Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 489-506.e26, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33338423

RESUMEN

Single-cell transcriptomics has been widely applied to classify neurons in the mammalian brain, while systems neuroscience has historically analyzed the encoding properties of cortical neurons without considering cell types. Here we examine how specific transcriptomic types of mouse prefrontal cortex (PFC) projection neurons relate to axonal projections and encoding properties across multiple cognitive tasks. We found that most types projected to multiple targets, and most targets received projections from multiple types, except PFC→PAG (periaqueductal gray). By comparing Ca2+ activity of the molecularly homogeneous PFC→PAG type against two heterogeneous classes in several two-alternative choice tasks in freely moving mice, we found that all task-related signals assayed were qualitatively present in all examined classes. However, PAG-projecting neurons most potently encoded choice in cued tasks, whereas contralateral PFC-projecting neurons most potently encoded reward context in an uncued task. Thus, task signals are organized redundantly, but with clear quantitative biases across cells of specific molecular-anatomical characteristics.


Asunto(s)
Cognición/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Análisis y Desempeño de Tareas , Animales , Calcio/metabolismo , Conducta de Elección , Señales (Psicología) , Imagenología Tridimensional , Integrasas/metabolismo , Ratones Endogámicos C57BL , Odorantes , Optogenética , Sustancia Gris Periacueductal/fisiología , Recompensa , Análisis de la Célula Individual , Transcriptoma/genética
2.
Cell ; 177(4): 1050-1066.e14, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982596

RESUMEN

Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.


Asunto(s)
Microscopía/métodos , Imagen Molecular/métodos , Neuroimagen/métodos , Animales , Encéfalo/fisiología , Calcio/metabolismo , Femenino , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Análisis de la Célula Individual/métodos
3.
Cell ; 177(5): 1346-1360.e24, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31080068

RESUMEN

To decipher dynamic brain information processing, current genetically encoded calcium indicators (GECIs) are limited in single action potential (AP) detection speed, combinatorial spectral compatibility, and two-photon imaging depth. To address this, here, we rationally engineered a next-generation quadricolor GECI suite, XCaMPs. Single AP detection was achieved within 3-10 ms of spike onset, enabling measurements of fast-spike trains in parvalbumin (PV)-positive interneurons in the barrel cortex in vivo and recording three distinct (two inhibitory and one excitatory) ensembles during pre-motion activity in freely moving mice. In vivo paired recording of pre- and postsynaptic firing revealed spatiotemporal constraints of dendritic inhibition in layer 1 in vivo, between axons of somatostatin (SST)-positive interneurons and apical tufts dendrites of excitatory pyramidal neurons. Finally, non-invasive, subcortical imaging using red XCaMP-R uncovered somatosensation-evoked persistent activity in hippocampal CA1 neurons. Thus, the XCaMPs offer a critical enhancement of solution space in studies of complex neuronal circuit dynamics. VIDEO ABSTRACT.


Asunto(s)
Potenciales de Acción/fisiología , Axones/metabolismo , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Células Piramidales/metabolismo , Animales , Corteza Cerebral/citología , Femenino , Hipocampo/citología , Interneuronas/citología , Ratones , Ratones Transgénicos , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley
4.
Cell ; 171(5): 1176-1190.e17, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29107332

RESUMEN

The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of social information in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors.


Asunto(s)
Amígdala del Cerebelo/fisiología , Neuronas/citología , Vigilia , Amígdala del Cerebelo/citología , Animales , Conducta Animal , Señales (Psicología) , Endoscopía/métodos , Femenino , Masculino , Ratones , Microscopía/métodos , Oxitocina/fisiología , Caracteres Sexuales , Conducta Sexual Animal , Conducta Social
5.
Cell ; 170(5): 1013-1027.e14, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28823561

RESUMEN

Reward-seeking behavior is fundamental to survival, but suppression of this behavior can be essential as well, even for rewards of high value. In humans and rodents, the medial prefrontal cortex (mPFC) has been implicated in suppressing reward seeking; however, despite vital significance in health and disease, the neural circuitry through which mPFC regulates reward seeking remains incompletely understood. Here, we show that a specific subset of superficial mPFC projections to a subfield of nucleus accumbens (NAc) neurons naturally encodes the decision to initiate or suppress reward seeking when faced with risk of punishment. A highly resolved subpopulation of these top-down projecting neurons, identified by 2-photon Ca2+ imaging and activity-dependent labeling to recruit the relevant neurons, was found capable of suppressing reward seeking. This natural activity-resolved mPFC-to-NAc projection displayed unique molecular-genetic and microcircuit-level features concordant with a conserved role in the regulation of reward-seeking behavior, providing cellular and anatomical identifiers of behavioral and possible therapeutic significance.


Asunto(s)
Recompensa , Animales , Conducta Animal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas , Neuroimagen , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Castigo
6.
Annu Rev Neurosci ; 41: 431-452, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29709208

RESUMEN

The mammalian brain is a densely interconnected network that consists of millions to billions of neurons. Decoding how information is represented and processed by this neural circuitry requires the ability to capture and manipulate the dynamics of large populations at high speed and high resolution over a large area of the brain. Although the use of optical approaches by the neuroscience community has rapidly increased over the past two decades, most microscopy approaches are unable to record the activity of all neurons comprising a functional network across the mammalian brain at relevant temporal and spatial resolutions. In this review, we survey the recent development in optical technologies for Ca2+ imaging in this regard and provide an overview of the strengths and limitations of each modality and its potential for scalability. We provide guidance from the perspective of a biological user driven by the typical biological applications and sample conditions. We also discuss the potential for future advances and synergies that could be obtained through hybrid approaches or other modalities.


Asunto(s)
Encéfalo , Vías Nerviosas/fisiología , Neuronas/fisiología , Imagen Óptica/métodos , Imagen Óptica/normas , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Vías Nerviosas/diagnóstico por imagen
7.
Proc Natl Acad Sci U S A ; 119(48): e2206829119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409915

RESUMEN

Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca2+ imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca2+ imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Animales , Ratones , Diagnóstico por Imagen , Retina , Glaucoma/diagnóstico por imagen , Encéfalo
8.
J Neurosci ; 43(27): 5076-5091, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37290938

RESUMEN

The epileptic brain is distinguished by spontaneous seizures and interictal epileptiform discharges (IEDs). Basic patterns of mesoscale brain activity outside of seizures and IEDs are also frequently disrupted in the epileptic brain and likely influence disease symptoms, but are poorly understood. We aimed to quantify how interictal brain activity differs from that in healthy individuals, and identify what features of interictal activity influence seizure occurrence in a genetic mouse model of childhood epilepsy. Neural activity across the majority of the dorsal cortex was monitored with widefield Ca2+ imaging in mice of both sexes expressing a human Kcnt1 variant (Kcnt1m/m ) and wild-type controls (WT). Ca2+ signals during seizures and interictal periods were classified according to their spatiotemporal features. We identified 52 spontaneous seizures, which emerged and propagated within a consistent set of susceptible cortical areas, and were predicted by a concentration of total cortical activity within the emergence zone. Outside of seizures and IEDs, similar events were detected in Kcnt1m/m and WT mice, suggesting that the spatial structure of interictal activity is similar. However, the rate of events whose spatial profile overlapped with where seizures and IEDs emerged was increased, and the characteristic global intensity of cortical activity in individual Kcnt1m/m mice predicted their epileptic activity burden. This suggests that cortical areas with excessive interictal activity are vulnerable to seizures, but epilepsy is not an inevitable outcome. Global scaling of the intensity of cortical activity below levels found in the healthy brain may provide a natural mechanism of seizure protection.SIGNIFICANCE STATEMENT Defining the scope and structure of an epilepsy-causing gene variant's effects on mesoscale brain activity constitutes a major contribution to our understanding of how epileptic brains differ from healthy brains, and informs the development of precision epilepsy therapies. We provide a clear roadmap for measuring how severely brain activity deviates from normal, not only in pathologically active areas, but across large portions of the brain and outside of epileptic activity. This will indicate where and how activity needs to be modulated to holistically restore normal function. It also has the potential to reveal unintended off-target treatment effects and facilitate therapy optimization to deliver maximal benefit with minimal side-effect potential.


Asunto(s)
Epilepsia , Convulsiones , Masculino , Femenino , Humanos , Animales , Ratones , Convulsiones/genética , Epilepsia/genética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Electroencefalografía/métodos
9.
Diabetologia ; 67(8): 1663-1682, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814444

RESUMEN

AIMS/HYPOTHESIS: Prediabetic pancreatic beta cells can adapt their function to maintain normoglycaemia for a limited period of time, after which diabetes mellitus will manifest upon beta cell exhaustion. Understanding sex-specific beta cell compensatory mechanisms and their failure in prediabetes (impaired glucose tolerance) is crucial for early disease diagnosis and individualised treatment. Our aims were as follows: (1) to determine the key time points of the progression from beta cells' functional adaptations to their failure in vivo; and (2) to mechanistically explain in vivo sex-specific beta cell compensatory mechanisms and their failure in prediabetes. METHODS: Islets from male and female transgenic Ins1CreERT2-GCaMP3 mice were transplanted into the anterior chamber of the eye of 10- to 12-week-old sex-matched C57BL/6J mice. Recipient mice were fed either a control diet (CD) or western diet (WD) for a maximum of 4 months. Metabolic variables were evaluated monthly. Beta cell cytoplasmic free calcium concentration ([Ca2+]i) dynamics were monitored in vivo longitudinally by image fluorescence of the GCaMP3 reporter islets. Global islet beta cell [Ca2+]i dynamics in line with single beta cell [Ca2+]i analysis were used for beta cell coordination studies. The glucagon receptor antagonist L-168,049 (4 mmol/l) was applied topically to the transplanted eyes to evaluate in vivo the effect of glucagon on beta cell [Ca2+]idynamics. Human islets from non-diabetic women and men were cultured for 24 h in either a control medium or high-fat/high-glucose medium in the presence or absence of the glucagon receptor antagonist L-168,049. [Ca2+]i dynamics of human islets were evaluated in vitro after 1 h exposure to Fura-10. RESULTS: Mice fed a WD for 1 month displayed increased beta cell [Ca2+]i dynamics linked to enhanced insulin secretion as a functional compensatory mechanism in prediabetes. Recruitment of inactive beta cells in WD-fed mice explained the improved beta cell function adaptation observed in vivo; this occurred in a sex-specific manner. Mechanistically, this was attributable to an intra-islet structural rearrangement involving alpha cells. These sex-dependent cytoarchitecture reorganisations, observed in both mice and humans, induced enhanced paracrine input from adjacent alpha cells, adjusting the glucose setpoint and amplifying the insulin secretion pathway. When WD feeding was prolonged, female mice maintained the adaptive mechanism due to their intrinsically high proportion of alpha cells. In males, [Ca2+]i dynamics progressively declined subsequent to glucose stimulation while insulin secretion continue to increase, suggesting uncoordinated beta cell function as an early sign of diabetes. CONCLUSIONS/INTERPRETATION: We identified increased coordination of [Ca2+]i dynamics as a beta cell functional adaptation mechanisms in prediabetes. Importantly, we uncovered the mechanisms by which sex-dependent beta cell [Ca2+]i dynamics coordination is orchestrated by an intra-islet structure reorganisation increasing the paracrine input from alpha cells on beta cell function. Moreover, we identified reduced [Ca2+]i dynamics coordination in response to glucose as an early sign of diabetes preceding beta cell secretory dysfunction, with males being more vulnerable. Alterations in coordination capacity of [Ca2+]i dynamics may thus serve as an early marker for beta cell failure in prediabetes.


Asunto(s)
Calcio , Células Secretoras de Glucagón , Células Secretoras de Insulina , Ratones Endogámicos C57BL , Ratones Transgénicos , Estado Prediabético , Animales , Femenino , Masculino , Células Secretoras de Insulina/metabolismo , Ratones , Estado Prediabético/metabolismo , Calcio/metabolismo , Células Secretoras de Glucagón/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos
10.
Biochem Biophys Res Commun ; 708: 149800, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38522402

RESUMEN

Previous human and rodent studies indicated that nociceptive stimuli activate many brain regions that is involved in the somatosensory and emotional sensation. Although these studies have identified several important brain regions involved in pain perception, it has been a challenge to observe neural activity directly and simultaneously in these multiple brain regions during pain perception. Using a transgenic mouse expressing G-CaMP7 in majority of astrocytes and a subpopulation of excitatory neurons, we recorded the brain activity in the mouse cerebral cortex during acute pain stimulation. Both of hind paw pinch and intraplantar administration of formalin caused strong transient increase of the fluorescence in several cortical regions, including primary somatosensory, motor and retrosplenial cortex. This increase of the fluorescence intensity was attenuated by the pretreatment with morphine. The present study provides important insight into the cortico-cortical network during pain perception.


Asunto(s)
Dolor Agudo , Animales , Ratones , Humanos , Corteza Somatosensorial , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiología , Giro del Cíngulo , Diagnóstico por Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA