Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.678
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 56(4): 797-812.e4, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36801011

RESUMEN

The aryl-hydrocarbon receptor (AHR) is a ligand-activated transcription factor that buoys intestinal immune responses. AHR induces its own negative regulator, the AHR repressor (AHRR). Here, we show that AHRR is vital to sustaining intestinal intraepithelial lymphocytes (IELs). AHRR deficiency reduced IEL representation in a cell-intrinsic fashion. Single-cell RNA sequencing revealed an oxidative stress profile in Ahrr-/- IELs. AHRR deficiency unleashed AHR-induced expression of CYP1A1, a monooxygenase that generates reactive oxygen species, increasing redox imbalance, lipid peroxidation, and ferroptosis in Ahrr-/- IELs. Dietary supplementation with selenium or vitamin E to restore redox homeostasis rescued Ahrr-/- IELs. Loss of IELs in Ahrr-/- mice caused susceptibility to Clostridium difficile infection and dextran sodium-sulfate-induced colitis. Inflamed tissue of inflammatory bowel disease patients showed reduced Ahrr expression that may contribute to disease. We conclude that AHR signaling must be tightly regulated to prevent oxidative stress and ferroptosis of IELs and to preserve intestinal immune responses.


Asunto(s)
Ferroptosis , Linfocitos Intraepiteliales , Animales , Ratones , Linfocitos Intraepiteliales/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estrés Oxidativo , Hidrocarburos
2.
Annu Rev Pharmacol Toxicol ; 64: 1-26, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37788491

RESUMEN

I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.


Asunto(s)
Genómica , Médicos , Humanos , Animales , Ratones , Proteínas de Transporte de Membrana , Farmacogenética
3.
Proc Natl Acad Sci U S A ; 121(11): e2321162121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446853

RESUMEN

According to Dollo's Law of irreversibility in evolution, a lost structure is usually considered to be unable to reappear in evolution due to the accumulation over time of mutations in the genes required for its formation. Cypriniform fish are a classic model of evolutionary loss because, while they form fully operational teeth in the ventral posterior pharynx, unlike other teleosts, they do not possess oral teeth. Paleontological data show that Cypriniforms, a clade of teleost fish that includes the zebrafish, lost their oral teeth 50 to 100 Mya. In order to attempt to reverse oral tooth loss in zebrafish, we block the degradation of endogenous levels of retinoic acid (RA) using a specific inhibitor of the Cyp26 RA degrading enzymes. We demonstrate the inhibition of endogenous RA degradation is sufficient to restore oral tooth induction as marked by the re-appearance of expression of early dental mesenchyme and epithelium genes such as dlx2b and sp7 in the oral cavity. Furthermore, we show that these exogenously induced oral tooth germs are able to be at least partly calcified. Taken together, our data show that modifications of signaling pathways can have a significant effect on the reemergence of once-lost structures leading to experimentally induced reversibility of evolutionary tooth loss in cypriniforms.


Asunto(s)
Perciformes , Pérdida de Diente , Animales , Pez Cebra , Odontogénesis
4.
Pharmacol Rev ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054072

RESUMEN

Our knowledge of the roles of individual cytochrome P450 (P450, CYP) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" of metabolism reactions with new drug candidates. Endogenous biomarkers are being used for non-invasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating inter-species differences in drug metabolism, particularly in the context of "metabolism in safety testing" (MIST) regulatory issues ("disproportionate (human) metabolites"). Significance Statement Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.

5.
Hum Mol Genet ; 33(2): 198-210, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37802914

RESUMEN

CYP2A6, a genetically variable enzyme, inactivates nicotine, activates carcinogens, and metabolizes many pharmaceuticals. Variation in CYP2A6 influences smoking behaviors and tobacco-related disease risk. This phenome-wide association study examined associations between a reconstructed version of our weighted genetic risk score (wGRS) for CYP2A6 activity with diseases in the UK Biobank (N = 395 887). Causal effects of phenotypic CYP2A6 activity (measured as the nicotine metabolite ratio: 3'-hydroxycotinine/cotinine) on the phenome-wide significant (PWS) signals were then estimated in two-sample Mendelian Randomization using the wGRS as the instrument. Time-to-diagnosis age was compared between faster versus slower CYP2A6 metabolizers for the PWS signals in survival analyses. In the total sample, six PWS signals were identified: two lung cancers and four obstructive respiratory diseases PheCodes, where faster CYP2A6 activity was associated with greater disease risk (Ps < 1 × 10-6). A significant CYP2A6-by-smoking status interaction was found (Psinteraction < 0.05); in current smokers, the same six PWS signals were found as identified in the total group, whereas no PWS signals were found in former or never smokers. In the total sample and current smokers, CYP2A6 activity causal estimates on the six PWS signals were significant in Mendelian Randomization (Ps < 5 × 10-5). Additionally, faster CYP2A6 metabolizer status was associated with younger age of disease diagnosis for the six PWS signals (Ps < 5 × 10-4, in current smokers). These findings support a role for faster CYP2A6 activity as a causal risk factor for lung cancers and obstructive respiratory diseases among current smokers, and a younger onset of these diseases. This research utilized the UK Biobank Resource.


Asunto(s)
Neoplasias Pulmonares , Enfermedades Respiratorias , Humanos , Nicotina/genética , Análisis de la Aleatorización Mendeliana , Fumar/efectos adversos , Fumar/genética , Neoplasias Pulmonares/genética , Enfermedades Respiratorias/complicaciones , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo
6.
Annu Rev Pharmacol Toxicol ; 63: 211-229, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35914768

RESUMEN

Antiplatelet therapy is used in the treatment of patients with acute coronary syndromes, stroke, and those undergoing percutaneous coronary intervention. Clopidogrel is the most widely used antiplatelet P2Y12 inhibitor in clinical practice. Genetic variation in CYP2C19 may influence its enzymatic activity, resulting in individuals who are carriers of loss-of-function CYP2C19 alleles and thus have reduced active clopidogrel metabolites, high on-treatment platelet reactivity, and increased ischemic risk. Prospective studies have examined the utility of CYP2C19 genetic testing to guide antiplatelet therapy, and more recently published meta-analyses suggest that pharmacogenetics represents a key treatment strategy to individualize antiplatelet therapy. Rapid genetic tests, including bedside genotyping platforms that are validated and have high reproducibility, are available to guide selection of P2Y12 inhibitors in clinical practice. The aim of this review is to provide an overview of the background and rationale for the role of a guided antiplatelet approach to enhance patient care.


Asunto(s)
Farmacogenética , Inhibidores de Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/efectos adversos , Clopidogrel/uso terapéutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Estudios Prospectivos , Reproducibilidad de los Resultados , Genotipo , Resultado del Tratamiento
7.
Proc Natl Acad Sci U S A ; 120(29): e2300315120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428920

RESUMEN

An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hígado , Oxidación-Reducción , Sistema Enzimático del Citocromo P-450/química , Preparaciones Farmacéuticas/química , Catálisis , Microsomas Hepáticos , Nitrógeno
8.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216508

RESUMEN

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Asunto(s)
Alquenos , Ácidos Grasos , Ácidos Grasos/metabolismo , Alquenos/química , Descarboxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción
9.
J Biol Chem ; 300(6): 107340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705390

RESUMEN

Triclosan (TCS) is an antimicrobial toxicant found in a myriad of consumer products and has been detected in human tissues, including breastmilk. We have evaluated the impact of lactational TCS on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) neonatal mice. In hUGT1 mice, expression of the hepatic UGT1A1 gene is developmentally delayed resulting in elevated total serum bilirubin (TSB) levels. We found that newborn hUGT1 mice breastfed or orally treated with TCS presented lower TSB levels along with induction of hepatic UGT1A1. Lactational and oral treatment by gavage with TCS leads to the activation of hepatic nuclear receptors constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor alpha (PPARα), and stress sensor, activating transcription factor 4 (ATF4). When CAR-deficient hUGT1 mice (hUGT1/Car-/-) were treated with TCS, TSB levels were reduced with a robust induction of hepatic UGT1A1, leaving us to conclude that CAR is not tied to UGT1A1 induction. Alternatively, when PPARα-deficient hUGT1 mice (hUGT1/Pparα-/-) were treated with TCS, hepatic UGT1A1 was not induced. Additionally, we had previously demonstrated that TCS is a potent inducer of ATF4, a transcriptional factor linked to the integrated stress response. When ATF4 was deleted in liver of hUGT1 mice (hUGT1/Atf4ΔHep) and these mice treated with TCS, we observed superinduction of hepatic UGT1A1. Oxidative stress genes in livers of hUGT1/Atf4ΔHep treated with TCS were increased, suggesting that ATF4 protects liver from excessive oxidative stress. The increase oxidative stress may be associated with superinduction of UGT1A1. The expression of ATF4 in neonatal hUGT1 hepatic tissue may play a role in the developmental repression of UGT1A1.


Asunto(s)
Factor de Transcripción Activador 4 , Animales Recién Nacidos , Bilirrubina , Glucuronosiltransferasa , Hígado , PPAR alfa , Triclosán , Animales , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/genética , PPAR alfa/metabolismo , PPAR alfa/genética , Ratones , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Triclosán/farmacología , Humanos , Bilirrubina/farmacología , Bilirrubina/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones Noqueados , Femenino , Receptor de Androstano Constitutivo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética
10.
Plant J ; 118(5): 1439-1454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38379355

RESUMEN

Aporphine alkaloids are a large group of natural compounds with extensive pharmaceutical application prospects. The biosynthesis of aporphine alkaloids has been paid attentions in the past decades. Here, we determined the contents of four 1-benzylisoquinoline alkaloids and five aporphine alkaloids in root, stem, leaf, and flower of Aristolochia contorta Bunge, which belongs to magnoliids. Two CYP80 enzymes were identified and characterized from A. contorta. Both of them catalyze the unusual C-C phenol coupling reactions and directly form the aporphine alkaloid skeleton. AcCYP80G7 catalyzed the formation of hexacyclic aporphine corytuberine. AcCYP80Q8 catalyzed the formation of pentacyclic proaporphine glaziovine. Kingdom-wide phylogenetic analysis of the CYP80 family suggested that CYP80 first appeared in Nymphaeales. The functional divergence of hydroxylation and C-C (or C-O) phenol coupling preceded the divergence of magnoliids and eudicots. Probable crucial residues of AcCYP80Q8 were selected through sequence alignment and molecular docking. Site-directed mutagenesis revealed two crucial residues E284 and Y106 for the catalytic reaction. Identification and characterization of two aporphine skeleton-forming enzymes provide insights into the biosynthesis of aporphine alkaloids.


Asunto(s)
Alcaloides , Aporfinas , Aristolochia , Sistema Enzimático del Citocromo P-450 , Filogenia , Proteínas de Plantas , Aporfinas/metabolismo , Aristolochia/enzimología , Aristolochia/metabolismo , Aristolochia/genética , Aristolochia/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Alcaloides/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/enzimología , Raíces de Plantas/metabolismo , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Flores/enzimología , Flores/genética , Flores/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/enzimología , Tallos de la Planta/genética
11.
Plant J ; 119(1): 364-382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38652034

RESUMEN

Barley produces several specialized metabolites, including five α-, ß-, and γ-hydroxynitrile glucosides (HNGs). In malting barley, presence of the α-HNG epiheterodendrin gives rise to undesired formation of ethyl carbamate in the beverage production, especially after distilling. Metabolite-GWAS identified QTLs and underlying gene candidates possibly involved in the control of the relative and absolute content of HNGs, including an undescribed MATE transporter. By screening 325 genetically diverse barley accessions, we discovered three H. vulgare ssp. spontaneum (wild barley) lines with drastic changes in the relative ratios of the five HNGs. Knock-out (KO)-lines, isolated from the barley FIND-IT resource and each lacking one of the functional HNG biosynthetic genes (CYP79A12, CYP71C103, CYP71C113, CYP71U5, UGT85F22 and UGT85F23) showed unprecedented changes in HNG ratios enabling assignment of specific and mutually dependent catalytic functions to the biosynthetic enzymes involved. The highly similar relative ratios between the five HNGs found across wild and domesticated barley accessions indicate assembly of the HNG biosynthetic enzymes in a metabolon, the functional output of which was reconfigured in the absence of a single protein component. The absence or altered ratios of the five HNGs in the KO-lines did not change susceptibility to the fungal phytopathogen Pyrenophora teres causing net blotch. The study provides a deeper understanding of the organization of HNG biosynthesis in barley and identifies a novel, single gene HNG-0 line in an elite spring barley background for direct use in breeding of malting barley, eliminating HNGs as a source of ethyl carbamate formation in whisky production.


Asunto(s)
Glucósidos , Hordeum , Hordeum/genética , Hordeum/metabolismo , Hordeum/microbiología , Glucósidos/metabolismo , Nitrilos/metabolismo , Sitios de Carácter Cuantitativo , Uretano/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudio de Asociación del Genoma Completo
12.
Plant J ; 118(5): 1619-1634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38456566

RESUMEN

The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Sistema Enzimático del Citocromo P-450 , Regulación de la Expresión Génica de las Plantas , Lípidos de la Membrana , Oxilipinas , Hojas de la Planta , Ceras , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Ceras/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Lípidos de la Membrana/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Transducción de Señal , Epidermis de la Planta/metabolismo , Epidermis de la Planta/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Liasas de Carbono-Carbono , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
13.
Plant J ; 119(1): 540-556, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38662911

RESUMEN

Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced ß-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Histonas , Malus , Proteínas de Plantas , Factores de Transcripción , Carotenoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malus/genética , Malus/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Acetilación , Plantas Modificadas Genéticamente
14.
Plant Physiol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052981

RESUMEN

Pentacyclic triterpenoids, recognized for their natural bioactivity, display complex spatiotemporal accumulation patterns within the ecological model plant Nicotiana attenuata. Despite their ecological importance, the underlying biosynthetic enzymes and functional attributes of triterpenoid synthesis in N. attenuata remain unexplored. Here, we show that three cytochrome P450 monooxygenases (NaCYP716A419, NaCYP716C87, and NaCYP716E107) from N. attenuata oxidize the pentacyclic triterpene skeleton, as evidenced by heterologous expression in Nicotiana benthamiana. NaCYP716A419 catalyzed a consecutive three-step oxidation reaction at the C28 position of ß-amyrin/lupeol/lupanediol, yielding the corresponding alcohol, aldehyde, and carboxylic acid. NaCYP716C87 hydroxylated the C2α position of ß-amyrin/lupeol/lupanediol/erythrodiol/oleanolic acid/betulinic acid, while NaCYP716E107 hydroxylated the C6ß position of ß-amyrin/oleanolic acid. The genes encoding these three CYP716 enzymes are highly expressed in flowers and respond to induction by ABA, MeJA, SA, GA3, and abiotic stress treatments. Using VIGS technology, we revealed that silencing of NaCYP716A419 affects the growth and reproduction of N. attenuata, suggesting the ecological significance of these specialized metabolite biosynthetic steps.

15.
Hum Genomics ; 18(1): 11, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303026

RESUMEN

BACKGROUND: Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS: Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS: These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.


Asunto(s)
Citocromo P-450 CYP2D6 , Diosgenina , Estudio de Asociación del Genoma Completo , Humanos , Citocromo P-450 CYP2D6/genética , Paroxetina/farmacología , Biomarcadores , Genotipo
16.
Hum Genomics ; 18(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38173046

RESUMEN

BACKGROUND: Clopidogrel is a widely prescribed prodrug that requires activation via specific pharmacogenes to exert its anti-platelet function. Genetic variations in the genes encoding its transporter, metabolizing enzymes, and target receptor lead to variability in its activation and platelet inhibition and, consequently, its efficacy. This variability increases the risk of secondary cardiovascular events, and therefore, some variations have been utilized as genetic biomarkers when prescribing clopidogrel. METHODS: Our study examined clopidogrel-related genes (CYP2C19, ABCB1, PON1, and P2Y12R) in a cohort of 298 healthy Emiratis individuals. The study used whole exome sequencing (WES) data to comprehensively analyze pertinent variations of these genes, including their minor allele frequencies, haplotype distribution, and their resulting phenotypes. RESULTS: Our data shows that approximately 37% (n = 119) of the cohort are likely to benefit from the use of alternative anti-platelet drugs due to their classification as intermediate or poor CYP2C19 metabolizers. Additionally, more than 50% of the studied cohort exhibited variants in ABCB1, PON1, and P2YR12 genes, potentially influencing clopidogrel's transport, enzymatic clearance, and receptor performance. CONCLUSIONS: Recognizing these alleles and genotype frequencies may explain the clinical differences in medication response across different ethnicities and predict adverse events. Our findings underscore the need to consider genetic variations in prescribing clopidogrel, with potential implications for implementing personalized anti-platelet therapy among Emiratis based on their genetic profiles.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Inhibidores de Agregación Plaquetaria , Humanos , Clopidogrel/uso terapéutico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/farmacología , Citocromo P-450 CYP2C19/genética , Ticlopidina/uso terapéutico , Ticlopidina/farmacología , Emiratos Árabes Unidos , Hidrocarburo de Aril Hidroxilasas/genética , Genotipo , Arildialquilfosfatasa/genética
17.
FASEB J ; 38(16): e70002, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39162680

RESUMEN

Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer. As a glycoside derivative of apigenin, cosmosiin is characterized by low toxicity, high water solubility, and wide distribution in nature. Additionally, cosmosiin has been shown to perform anti-tumor effects in cervical cancer, hepatocellular carcinoma and melanoma. However, its pharmacological effects on breast cancer and its mechanisms are still unknown. In our study, the anti-breast cancer effect and mechanism of cosmosiin were investigated by using breast cancer models in vivo and in vitro. The results showed that cosmosiin inhibited the proliferation, migration, and adhesion of breast cancer cells in vitro and suppressed the growth of tumor in vivo through binding with AhR and inhibiting it, thus regulating the downstream CYP1A1/AMPK/mTOR and PPARγ/Wnt/ß-catenin signaling pathways. Collectively, our findings have made contribution to the development of novel drugs against breast cancer by targeting AhR and provided a new direction for the research in the field of anti-breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Citocromo P-450 CYP1A1 , PPAR gamma , Receptores de Hidrocarburo de Aril , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , PPAR gamma/metabolismo , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Ratones , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Vía de Señalización Wnt/efectos de los fármacos
18.
FASEB J ; 38(13): e23748, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940767

RESUMEN

12,13-dihydroxy-9z-octadecenoic acid (12,13-DiHOME) is a linoleic acid diol derived from cytochrome P-450 (CYP) epoxygenase and epoxide hydrolase (EH) metabolism. 12,13-DiHOME is associated with inflammation and mitochondrial damage in the innate immune response, but how 12,13-DiHOME contributes to these effects is unclear. We hypothesized that 12,13-DiHOME enhances macrophage inflammation through effects on NOD-like receptor protein 3 (NLRP3) inflammasome activation. To test this hypothesis, we utilized human monocytic THP1 cells differentiated into macrophage-like cells with phorbol myristate acetate (PMA). 12,13-DiHOME present during lipopolysaccharide (LPS)-priming of THP1 macrophages exacerbated nigericin-induced NLRP3 inflammasome activation. Using high-resolution respirometry, we observed that priming with LPS+12,13-DiHOME altered mitochondrial respiratory function. Mitophagy, measured using mito-Keima, was also modulated by 12,13-DiHOME present during priming. These mitochondrial effects were associated with increased sensitivity to nigericin-induced mitochondrial depolarization and reactive oxygen species production in LPS+12,13-DiHOME-primed macrophages. Nigericin-induced mitochondrial damage and NLRP3 inflammasome activation in LPS+12,13-DiHOME-primed macrophages were ablated by the mitochondrial calcium uniporter (MCU) inhibitor, Ru265. 12,13-DiHOME present during LPS-priming also enhanced nigericin-induced NLRP3 inflammasome activation in primary murine bone marrow-derived macrophages. In summary, these data demonstrate a pro-inflammatory role for 12,13-DiHOME by enhancing NLRP3 inflammasome activation in macrophages.


Asunto(s)
Inflamasomas , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Inflamasomas/metabolismo , Animales , Humanos , Ratones , Células THP-1 , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ácido Linoleico/farmacología , Especies Reactivas de Oxígeno/metabolismo
19.
FASEB J ; 38(9): e23650, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696238

RESUMEN

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Asunto(s)
Corteza Suprarrenal , Células Intersticiales del Testículo , Ratones Noqueados , Animales , Masculino , Ratones , Células Intersticiales del Testículo/metabolismo , Corteza Suprarrenal/metabolismo , Andrógenos/metabolismo , Testosterona/sangre , Testosterona/metabolismo , Conducta Animal , Ratones Endogámicos C57BL
20.
Brain ; 147(5): 1622-1635, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301270

RESUMEN

Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-ß and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Colesterol , Desarrollo de Medicamentos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Colesterol/metabolismo , Encéfalo/metabolismo , Animales , Desarrollo de Medicamentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA