCR9 was an independent risk factor for poor overall survival in HCC patients. Our in vitro findings further revealed that HBV structural proteins, small HBV surface antigen (SHBs), triggered an upregulation of CCR9. Functional assays showed that SHBs enhanced HCC cell proliferation, migration, and invasion, increased ABCB1 and ABCC1 expression, and promoted regorafenib resistance via CCR9. Intriguingly, overexpression of HBV plasmid and an AAV-HBV mouse model both exhibited a significant elevation in global N6-methyladenosine (m6A) levels. Further investigations revealed that SHBs elevated these m6A levels, upregulated CCR9 and stabilized CCR9 mRNA through KIAA1429-mediated m6A modification, with sites 1373 and 1496 on CCR9 mRNA being critical for modification. In conclusion, SHBs promoted HCC progression and regorafenib resistance via KIAA1429-mediated m6A modification of CCR9. Our findings suggested that CCR9 could be a potential prognostic biomarker and a valuable molecular therapeutic target of regorafenib resistance in HBV-related HCC.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Antígenos de Superficie de la Hepatitis B , Neoplasias Hepáticas , Compuestos de Fenilurea , Piridinas , Carcinoma Hepatocelular/virología , Carcinoma Hepatocelular/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/virología , Neoplasias Hepáticas/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Animales , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Ratones , Masculino , Femenino , Receptores CCR/genética , Receptores CCR/metabolismo , Línea Celular Tumoral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/efectos de los fármacos , Persona de Mediana Edad , Hepatitis B/virología , Hepatitis B/complicaciones , Hepatitis B/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Adenosina/análogos & derivados
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625492

RESUMEN

Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.


Asunto(s)
Citrobacter rodentium/inmunología , Infecciones por Enterobacteriaceae/inmunología , Linfocitos/inmunología , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/metabolismo , Animales , Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Interleucinas/análisis , Tejido Linfoide/citología , Tejido Linfoide/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR/biosíntesis , Receptores de Tipo II del Péptido Intestinal Vasoactivo/genética , Tretinoina/metabolismo , Péptido Intestinal Vasoactivo/genética , Interleucina-22
3.
Am J Transplant ; 23(8): 1102-1115, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36878433

RESUMEN

Damage to the gastrointestinal tract following allogeneic hematopoietic stem cell transplantation is a significant contributor to the severity and perpetuation of graft-versus-host disease. In preclinical models and clinical trials, we showed that infusing high numbers of regulatory T cells reduces graft-versus-host disease incidence. Despite no change in in vitro suppressive function, transfer of ex vivo expanded regulatory T cells transduced to overexpress G protein-coupled receptor 15 or C-C motif chemokine receptor 9, specific homing receptors for colon or small intestine, respectively, lessened graft-versus-host disease severity in mice. Increased regulatory T cell frequency and retention within the gastrointestinal tissues of mice that received gut homing T cells correlated with lower inflammation and gut damage early post-transplant, decreased graft-versus-host disease severity, and prolonged survival compared with those receiving control transduced regulatory T cells. These data provide evidence that enforced targeting of ex vivo expanded regulatory T cells to the gastrointestinal tract diminishes gut injury and is associated with decreased graft-versus-host disease severity.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Linfocitos T Reguladores , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Intestino Delgado , Inflamación
4.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37569326

RESUMEN

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterised by B cell hyperactivity. CXCR5+ follicular helper T cells (Tfh), CXCR5-PD-1hi peripheral helper T cells (Tph) and CCR9+ Tfh-like cells have been implicated in driving B cell hyperactivity in pSS; however, their potential overlap has not been evaluated. Our aim was to study the overlap between the two CXCR5- cell subsets and to study their PD-1/ICOS expression compared to "true" CXCR5/PD-1/ICOS-expressing Tfh cells. CXCR5- Tph and CCR9+ Tfh-like cell populations from peripheral blood mononuclear cells of pSS patients and healthy controls (HC) were compared using flow cytometry. PD-1/ICOS expression from these cell subsets was compared to each other and to CXCR5+ Tfh cells, taking into account their differentiation status. CXCR5- Tph cells and CCR9+ Tfh-like cells, both in pSS patients and HC, showed limited overlap. PD-1/ICOS expression was higher in memory cells expressing CXCR5 or CCR9. However, the highest expression was found in CXCR5/CCR9 co-expressing T cells, which are enriched in the circulation of pSS patients. CXCR5- Tph and CCR9+ Tfh-like cells are two distinct cell populations that both are enriched in pSS patients and can drive B cell hyperactivity in pSS. The known upregulated expression of CCL25 and CXCL13, ligands of CCR9 and CXCR5, at pSS inflammatory sites suggests concerted action to facilitate the migration of CXCR5+CCR9+ T cells, which are characterised by the highest frequencies of PD-1/ICOS-positive cells. Hence, these co-expressing effector T cells may significantly contribute to the ongoing immune responses in pSS.


Asunto(s)
Linfocitos T CD4-Positivos , Síndrome de Sjögren , Humanos , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Interleucinas/metabolismo , Leucocitos Mononucleares , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Receptores CXCR5/metabolismo , Linfocitos T Colaboradores-Inductores
5.
Eur J Immunol ; 51(4): 903-914, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33347617

RESUMEN

This study elucidates the mechanism of CCL25 and CCR9 in rheumatoid arthritis (RA). RA synovial fluid (SF) expresses elevated levels of CCL25 compared to OA SF and plasma from RA and normal. CCL25 was released into RA SF by fibroblasts (FLS) and macrophages (MΦs) stimulated with IL-1ß and IL-6. CCR9 is also presented on IL-1ß and IL-6 activated RA FLS and differentiated MΦs. Conversely, in RA PBMCs neither CCL25 nor CCR9 are impacted by 3-month longitudinal TNF inhibitor therapy. CCL25 amplifies RA FLS and monocyte infiltration via p38 and ERK phosphorylation. CCL25-stimulated RA FLS secrete potentiated levels of IL-8 which is disrupted by p38 and ERK inhibitors. CCL25 polarizes RA monocytes into nontraditional M1 MΦs that produce IL-8 and CCL2. Activation of p38 and ERK cascades are also responsible for the CCL25-induced M1 MΦ development. Unexpectedly, CCL25 was unable to polarize RA PBMCs into effector Th1/Th17 cells. Consistently, lymphokine like RANKL was uninvolved in CCL25-induced osteoclastogenesis; however, this manifestation was regulated by osteoclastic factors such as RANK, cathepsin K (CTSK), and TNF-α. In short, we reveal that CCL25/CCR9 manipulates RA FLS and MΦ migration and inflammatory phenotype in addition to osteoclast formation via p38 and ERK activation.


Asunto(s)
Artritis Reumatoide/inmunología , Diferenciación Celular/inmunología , Quimiocinas CC/inmunología , Macrófagos/inmunología , Osteoclastos/inmunología , Receptores CCR/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Células Cultivadas , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Quimiocinas CC/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/inmunología , Fibroblastos/metabolismo , Humanos , Interleucina-8/inmunología , Interleucina-8/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Fosforilación , Receptores CCR/metabolismo , Transducción de Señal/inmunología , Líquido Sinovial/citología , Líquido Sinovial/inmunología , Líquido Sinovial/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Angew Chem Int Ed Engl ; 61(12): e202116782, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-34936714

RESUMEN

A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.


Asunto(s)
Receptores CCR , Receptores Acoplados a Proteínas G , Sitio Alostérico , Ligandos , Receptores CCR/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Diabetologia ; 64(3): 603-617, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33399911

RESUMEN

AIMS/HYPOTHESIS: Accumulation of adipose tissue macrophages is considered pivotal in the development of obesity-associated inflammation and insulin resistance. In addition, recent studies suggest an involvement of the intestine as the primary organ in inducing hyperglycaemia and insulin resistance. We have reported that the C-C motif chemokine receptor (CCR) CCR9 is associated with intestinal immunity and has a pathogenic role in various liver diseases. However, its contribution to type 2 diabetes is unknown. In the current study, we aimed to clarify the involvement of CCR9 in the pathology of type 2 diabetes and the potential underlying mechanisms. METHODS: To elucidate how CCR9 affects the development of metabolic phenotypes, we examined the impact of CCR9 deficiency on the pathogenesis of type 2 diabetes using male C57BL/6J (wild-type [WT]) and CCR9-deficient (CCR9 knockout [KO]) mice fed a 60% high-fat diet (HFD) for 12 weeks. RESULTS: WT and Ccr9KO mice fed an HFD exhibited a comparable weight gain; however, glucose tolerance and insulin resistance were significantly improved in Ccr9KO mice. Moreover, visceral adipose tissue (VAT) and the liver of Ccr9KO mice presented with less inflammation and increased expression of glucose metabolism-related genes than WT mice. Ccr9 and Ccl25 expression were specifically higher in the small intestine but was not altered by HFD feeding and type 2 diabetes development. Accumulation of IFN-γ-producing CD4+ T lymphocytes and increased intestinal permeability in the small intestine was observed in WT mice following HFD feeding, but these changes were suppressed in HFD-fed Ccr9KO mice. Adoptive transfer of gut-tropic CCR9-expressing T lymphocytes partially reversed the favourable glucose tolerance found in Ccr9KO mice via exacerbated inflammation in the small intestine and VAT. CONCLUSIONS/INTERPRETATION: CCR9 plays a central role in the pathogenesis of type 2 diabetes by inducing an inflammatory shift in the small intestine. Our findings support CCR9 as a new therapeutic target for type 2 diabetes via the gut-VAT-liver axis.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Enteritis/etiología , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Intestino Delgado/metabolismo , Obesidad/complicaciones , Receptores CCR/metabolismo , Animales , Glucemia/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Quimiocinas CC/genética , Quimiocinas CC/metabolismo , Quimiotaxis de Leucocito , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Enteritis/inmunología , Enteritis/metabolismo , Insulina/sangre , Interferón gamma/metabolismo , Intestino Delgado/inmunología , Grasa Intraabdominal/inmunología , Grasa Intraabdominal/metabolismo , Hígado/inmunología , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/inmunología , Obesidad/metabolismo , Receptores CCR/genética , Transducción de Señal
8.
J Hepatol ; 74(3): 511-521, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33038434

RESUMEN

BACKGROUND & AIMS: The number of patients with non-alcoholic steatohepatitis (NASH) is increasing globally. Recently, specific chemokine receptors have garnered interest as therapeutic targets in NASH. This is the first report to examine the role of the C-C chemokine receptor 9 (CCR9)/C-C chemokine receptor ligand 25 (CCL25) axis, and to reveal its therapeutic potential in NASH. METHODS: Patients with biopsy-proven non-alcoholic liver disease (NAFLD) were recruited and their serum and hepatic chemokine expression was examined. Furthermore, wild-type (WT) and Ccr9-/- mice were fed a high-fat high-cholesterol (HFHC) diet for 24 weeks to establish NASH. RESULTS: Serum CCL25, and hepatic CCR9 and CCL25 expression levels were increased in patients with NASH compared to healthy volunteers. Furthermore, Ccr9-/- mice were protected from HFHC diet-induced NASH progression both serologically and histologically. Flow cytometry and immunohistochemistry analysis showed that CCR9+CD11b+ inflammatory macrophages accumulated in the inflamed livers of HFHC diet-fed mice, while the number was reduced in Ccr9-/- mice. Consistent with human NASH livers, CCR9 was also expressed on hepatic stellate cells (HSCs) in mice with NASH, while CCR9-deficient HSCs showed less fibrogenic potential in vitro. Administration of a CCR9 antagonist hampered further fibrosis progression in mice with NASH, supporting its potential clinical application. Finally, we showed that CCR9 blockade attenuated the development of NAFLD-related hepatocellular carcinoma in HF diet-fed mice injected with diethylnitrosamine. CONCLUSIONS: These results highlight the role of the CCR9/CCL25 axis on macrophage recruitment and fibrosis formation in a murine NASH model, providing new insights into therapeutic strategies for NASH. LAY SUMMARY: Herein, we show that a specific chemokine axis involving a receptor (CCR9) and its ligand (CCL25) contributes to the progression of non-alcoholic steatohepatitis and carcinogenesis in humans and mice. Furthermore, treatment with a CCR9 antagonist ameliorates the development of steatohepatitis and holds promise for the treatment of patients with non-alcoholic steatohepatitis.


Asunto(s)
Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/metabolismo , Progresión de la Enfermedad , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Receptores CCR/metabolismo , Adulto , Anciano , Animales , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/prevención & control , Estudios de Casos y Controles , Quimiocinas CC/sangre , Quimiocinas CC/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/prevención & control , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores CCR/antagonistas & inhibidores , Receptores CCR/genética , Sulfonamidas/administración & dosificación , Resultado del Tratamiento
9.
Eur J Immunol ; 50(3): 404-417, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31755547

RESUMEN

The chemokine receptor CCR9 and its only known ligand CCL25 play an important role in gut inflammation and autoimmune colitis. The function of CCR9-CCL25 in the migration of immune cells is well characterized. However, its role in the immune cell differentiation is mostly not known. Using dextran sodium sulfate (DSS)-induced gut inflammation model, we showed that CCR9+ dendritic cells (DCs) specifically CD11b- CD103+ DCs were significantly increased in the gut-associated lymphoid tissues (GALT) compared to control mice. These CCR9+ DCs express lower MHC II and CD86 molecules and had regulatory surface markers (FasL and latency-associated peptide, LAP) in the GALT. In the presence of CCL25, CCR9+ DCs promoted in vitro differentiation of Foxp3+ regulatory CD4+ T cells (Tregs). CCL25-induced differentiation of Tregs was due to intrinsic signaling in the DCs but not through CD4+ T cells, which was driven by the production of thymic stromal lymphopoietin (TSLP) and not IL-10. Furthermore, adoptive transfer of CCR9+ DCs in C57BL/6 mice promoted Tregs but reduced the Th17 cells in the GALT, and also suppressed the OVA-specific gut-allergic response. Our results suggest CCR9+ DCs have a regulatory function and may provide a new cellular therapeutic strategy to control gut inflammation and allergic immune reaction.


Asunto(s)
Colitis/inmunología , Células Dendríticas/inmunología , Intestinos/inmunología , Receptores CCR/inmunología , Linfocitos T Reguladores/inmunología , Animales , Diferenciación Celular/inmunología , Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología
10.
J Intern Med ; 289(4): 523-531, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32976665

RESUMEN

BACKGROUND: A high proportion of COVID-19 patients have cardiac involvement, even those without known cardiac disease. Downregulation of angiotensin converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 and the renin-angiotensin system, as well as inflammatory mechanisms have been suggested to play a role. ACE2 is abundant in the gut and associated with gut microbiota composition. We hypothesized that gut leakage of microbial products, and subsequent inflammasome activation could contribute to cardiac involvement in COVID-19 patients. METHODS: Plasma levels of a gut leakage marker (LPS-binding protein, LBP), a marker of enterocyte damage (intestinal fatty acid binding protein, IFABP), a gut homing marker (CCL25, ligand for chemokine receptor CCR9) and markers of inflammasome activation (IL-1ß, IL-18 and their regulatory proteins) were measured at three time points (day 1, 3-5 and 7-10) in 39 hospitalized COVID-19 patients and related to cardiac involvement. RESULTS: Compared to controls, COVID-19 patients had elevated plasma levels of LBP and CCL25 but not IFABP, suggesting impaired gut barrier function and accentuated gut homing of T cells without excessive enterocyte damage. Levels of LBP were twice as high at baseline in patients with elevated cardiac markers compared with those without and remained elevated during hospitalization. Also, markers of inflammasome activation were moderately elevated in patients with cardiac involvement. LBP was associated with higher NT-pro-BNP levels, whereas IL-18, IL-18BP and IL-1Ra were associated with higher troponin levels. CONCLUSION: Patients with cardiac involvement had elevated markers of gut leakage and inflammasome activation, suggestive of a potential gut-heart axis in COVID-19.


Asunto(s)
COVID-19 , Quimiocinas CC/metabolismo , Microbioma Gastrointestinal/inmunología , Cardiopatías , Inflamasomas/metabolismo , Mucosa Intestinal , SARS-CoV-2 , Proteínas de Fase Aguda/metabolismo , COVID-19/complicaciones , COVID-19/inmunología , Proteínas Portadoras/metabolismo , Correlación de Datos , Cardiopatías/inmunología , Cardiopatías/virología , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiopatología , Glicoproteínas de Membrana/metabolismo , Péptido Natriurético Encefálico/sangre , Fragmentos de Péptidos/sangre , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Troponina/sangre
11.
Cytokine ; 142: 155473, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33647585

RESUMEN

BACKGROUND: B220+CD11c+plasmacytoid DCs(pDCs) are known to participate in the negative selection and central tolerance induction by the capturing of self-antigens in peripheral tissues and further migration to the thymus using the CCL25-CCR9 chemotaxis axis. AIM: Here we investigate the possibility of DCs migration stimulation to the thymus by the transfection with plasmid DNA-constructs encoding CCR9(pmaxCCR9) to develop a system for desired antigen delivery to the thymus for central tolerance induction. METHODS: Dendritic cells(DCs) cultures were generated from UBC-GFP mice bone marrow cells expressing green fluorescent protein using the rmFlt3-L. DCs cultures were transfected with pmaxCCR9 by electroporation. The efficiency of electroporation was confirmed by RT-qPCR and flow cytometry. The migration of electroporated DCs was assessed in vitro and in vivo. RESULTS: Dendritic cells(DCs) cultures obtained from UBC-GFP mice contained both B220+pDCs and SIRPa+cDC2. According to the RT-qPCR assay, the electroporation of obtained DCs cultures with pmaxCCR9 resulted in a 94.4-fold increase of RNA encoding CCR9 compared with non-electroporated cultures. Flow cytometry data showed that DCs cultures electroporated with pmaxCCR9 contained a significantly higher frequency of DCs carrying significantly higher levels of surface CCR9. Migration dynamics of obtained DCs analyzed in vitro showed that pmaxCCR9 electroporated DCs migrated significantly more active to CCL25 and thymic cells than non-electroporated and mock-electroporated DCs. In vivo, 30 days after injection, the relative amount of the DCs electroporated with pmaxCCR9 and pmaxMHC encoding antigenic determinants in the mice thymuses was 2.02-fold higher than the relative amount of the DCs electroporated with control plasmid. CONCLUSION: Thus, the electroporation of murine DCs with pmaxCCR9 stimulated its migration to CCL25 and thymic cells in vitro as well as to the thymus in vivo. The obtained DCs loaded with a desired antigen may be suggested for further evaluation of central tolerance induction ability in in vivo models of autoimmune diseases and transplantation.


Asunto(s)
Movimiento Celular , Quimiocinas CC/metabolismo , ADN/metabolismo , Células Dendríticas/metabolismo , Plásmidos/metabolismo , Receptores CCR/metabolismo , Timo/citología , Transfección , Animales , Antígenos/metabolismo , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Electroporación , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Proteínas de la Membrana/farmacología , Ratones Endogámicos C57BL , Transgenes
12.
Cancer Cell Int ; 21(1): 648, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34863167

RESUMEN

BACKGROUND: Osteosarcoma (OS) patients with lung metastasis have poor prognoses, and effective therapeutic strategies for delaying or inhibiting the spread of lung metastasis from the primary OS site are lacking. Hence, it is critical to elucidate the underlying mechanisms of OS metastasis and to identify additional new effective treatment strategies for patients. METHODS: Differential expression and functional analyses were performed to identify key genes and relevant signaling pathways associated with OS lung metastasis. The expression of CCR9 in OS cell lines and tissues was measured by RT-qPCR, western blotting and immunohistochemistry. Cell migration and invasion were assessed by wound healing and Transwell Matrigel invasion assays, respectively. The regulatory relationship between CCR9 and the Wnt/ß-catenin signaling pathway was further evaluated by rescue experiments. RESULTS: The expression of CCR9 was elevated in OS cell lines and patients with lung metastasis. CCR9 promoted MG63 and HOS cell migration and invasion by activating the Wnt/ß-catenin signaling pathway. Furthermore, knockdown of CCR9 repressed epithelial-mesenchymal transition (EMT) by downregulating mesenchymal markers (N-cadherin and Vimentin) and EMT-associated transcription factors (twist and snail) and upregulating an epithelial marker (E-cadherin). CONCLUSIONS: Our findings suggest that CCR9 promotes EMT by activating Wnt/ß-catenin pathways to promote OS metastasis. CCR9 may be a promising therapeutic target to inhibit lung metastasis and serve as a novel prognostic marker for OS.

13.
Adv Exp Med Biol ; 1302: 99-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34286444

RESUMEN

Multiple checkpoint mechanisms are overridden by cancer cells in order to develop into a tumor. Neoplastic cells, while constantly changing during the course of cancer progression, also craft their surroundings to meet their growing needs. This crafting involves changing cell surface receptors, affecting response to extracellular signals and secretion of signals that affect the nearby cells and extracellular matrix architecture. This chapter briefly comprehends the non-cancer cells facilitating the cancer growth and elaborates on the notable role of the CCR9-CCL25 chemokine axis in shaping the tumor microenvironment (TME), directly and via immune cells. Association of increased CCR9 and CCL25 levels in various tumors has demonstrated the significance of this axis as a tool commonly used by cancer to flourish. It is involved in attracting immune cells in the tumor and determining their fate via various direct and indirect mechanisms and, leaning the TME toward immunosuppressive state. Besides, elevated CCR9-CCL25 signaling allows survival and rapid proliferation of cancer cells in an otherwise repressive environment. It modulates the intra- and extracellular protein matrix to instigate tumor dissemination and creates a supportive metastatic niche at the secondary sites. Lastly, this chapter abridges the latest research efforts and challenges in using the CCR9-CCL25 axis as a cancer-specific target.


Asunto(s)
Receptores CCR , Microambiente Tumoral , Transducción de Señal
14.
J Cell Physiol ; 235(12): 9121-9132, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32401349

RESUMEN

Chemokines constitute a superfamily of small chemotactic cytokines with functions that are based on interactions with their corresponding receptors. It has been found that, among other functions, chemokines regulate the migratory and invasive abilities of cancer cells. Multiple studies have confirmed that chemokine receptor 9 (CCR9) and its exclusive ligand, chemokine 25 (CCL25), are overexpressed in a variety of malignant tumors and are closely associated with tumor proliferation, apoptosis, invasion, migration and drug resistance. This review evaluates recent advances in understanding the role of CCR9/CCL25 in cancer development. First, we outline the general background of chemokines in cancer and the structure and function of CCR9 and CCL25. Next, we describe the basic function of CCR9/CCL25 in the cancer process. Then, we introduce the role of CCR9/CCL25 and related signaling pathways in various cancers. Finally, future research directions are proposed. In general, this paper is intended to serve as a comprehensive repository of information on this topic and is expected to contribute to the design of other research projects and future efforts to develop treatment strategies for ameliorating the effects of CCR9/CCL25 in cancer.


Asunto(s)
Movimiento Celular/fisiología , Quimiocinas CC/metabolismo , Receptores CCR/metabolismo , Receptores de Quimiocina/metabolismo , Animales , Apoptosis/fisiología , Transformación Celular Neoplásica/metabolismo , Humanos
15.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434738

RESUMEN

Adoptive cell transfer (ACT) is a powerful experimental approach to directly study T-cell-mediated immunity in vivo In the rhesus macaque AIDS virus model, infusing simian immunodeficiency virus (SIV)-infected animals with CD8 T cells engineered to express anti-SIV T-cell receptor specificities enables direct experimentation to better understand antiviral T-cell immunity in vivo Limiting factors in ACT experiments include suboptimal trafficking to, and poor persistence in, the secondary lymphoid tissues targeted by AIDS viruses. Previously, we redirected CD8 T cells to B-cell follicles by ectopic expression of the CXCR5 homing protein. Here, we modify peripheral blood mononuclear cell (PBMC)-derived CD8 T cells to express the CCR9 chemokine receptor, which induces preferential homing of the engineered cells to the small intestine, a site of intense early AIDS virus replication and pathology in rhesus macaques. Additionally, we increase in vivo persistence and overall systemic distribution of infused CD8 T cells, especially in secondary lymphoid tissues, by minimizing ex vivo culture/manipulation, thereby avoiding the loss of CD28+/CD95+ central memory T cells by differentiation in culture. These proof-of-principle results establish the feasibility of preferentially localizing PBMC-derived CD8 T cells to the small intestine and enables the direct experimental ACT-based assessment of the potential role of the quality and timing of effective antiviral CD8 T-cell responses to inhibit viral infection and subsequent replication in small intestine CD4 T cells. More broadly, these results support the engineered expression of homing proteins to direct CD8 T cells to target tissues as a means for both experimental and potential therapeutic advances in T-cell immunotherapies, including cancer.IMPORTANCEAdoptive cell transfer (ACT) of T cells engineered with antigen-specific effector properties can deliver targeted immune responses against malignancies and infectious diseases. Current T-cell-based therapeutic ACT relies on circulatory distribution to deliver engineered T cells to their targets, an approach which has proven effective for some leukemias but provided only limited efficacy against solid tumors. Here, engineered expression of the CCR9 homing receptor redirected CD8 T cells to the small intestine in rhesus macaque ACT experiments. Targeted homing of engineered T-cell immunotherapies holds promise to increase the effectiveness of adoptively transferred cells in both experimental and clinical settings.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiotaxis de Leucocito/inmunología , Intestino Delgado/inmunología , Receptores CCR/metabolismo , Traslado Adoptivo , Animales , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/metabolismo , Quimiocinas CC/metabolismo , Memoria Inmunológica , Intestino Delgado/virología , Leucocitos Mononucleares/inmunología , Ganglios Linfáticos/inmunología , Macaca mulatta , Transducción de Señal , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología
16.
Cytokine ; 127: 154935, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31770615

RESUMEN

BACKGROUND & AIMS: There is a possible significant difficulty in differentiating between non-specific colitis (NSC) and early IBD patients with no cardinal endoscopic features. This clarifies the need to find markers with high sensitivity and specificity for distinguishing between both and other forms of specific colitis. The aim of this study to investigate the ability to use a chemokine panel (CCR9, CD146 and Foxp3) among patients with lower gastrointestinal symptoms found to have NSC (but do not have current IBD) to predict which patients progress to/develop future IBD or other diagnoses of specific colitis. METHODS: Colonoscopy was done for 182 patients complaining of chronic diarrhea and or constipation, abdominal distention and pain with negative history for IBD, after Histopathological evaluation; 138 cases showing non-specific inflammation submitted for further immunohistochemical CCR9, CD146 and Foxp3 staining. On follow up patients with persistent symptoms or worsen symptoms recolonoscopy was done followed by Histopathological examination of samples and compared by the earlier results. RESULTS: The studied markers expressed significantly in IBD patients differentiating them from NSC patients (p < 0.001) except for CCR9 expression was statistically insignificant in CD patients (p = 0.528). According to the ROC curves in prediction of progression using studied panel, the use of studied markers in combination was more statistically significant in comparison to each marker alone. Median follow up for studied patients was 12 months. CONCLUSIONS: This panel of markers holds a promising hope for early IBD as predictive markers, discriminating IBD from NSC and as potential therapeutic targets.


Asunto(s)
Biomarcadores/metabolismo , Quimiocinas/metabolismo , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Adulto , Antígeno CD146/metabolismo , Colitis/diagnóstico , Colonoscopía/métodos , Diagnóstico Diferencial , Femenino , Factores de Transcripción Forkhead/metabolismo , Humanos , Inmunohistoquímica/métodos , Enfermedades Inflamatorias del Intestino/diagnóstico , Masculino , Persona de Mediana Edad , Curva ROC , Receptores CCR/metabolismo , Coloración y Etiquetado/métodos
17.
J Nutr ; 150(11): 3005-3012, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32939553

RESUMEN

BACKGROUND: Vitamin A (VA) stores are low in early infancy and may impair development of the immune system. OBJECTIVE: This study determined if neonatal VA supplementation (VAS) affects the following: 1) development of regulatory T (Treg) cells; 2) chemokine receptor 9 (CCR9) expression, which directs mucosal targeting of immune cells; and 3) systemic endotoxin exposure as indicated by changed plasma concentrations of soluble CD14 (sCD14). Secondarily, VA status, growth, and systemic inflammation were investigated. METHODS: In total, 306 Bangladeshi infants were randomly assigned to receive 50,000 IU VA or placebo (PL) within 48 h of birth, and immune function was assessed at 6 wk, 15 wk, and 2 y. Primary outcomes included the following: 1) peripheral blood Treg cells; 2) percentage of Treg, T, and B cells expressing CCR9; and 3) plasma sCD14. Secondary outcomes included the following: 4) VA status measured using the modified relative dose-response (MRDR) test and plasma retinol; 5) infant growth; and 6) plasma C-reactive protein (CRP). Statistical analysis identified group differences and interactions with sex and birthweight. RESULTS: VAS increased (P = 0.004) the percentage of CCR9+ Treg cells (13.2 ± 1.37%) relative to PL (9.17 ± 1.15%) in children below the median birthweight but had the opposite effect (P = 0.04) in those with higher birthweight (VA, 9.13 ± 0.89; PL, 12.1 ± 1.31%) at 6 and 15 wk (values are combined mean ± SE). VAS decreased (P = 0.003) plasma sCD14 (1.56 ± 0.025 mg/L) relative to PL (1.67 ± 0.032 mg/L) and decreased (P = 0.034) the prevalence of VA deficiency (2.3%) relative to PL (9.2%) at 2 y. CONCLUSIONS: Neonatal VAS enhanced mucosal targeting of Treg cells in low-birthweight infants. The decreased systemic exposure to endotoxin and improved VA status at 2 y may have been due to VA-mediated improvements in gut development resulting in improved barrier function and nutrient absorption. This trial was registered at clinicaltrials.gov as NCT01583972 and NCT02027610.


Asunto(s)
Receptores CCR/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Deficiencia de Vitamina A/prevención & control , Vitamina A/administración & dosificación , Bangladesh/epidemiología , Peso al Nacer , Preescolar , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Recién Nacido , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Masculino , Receptores CCR/genética , Linfocitos T Reguladores/metabolismo , Deficiencia de Vitamina A/epidemiología
18.
Brain ; 142(4): 916-931, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770703

RESUMEN

The mechanism underlying the progression of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis (SPMS), characterized by accumulating fixed disability, is yet to be fully understood. Although alterations in the gut microbiota have recently been highlighted in multiple sclerosis pathogenesis, the mechanism linking the altered gut environment with the remote CNS pathology remains unclear. Here, we analyse human CD4+ memory T cells expressing the gut-homing chemokine receptor CCR9 and found a reduced frequency of CCR9+ memory T cells in the peripheral blood of patients with SPMS relative to healthy controls. The reduction in the proportion of CCR9+ cells among CD4+ memory T cells (%CCR9) in SPMS did not correlate with age, disease duration or expanded disability status scale score, although %CCR9 decreased linearly with age in healthy controls. During the clinical relapse of both, relapsing-remitting multiple sclerosis and neuromyelitis optica, a high proportion of cells expressing the lymphocyte activating 3 gene (LAG3) was detected among CCR9+ memory T cells isolated from the CSF, similar to that observed for mouse regulatory intraepithelial lymphocytes. In healthy individuals, CCR9+ memory T cells expressed higher levels of CCR6, a CNS-homing chemokine receptor, and exhibited a regulatory profile characterized by both the expression of C-MAF and the production of IL-4 and IL-10. However, in CCR9+ memory T cells, the expression of RORγt was specifically upregulated, and the production of IL-17A and IFNγ was high in patients with SPMS, indicating a loss of regulatory function. The evaluation of other cytokines supported the finding that CCR9+ memory T cells acquire a more inflammatory profile in SPMS, reporting similar aspects to CCR9+ memory T cells of the elderly healthy controls. CCR9+ memory T cell frequency decreased in germ-free mice, whereas antibiotic treatment increased their number in specific pathogen-free conditions. Here, we also demonstrate that CCR9+ memory T cells preferentially infiltrate into the inflamed CNS resulting from the initial phase and that they express LAG3 in the late phase in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Antibiotic treatment reduced experimental autoimmune encephalomyelitis symptoms and was accompanied by an increase in CCR9+ memory T cells in the peripheral blood. Antibodies against mucosal vascular addressin cell adhesion molecule 1 (MADCAM1), which is capable of blocking cell migration to the gut, also ameliorated experimental autoimmune encephalomyelitis. Overall, we postulate that the alterations in CCR9+ memory T cells observed, caused by either the gut microbiota changes or ageing, may lead to the development of SPMS.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Esclerosis Múltiple Crónica Progresiva/metabolismo , Esclerosis Múltiple Crónica Progresiva/fisiopatología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/fisiología , Citocinas/metabolismo , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple Crónica Progresiva/inmunología , Receptores CCR/genética , Receptores CCR/inmunología
19.
Int J Med Sci ; 17(7): 912-920, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32308544

RESUMEN

Aim: CC chemokine receptor 9 (CCR9) interacts with its exclusive ligand CCL25, resulting in promoting tumor progression and metastasis. However, the effect and mechanisms of CCR9 on lung adenocarcinoma distant metastasis remain largely unknown. To preliminary clarify the underlying mechanisms, we investigate the correlation between CCR9 and ALDH1A1+cancer stem cells (CSCs), as well as the effect of CCR9 on the migration and invasion of CSCs. Methods: Immunohistochemistry was performed to detect the expression of CCR9 in lung adenocarcinoma tissues. The correlations of CCR9 with distant metastasis and overall survival were investigated. Serial paraffin-embedded tissue blocks were used to detect ALDH1A1+CSCs expression. The correlations between CCR9 expression and ALDH1A1+CSCs were evaluated. We further studied the effect of CCR9/CCL25 on the migration and invasion of CSCs using transwell assays. Results: There were positive correlations between CCR9 expression and distant metastasis, as well as poor overall survival. Patients with high CCR9 expression were more likely to develop distant metastasis and demonstrated poorer overall survival than patients with low CCR9 expression. In addition, there was positive correlation between the expression of CCR9 and ALDH1A1 in the same tumor microenvironment. ALDHhigh CSCs demonstrated enhanced expression of CCR9 than ALDHlow cells. Further transwell assays demonstrated that the numbers of CSCs migrated or invaded in response to CCL25 were more than that without CCL25 stimulation. Additional application of anti-CCR9 antibody reversed the CCL25-induced migration and invasion of CSCs. Conclusions: In summary, our study demonstrated that CCR9/CCL25 promoted the migration and invasion of CSCs, which might contribute to distant metastasis and poor overall survival. Our findings provided evidence that CCR9/CCL25 could be used as novel therapeutic targets for lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Receptores CCR/metabolismo , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/mortalidad , Adulto , Anciano , Familia de Aldehído Deshidrogenasa 1/metabolismo , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Receptores CCR/genética , Retinal-Deshidrogenasa/metabolismo , Células Tumorales Cultivadas
20.
Allergy ; 73(7): 1505-1514, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29315632

RESUMEN

BACKGROUND: The mechanisms of the atopic march, characterized by a natural progression from food and cutaneous allergies to rhinitis and asthma, are still unknown. However, as several organs can be involved, chemokines and their receptors might be implicated in this process and may be instrumental factors. OBJECTIVES: We hypothesized that the T-cell gut-homing receptor CCR9 could be implicated in the evolution of allergic diseases. METHODS: We characterized the immune response and the role of CCR9 in a murine model combining food allergy to wheat gliadin and a model of acute airways inflammation in response to house dust mite. RESULTS: Compared with solely asthmatic-like mice, we demonstrated that the aggravation of pulmonary symptoms in consecutive food and respiratory allergies, characterized by an increase in pulmonary resistance and a higher Th17/Treg ratio, was abrogated in CCR9 knockout mice. Moreover, transfer of food-allergic CD4+ T cells from wild-type but not from CCR9-/- aggravated airways inflammation demonstrating that CCR9 is involved in food allergy-enhanced allergic airway inflammation to unrelated allergens. CONCLUSION: Taken together, our results demonstrated a crucial role of the T-cell homing receptor CCR9 in this model and validated its potential for use in the development of therapeutic strategies for allergic diseases.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Alimentos/efectos adversos , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores CCR/metabolismo , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/metabolismo , Adulto , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Hipersensibilidad a los Alimentos/patología , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Pyroglyphidae/inmunología , Hipersensibilidad Respiratoria/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA