RESUMEN
The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
Asunto(s)
Señalización del Calcio , Calcio , Mitocondrias , Membranas Mitocondriales , Humanos , Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals.
RESUMEN
Presynaptic neurotransmitter release is strictly regulated by SNARE proteins, Ca2+ and a number of Ca2+ sensors including synaptotagmins (Syts) and Double C2 domain proteins (Doc2s). More than seventy years after the original description of spontaneous release, the mechanism that regulates this process is still poorly understood. Syt-1, Syt7 and Doc2 proteins contribute predominantly, but not exclusively, to synchronous, asynchronous and spontaneous phases of release. The proteins share a conserved tandem C2 domain architecture, but are functionally diverse in their subcellular location, Ca2+-binding properties and protein interactions. In absence of Syt-1, Doc2a and -b, neurons still exhibit spontaneous vesicle fusion which remains Ca2+-sensitive, suggesting the existence of additional sensors. Here, we selected Doc2c, rabphilin-3a and Syt-7 as three potential Ca2+ sensors for their sequence homology with Syt-1 and Doc2b. We genetically ablated each candidate gene in absence of Doc2a and -b and investigated spontaneous and evoked release in glutamatergic hippocampal neurons, cultured either in networks or on microglial islands (autapses). The removal of Doc2c had no effect on spontaneous or evoked release. Syt-7 removal also did not affect spontaneous release, although it altered short-term plasticity by accentuating short-term depression. The removal of rabphilin caused an increased spontaneous release frequency in network cultures, an effect that was not observed in autapses. Taken together, we conclude that Doc2c and Syt-7 do not affect spontaneous release of glutamate in hippocampal neurons, while our results suggest a possible regulatory role of rabphilin-3a in neuronal networks. These findings importantly narrow down the repertoire of synaptic Ca2+ sensors that may be implicated in the spontaneous release of glutamate.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas de Unión al Calcio/fisiología , Calcio/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinaptotagmina I/fisiología , Proteínas de Transporte Vesicular/fisiología , Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/genética , Células Cultivadas , Secuencia Conservada , Ácido Glutámico/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Potenciales Postsinápticos Miniatura/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sinaptotagmina I/química , Sinaptotagmina I/deficiencia , Sinaptotagmina I/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/deficiencia , Proteínas de Transporte Vesicular/genética , Rabfilina-3ARESUMEN
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Asunto(s)
Proteínas de Unión al Calcio , Proteínas de Unión al Calcio/metabolismo , Humanos , Espacio Intracelular/metabolismoRESUMEN
Plant architecture is an important factor for crop production. Plant height, tiller pattern, and panicle morphology are decisive factors for high grain yield in rice. Here, we isolated and characterized a T-DNA insertion rice mutant Osdmt1 (Oryza sativa dwarf and multi-tillering1) that exhibited a severe dwarf phenotype and multi-tillering. Molecular cloning revealed that DMT1 encodes a plasma membrane protein that was identified as a putative Ca2+ permeable mechanosensitive channel. The transcript expression level was significantly higher in the dmt1 mutant compared to wild type (WT). Additionally, the dmt1 homozygous mutant displayed a stronger phenotype than that of the WT and heterozygous seedlings after gibberellic acid (GA) treatment. RNA-seq and iTRAQ-based proteome analyses were performed between the dmt1 mutant and WT. The transcriptome profile revealed that several genes involved in GA and strigolactone (SL) biosyntheses were altered in the dmt1 mutant. Ca2+ and other ion concentrations were significantly enhanced in the dmt1 mutant, suggesting that DMT1 contributes to the accumulation of several ions in rice. Moreover, several EF-hand Ca2+ sensors, including CMLs (CaM-like proteins) and CDPKs (calcium-dependent protein kinases), displayed markedly altered transcript expression and protein levels in the dmt1 mutant. Overall, these findings aid in the elucidation of the multiply regulatory roles of OsDMT1/OsMCA1 in rice.
Asunto(s)
Calcio/metabolismo , Canales Iónicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Giberelinas/farmacología , Homeostasis , Canales Iónicos/genética , Transporte Iónico , Mecanotransducción Celular , Mutación , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismoRESUMEN
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Asunto(s)
Plasticidad Neuronal , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica , Animales , HumanosRESUMEN
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Asunto(s)
Señalización del Calcio/fisiología , AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Mitocondriales/metabolismo , Membrana Nuclear/metabolismo , Animales , AMP Cíclico/genética , Retículo Endoplásmico/genética , Humanos , Membrana Nuclear/genéticaRESUMEN
For reliable transmission at chemical synapses, neurotransmitters must be released dynamically in response to neuronal activity in the form of action potentials. Stable synaptic transmission is dependent on the efficacy of transmitter release and the rate of resupplying synaptic vesicles to their release sites. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an action potential. Presynaptic Ca2+ concentration changes are dynamic functions in space and time, with wide fluctuations associated with different rates of neuronal activity. Thus, regulation of transmitter release includes reactions involving multiple Ca2+-dependent proteins, each operating over a specific time window. Classically, studies of presynaptic proteins function favored large invertebrate presynaptic terminals. I have established a useful mammalian synapse model based on sympathetic neurons in culture. This review summarizes the use of this model synapse to study the roles of presynaptic proteins in neuronal activity for the control of transmitter release efficacy and synaptic vesicle recycling.
Asunto(s)
Neurotransmisores/metabolismo , Proteínas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Sinapsis/metabolismo , Transmisión SinápticaRESUMEN
Changes in the intracellular free calcium concentration ([Ca²âº]i) in neurons regulate many and varied aspects of neuronal function over time scales from microseconds to days. The mystery is how a single signalling ion can lead to such diverse and specific changes in cell function. This is partly due to aspects of the Ca²âº signal itself, including its magnitude, duration, localisation and persistent or oscillatory nature. The transduction of the Ca²âº signal requires Ca²âºbinding to various Ca²âº sensor proteins. The different properties of these sensors are important for differential signal processing and determine the physiological specificity of Ca(2+) signalling pathways. A major factor underlying the specific roles of particular Ca²âº sensor proteins is the nature of their interaction with target proteins and how this mediates unique patterns of regulation. We review here recent progress from structural analyses and from functional analyses in model organisms that have begun to reveal the rules that underlie Ca²âº sensor protein specificity for target interaction. We discuss three case studies exemplifying different aspects of Ca²âº sensor/target interaction. This article is part of a special issue titled the 13th European Symposium on Calcium.
Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Neuronas/metabolismo , Animales , Humanos , Neuronas/citologíaRESUMEN
Plants evolve stress-specific responses that sense changes in their external environmental conditions and develop various mechanisms for acclimatization and survival. Calcium (Ca2+ ) is an essential stress-sensing secondary messenger in plants. Ca2+ sensors, including calcium-dependent protein kinases (CDPKs), calmodulins (CaMs), CaM-like proteins (CMLs), and calcineurin B-like proteins (CBLs), are involved in jasmonates (JAs) signalling and biosynthesis. Moreover, JAs are phospholipid-derived phytohormones that control plant response to abiotic stresses. The JAs signalling pathway affects hormone-receptor gene transcription by binding to the basic helix-loop-helix (bHLH) transcription factor. MYC2 acts as a master regulator of JAs signalling module assimilated through various genes. The Ca2+ sensor CML regulates MYC2 and is involved in a distinct mechanism mediating JAs signalling during abiotic stresses. This review highlights the pivotal role of the Ca2+ sensors in JAs biosynthesis and MYC2-mediated JAs signalling during abiotic stresses in plants.
Asunto(s)
Calcio , Plantas , Calcio/metabolismo , Plantas/genética , Plantas/metabolismo , Ciclopentanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Estrés Fisiológico , Regulación de la Expresión Génica de las PlantasRESUMEN
Calcium (Ca2+) signaling is versatile communication network in the cell. Stimuli perceived by cells are transposed through Ca2+-signature, and are decoded by plethora of Ca2+ sensors present in the cell. Calmodulin, calmodulin-like proteins, Ca2+-dependent protein kinases and calcineurin B-like proteins are major classes of proteins that decode the Ca2+ signature and serve in the propagation of signals to different parts of cells by targeting downstream proteins. These decoders and their targets work together to elicit responses against diverse stress stimuli. Over a period of time, significant attempts have been made to characterize as well as summarize elements of this signaling machinery. We begin with a structural overview and amalgamate the newly identified Ca2+ sensor protein in plants. Their ability to bind Ca2+, undergo conformational changes, and how it facilitates binding to a wide variety of targets is further embedded. Subsequently, we summarize the recent progress made on the functional characterization of Ca2+ sensing machinery and in particular their target proteins in stress signaling. We have focused on the physiological role of Ca2+, the Ca2+ sensing machinery, and the mode of regulation on their target proteins during plant stress adaptation. Additionally, we also discuss the role of these decoders and their mode of regulation on the target proteins during abiotic, hormone signaling and biotic stress responses in plants. Finally, here, we have enumerated the limitations and challenges in the Ca2+ signaling. This article will greatly enable in understanding the current picture of plant response and adaptation during diverse stimuli through the lens of Ca2+ signaling.
Asunto(s)
Calcio , Calmodulina , Transducción de SeñalRESUMEN
Plants have evolved many strategies for adaptation to extreme environments. Ca2+, acting as an important secondary messenger in plant cells, is a signaling molecule involved in plants' response and adaptation to external stress. In plant cells, almost all kinds of abiotic stresses are able to raise cytosolic Ca2+ levels, and the spatiotemporal distribution of this molecule in distant cells suggests that Ca2+ may be a universal signal regulating different kinds of abiotic stress. Ca2+ is used to sense and transduce various stress signals through its downstream calcium-binding proteins, thereby inducing a series of biochemical reactions to adapt to or resist various stresses. This review summarizes the roles and molecular mechanisms of cytosolic Ca2+ in response to abiotic stresses such as drought, high salinity, ultraviolet light, heavy metals, waterlogging, extreme temperature and wounding. Furthermore, we focused on the crosstalk between Ca2+ and other signaling molecules in plants suffering from extreme environmental stress.
RESUMEN
Calcium ion (Ca2+) is a versatile signaling transducer in all eukaryotic organisms. In plants, intracellular changes in free Ca2+ levels act as regulators in many growth and developmental processes. Ca2+ also mediates the cellular responses to environmental stimuli and thus plays an important role in providing stress tolerance to plants. Ca2+ signals are decoded by a tool kit of various families of Ca2+-binding proteins and their downstream targets, which mediate the transformation of the Ca2+ signal into appropriate cellular response. Early interest and research on Ca2+ signaling focused on its function in the cytosol, however it has become evident that this important regulatory pathway also exists in organelles such as nucleus, chloroplast, mitochondria, peroxisomes and the endomembrane system. In this review, we give an overview on the knowledge about organellar Ca2+ signaling with a focus on recent advances and developments.
Asunto(s)
Señalización del Calcio , Plantas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Orgánulos/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
Extracellular Ca2+ ([Ca2+]ex) is an important regulator of various physiological and pathological functions, including intercellular communication for synchronized cellular activities (e.g., coordinated hormone secretion from endocrine tissues). Yet it is rarely possible to concurrently quantify the dynamic changes of [Ca2+]ex and related bioactive molecules with high accuracy and temporal resolution. This work aims to develop a multiplexed microfluidic platform to enable monitoring oscillatory [Ca2+]ex and hormone(s) in a biomimetic environment. To this end, a low-affinity fluorescent indicator, Rhod-5N, is identified as a suitable sensor for a range of [Ca2+]ex based on its demonstrated high sensitivity and selectivity to Ca2+ in biomedical samples, including human serum and cell culture medium. A microfluidic chip is devised to allow for the immobilization of microscale subjects (analogous to biological tissues), precise control of the perfusion gradient at sites of interest, and integration of modalities for fluorescence measurement and enzyme-linked immunosorbent assay. As this analytical system is demonstrated to be viable to quantify the dynamic changes of Ca2+ (0.2-2 mM) and insulin (15-150 mU L-1) concurrently, with high temporal resolution, it has the potential to provide key insights into the essential roles of [Ca2+]ex in the secretory function of endocrine tissues and to identify novel therapeutic targets for human diseases.
Asunto(s)
Calcio/química , Sistema Endocrino/química , Hormonas/química , Microfluídica/instrumentación , HumanosRESUMEN
Plants and animals in endosomes operate TPC1/SV-type cation channels. All plants harbor at least one TPC1 gene. Although the encoded SV channel was firstly discovered in the plant vacuole membrane two decades ago, its biological function has remained enigmatic. Recently, the structure of a plant TPC1/SV channel protein was determined. Insights into the 3D topology has now guided site-directed mutation approaches, enabling structure-function analyses of TPC1/SV channels to shed new light on earlier findings. Fou2 plants carrying a hyperactive mutant form of TPC1 develop wounding stress phenotypes. Recent studies with fou2 and mutants that lack functional TPC1 have revealed atypical features in local and long-distance stress signaling, providing new access to the previously mysterious biology of this vacuolar cation channel type in planta.
Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/genética , Citosol/metabolismo , Humanos , Modelos Moleculares , Mutación , Proteínas de Plantas/genéticaRESUMEN
Glioblastomas (GBMs) are the most aggressive and lethal primary astrocytic tumors in adults, with very poor prognosis. Recurrence in GBM is attributed to glioblastoma stem-like cells (GSLCs). The behavior of the tumor, including proliferation, progression, invasion, and significant resistance to therapies, is a consequence of the self-renewing properties of the GSLCs, and their high resistance to chemotherapies have been attributed to their capacity to enter quiescence. Thus, targeting GSLCs may constitute one of the possible therapeutic challenges to significantly improve anti-cancer treatment regimens for GBM. Ca2+ signaling is an important regulator of tumorigenesis in GBM, and the transition from proliferation to quiescence involves the modification of the kinetics of Ca2+ influx through store-operated channels due to an increased capacity of the mitochondria of quiescent GSLC to capture Ca2+. Therefore, the identification of new therapeutic targets requires the analysis of the calcium-regulated elements at transcriptional levels. In this review, we focus onto the direct regulation of gene expression by KCNIP proteins (KCNIP1-4). These proteins constitute the class E of Ca2+ sensor family with four EF-hand Ca2+-binding motifs and control gene transcription directly by binding, via a Ca2+-dependent mechanism, to specific DNA sites on target genes, called downstream regulatory element (DRE). The presence of putative DRE sites on genes associated with unfavorable outcome for GBM patients suggests that KCNIP proteins may contribute to the alteration of the expression of these prognosis genes. Indeed, in GBM, KCNIP2 expression appears to be significantly linked to the overall survival of patients. In this review, we summarize the current knowledge regarding the quiescent GSLCs with respect to Ca2+ signaling and discuss how Ca2+ via KCNIP proteins may affect prognosis genes expression in GBM. This original mechanism may constitute the basis of the development of new therapeutic strategies.
RESUMEN
Significant progress has been made in the last decade in the development of optogenetic effectors and sensors that can be deployed to understand complex biological signaling in mammals at a molecular level, without disrupting the distributed, lineage specific signaling circuits that comprise nuanced physiological responses. A major barrier to the widespread exploitation of these imaging tools, however, is the lack of readily available genetic reagents that can be easily combined to probe complex biological processes. Ideally, one could envision purpose-produced mouse lines expressing optically compatible sensors and effectors, sensor pairs in distinct lineages, or sensor pairs in discrete subcellular compartments, such that they could be crossed to enable in vivo imaging studies of unprecedented scientific power. Such lines could also be combined with mice to determine the alteration in signaling accompanying targeted gene deletion or addition. In order to address this lack, the National Heart Lung and Blood Institute has recently funded an optogenetic resource designed to create optically compatible, combinatorial mouse lines that will advance NHLBI research. Here we review recent advances in optogenetic sensor and effectors and describe the rationale and goals for the establishment of the Cornell/National Heart Lung Blood Resource for Optogenetic Mouse Signaling (CHROMus).
RESUMEN
IQD proteins are downstream targets of calcium sensors, which play important roles in development and responses to environmental cues in plants. Comprehensive analyses of IQD genes have been conducted in Arabidopsis, rice, tomato, and Brachypodium distachyon, but have not been reported from poplar. The availability of the Populus trichocarpa genome sequence allowed us to conduct phylogenetic, gene structure, chromosomal location, and microarray analyses of the predicted IQD genes in P. trichocarpa. We identified 40 IQD genes (PtIQD1-40) classified in four subfamilies (I-IV). Gene structure and protein motif analyses showed that these genes are relatively conserved within each subfamily. The 40 PtIQD genes are distributed on 18 of the 19 chromosomes, with 16 gene pairs involved in segmental duplication events. The Ka/Ks ratios of the 16 segmentally-duplicated gene pairs show that the duplicated pairs underwent purifying selection with restrictive functional divergence after the duplication events. Analyses of microarray data for 38 PtIQD genes showed tissue/organ-specific expression patterns. We also performed quantitative real-time RT-PCR (qRT-PCR) analyses of twelve selected PtIQD genes in plants treated with MeJA and PEG in order to explore their stress-related expression patterns. Our results will be valuable for further analysis of poplar IQD genes to characterize their important biological functions.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Populus/genética , Acetatos/farmacología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/genética , Sitios de Unión , Brachypodium/efectos de los fármacos , Brachypodium/genética , Calmodulina/metabolismo , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Ciclopentanos/farmacología , Etiquetas de Secuencia Expresada , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Oryza/genética , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polietilenglicoles/farmacología , Populus/efectos de los fármacos , Factores de TiempoRESUMEN
From its initial discovery that ROS-GC membrane guanylate cyclase is a mono-modal Ca(2+)-transduction system linked exclusively with the photo-transduction machinery to the successive finding that it embodies a remarkable bimodal Ca(2+) signaling device, its widened transduction role in the general signaling mechanisms of the sensory neuron cells was envisioned. A theoretical concept was proposed where Ca(2+)-modulates ROS-GC through its generated cyclic GMP via a nearby cyclic nucleotide gated channel and creates a hyper- or depolarized sate in the neuron membrane (Ca(2+) Binding Proteins 1:1, 7-11, 2006). The generated electric potential then becomes a mode of transmission of the parent [Ca(2+)](i) signal. Ca(2+) and ROS-GC are interlocked messengers in multiple sensory transduction mechanisms. This comprehensive review discusses the developmental stages to the present status of this concept and demonstrates how neuronal Ca(2+)-sensor (NCS) proteins are the interconnected elements of this elegant ROS-GC transduction system. The focus is on the dynamism of the structural composition of this system, and how it accommodates selectivity and elasticity for the Ca(2+) signals to perform multiple tasks linked with the SENSES of vision, smell, and possibly of taste and the pineal gland. An intriguing illustration is provided for the Ca(2+) sensor GCAP1 which displays its remarkable ability for its flexibility in function from being a photoreceptor sensor to an odorant receptor sensor. In doing so it reverses its function from an inhibitor of ROS-GC to the stimulator of ONE-GC membrane guanylate cyclase.