Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35628316

RESUMEN

The article presents a new approach in the purification of chitosan (CS) hydrogel in order to remove a significant amount of endotoxins without changing its molecular weight and viscosity. Two variants of the method used to purify CS hydrogels from endotoxins were investigated using the PyroGene rFC Enzymatic Cascade assay kit. The effect of the CS purification method was assessed in terms of changes in the dynamic viscosity of its hydrogels, the molecular weight of the polymer, microbiological purity after refrigerated storage and cytotoxicity against L929 cells based on the ISO 10993-5:2009(E) standard. The proposed purification method 1 (M1) allows for the removal of significant amounts of endotoxins: 87.9-97.6% in relation to their initial concentration in the CS hydrogel without affecting the solution viscosity. Moreover, the final solutions were sterile and microbiologically stable during storage. The M1 purification method did not change the morphology of the L929 cells.


Asunto(s)
Quitosano , Hidrogeles , Dióxido de Carbono , Endotoxinas , Fenómenos Físicos
2.
Molecules ; 24(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835739

RESUMEN

A new method of obtaining functional foam material has been proposed. The materials were created by mixing the poly lactic acid (PLA) solution in chloroform, chitosan (CS) dissolved in water saturated with CO2 and polyethylene glycol (PEG), and freeze-dried for removal of the solvents. The composite foams were characterized for their structural (SEM, FT-IR, density, porosity), thermal (DSC), functional (hardness, elasticity, swelling capacity, solubility), and biological (antimicrobial and cytotoxic) properties. Chitosan in the composites was a component for obtaining their foamed form with 7.4 to 22.7 times lower density compared to the neat PLA and high porosity also confirmed by the SEM. The foams had a hardness in the range of 70-440 kPa. The FT-IR analysis confirmed no new chemical bonds between the sponge ingredients. Other results showed low sorption capacity (2.5-7.2 g/g) and solubility of materials (less than 0.2%). The obtained foams had the lower Tg value and improved ability of crystallization compared to neat PLA. The addition of chitosan provides the bacteriostatic and bactericidal properties against Escherichia coli and Staphylococcus aureus. Biocompatibility studies have shown that the materials obtained are not cytotoxic to the L929 cell line.


Asunto(s)
Antibacterianos/síntesis química , Quitosano/química , Poliésteres/química , Sustancias Viscoelásticas/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Dióxido de Carbono/química , Línea Celular , Escherichia coli/efectos de los fármacos , Liofilización , Humanos , Polietilenglicoles/química , Porosidad , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Sustancias Viscoelásticas/química , Sustancias Viscoelásticas/farmacología
3.
Biotechnol Bioeng ; 114(6): 1184-1194, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27922179

RESUMEN

Control of carbon dioxide within the optimum range is important in mammalian bioprocesses at the manufacturing scale in order to ensure robust cell growth, high protein yields, and consistent quality attributes. The majority of bioprocess development work is done in laboratory bioreactors, in which carbon dioxide levels are more easily controlled. Some challenges in carbon dioxide control can present themselves when cell culture processes are scaled up, because carbon dioxide accumulation is a common feature due to longer gas-residence time of mammalian cell culture in large scale bioreactors. A carbon dioxide stripping model can be used to better understand and optimize parameters that are critical to cell culture processes at the manufacturing scale. The prevailing carbon dioxide stripping models in literature depend on mass transfer coefficients and were applicable to cell culture processes with low cell density or at stationary/cell death phase. However, it was reported that gas bubbles are saturated with carbon dioxide before leaving the culture, which makes carbon dioxide stripping no longer depend on a mass transfer coefficient in the new generation cell culture processes characterized by longer exponential growth phase, higher peak viable cell densities, and higher specific production rate. Here, we present a new carbon dioxide stripping model for manufacturing scale bioreactors, which is independent of carbon dioxide mass transfer coefficient, but takes into account the gas-residence time and gas CO2 saturation time. The model was verified by CHO cell culture processes with different peak viable cell densities (7 to 12 × 106 cells mL-1 ) for two products in 5,000-L and 25,000-L bioreactors. The model was also applied to a next generation cell culture process to optimize cell culture conditions and reduce carbon dioxide levels at manufacturing scale. The model provides a useful tool to understand and better control cell culture carbon dioxide profiles for process development, scale up, and characterization. Biotechnol. Bioeng. 2017;114: 1184-1194. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/instrumentación , Reactores Biológicos , Dióxido de Carbono/aislamiento & purificación , Dióxido de Carbono/metabolismo , Proliferación Celular/fisiología , Modelos Biológicos , Animales , Técnicas de Cultivo Celular por Lotes/métodos , Células CHO , Simulación por Computador , Diseño Asistido por Computadora , Cricetulus , Diseño de Equipo , Análisis de Falla de Equipo
4.
Eur J Appl Physiol ; 116(1): 97-113, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26298270

RESUMEN

PURPOSE: Equations for blood oxyhemoglobin (HbO2) and carbaminohemoglobin (HbCO2) dissociation curves that incorporate nonlinear biochemical interactions of oxygen and carbon dioxide with hemoglobin (Hb), covering a wide range of physiological conditions, are crucial for a number of practical applications. These include the development of physiologically-based computational models of alveolar-blood and blood-tissue O2­CO2 transport, exchange, and metabolism, and the analysis of clinical and in vitro data. METHODS AND RESULTS: To this end, we have revisited, simplified, and extended our previous models of blood HbO2 and HbCO2 dissociation curves (Dash and Bassingthwaighte, Ann Biomed Eng 38:1683­1701, 2010), validated wherever possible by available experimental data, so that the models now accurately fit the low HbO2 saturation (SHbO2) range over a wide range of values of PCO2, pH, 2,3-DPG, and temperature. Our new equations incorporate a novel PO2-dependent variable cooperativity hypothesis for the binding of O2 to Hb, and a new equation for P50 of O2 that provides accurate shifts in the HbO2 and HbCO2 dissociation curves over a wide range of physiological conditions. The accuracy and efficiency of these equations in computing PO2 and PCO2 from the SHbO2 and SHbCO2 levels using simple iterative numerical schemes that give rapid convergence is a significant advantage over alternative SHbO2 and SHbCO2 models. CONCLUSION: The new SHbO2 and SHbCO2 models have significant computational modeling implications as they provide high accuracy under non-physiological conditions, such as ischemia and reperfusion, extremes in gas concentrations, high altitudes, and extreme temperatures.


Asunto(s)
Dióxido de Carbono/sangre , Hemoglobinas/metabolismo , Oxígeno/sangre , Oxihemoglobinas/metabolismo , Temperatura , Hemoglobina A/análogos & derivados , Hemoglobina A/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA