Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 820
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Cell ; 176(3): 435-447.e15, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30611538

RESUMEN

Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. VIDEO ABSTRACT.


Asunto(s)
Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Translocasas Mitocondriales de ADP y ATP/ultraestructura , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Transporte Biológico , Ácido Bongcréquico/metabolismo , Citoplasma/metabolismo , Mitocondrias/fisiología , Translocasas Mitocondriales de ADP y ATP/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas de Transporte de Membrana Mitocondrial/ultraestructura , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Immunity ; 56(11): 2523-2541.e8, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37924812

RESUMEN

Gasdermin D (GSDMD)-activated inflammatory cell death (pyroptosis) causes mitochondrial damage, but its underlying mechanism and functional consequences are largely unknown. Here, we show that the N-terminal pore-forming GSDMD fragment (GSDMD-NT) rapidly damaged both inner and outer mitochondrial membranes (OMMs) leading to reduced mitochondrial numbers, mitophagy, ROS, loss of transmembrane potential, attenuated oxidative phosphorylation (OXPHOS), and release of mitochondrial proteins and DNA from the matrix and intermembrane space. Mitochondrial damage occurred as soon as GSDMD was cleaved prior to plasma membrane damage. Mitochondrial damage was independent of the B-cell lymphoma 2 family and depended on GSDMD-NT binding to cardiolipin. Canonical and noncanonical inflammasome activation of mitochondrial damage, pyroptosis, and inflammatory cytokine release were suppressed by genetic ablation of cardiolipin synthase (Crls1) or the scramblase (Plscr3) that transfers cardiolipin to the OMM. Phospholipid scramblase-3 (PLSCR3) deficiency in a tumor compromised pyroptosis-triggered anti-tumor immunity. Thus, mitochondrial damage plays a critical role in pyroptosis.


Asunto(s)
Gasderminas , Piroptosis , Proteínas de Neoplasias/metabolismo , Cardiolipinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Inflamasomas/metabolismo
3.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839991

RESUMEN

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Asunto(s)
Cardiolipinas , Translocasas Mitocondriales de ADP y ATP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Sitios de Unión , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Humanos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Translocasas Mitocondriales de ADP y ATP/genética , Translocasas Mitocondriales de ADP y ATP/química , Fosforilación Oxidativa , Translocador 1 del Nucleótido Adenina/metabolismo , Translocador 1 del Nucleótido Adenina/genética , Simulación de Dinámica Molecular , Unión Proteica , Mitocondrias/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Mutación , Mutación Missense
4.
EMBO J ; 42(24): e114054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933600

RESUMEN

Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.


Asunto(s)
Cardiolipinas , Lipidómica , Cardiolipinas/metabolismo , Membranas Mitocondriales/metabolismo , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
5.
Trends Immunol ; 45(2): 75-77, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38242759

RESUMEN

In a remarkable recent study, Miao et al. reveal that gasdermin D N-terminal (GSDMD-NT) instigates mitochondrial damage in pyroptosis by forming pores in inner and outer mitochondrial membranes (OMMs). The authors highlight the key role of mitochondrial cardiolipin in the action of GSDMD-NT, and significantly advance our understanding of this inflammatory cell death mechanism.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Piroptosis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cardiolipinas/metabolismo , Gasderminas , Proteínas de Neoplasias/metabolismo , Inflamasomas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(30): e2210599120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463214

RESUMEN

Cardiolipin (CL) is an essential phospholipid for mitochondrial structure and function. Here, we present a small mitochondrial protein, NERCLIN, as a negative regulator of CL homeostasis and mitochondrial ultrastructure. Primate-specific NERCLIN is expressed ubiquitously from the GRPEL2 locus on a tightly regulated low level. NERCLIN overexpression severely disrupts mitochondrial cristae structure and induces mitochondrial fragmentation. Proximity labeling and immunoprecipitation analysis suggested interactions of NERCLIN with CL synthesis and prohibitin complexes on the matrix side of the inner mitochondrial membrane. Lipid analysis indicated that NERCLIN regulates mitochondrial CL content. Furthermore, NERCLIN is responsive to heat stress ensuring OPA1 processing and cell survival. Thus, we propose that NERCLIN contributes to the stress-induced adaptation of mitochondrial dynamics. Our findings add NERCLIN to the group of recently identified small mitochondrial proteins with important regulatory functions.


Asunto(s)
Cardiolipinas , Proteínas Mitocondriales , Animales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Cardiolipinas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Homeostasis
7.
Hum Mol Genet ; 32(24): 3353-3360, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721533

RESUMEN

Barth syndrome (BTHS) is a debilitating X-linked cardio-skeletal myopathy caused by loss-of-function mutations in TAFAZZIN, a cardiolipin (CL)-remodeling enzyme required for the maintenance of normal levels of CL species in mitochondrial membranes. At present, how perturbations in CL abundance and composition lead to many debilitating clinical presentations in BTHS patients have not been fully elucidated. Inspired by our recent findings that CL is essential for optimal mitochondrial calcium uptake, we measured the levels of other biologically important metal ions in BTHS mitochondria and found that in addition to calcium, magnesium levels are significantly reduced. Consistent with this observation, we report a decreased abundance of the mitochondrial magnesium influx channel MRS2 in multiple models of BTHS including yeast, murine myoblast, and BTHS patient cells and cardiac tissue. Mechanistically, we attribute reduced steady-state levels of MRS2 to its increased turnover in CL-deficient BTHS models. By expressing Mrs2 in well-characterized yeast mutants of the phospholipid biosynthetic pathways, we demonstrate a specific requirement of CL for Mrs2 abundance and assembly. Finally, we provide in vitro evidence for the direct binding of CL with human MRS2. Together, our study has identified a critical requirement of CL for MRS2 stability and suggests perturbation of mitochondrial magnesium homeostasis as a novel contributing factor to BTHS pathology.


Asunto(s)
Síndrome de Barth , Humanos , Animales , Ratones , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Cardiolipinas/genética , Cardiolipinas/metabolismo , Magnesio/metabolismo , Saccharomyces cerevisiae/metabolismo , Calcio/metabolismo , Factores de Transcripción/genética , Mitocondrias/metabolismo , Aciltransferasas/genética
8.
J Cell Sci ; 136(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655851

RESUMEN

Studies of rare human genetic disorders of mitochondrial phospholipid metabolism have highlighted the crucial role that membrane phospholipids play in mitochondrial bioenergetics and human health. The phospholipid composition of mitochondrial membranes is highly conserved from yeast to humans, with each class of phospholipid performing a specific function in the assembly and activity of various mitochondrial membrane proteins, including the oxidative phosphorylation complexes. Recent studies have uncovered novel roles of cardiolipin and phosphatidylethanolamine, two crucial mitochondrial phospholipids, in organismal physiology. Studies on inter-organellar and intramitochondrial phospholipid transport have significantly advanced our understanding of the mechanisms that maintain mitochondrial phospholipid homeostasis. Here, we discuss these recent advances in the function and transport of mitochondrial phospholipids while describing their biochemical and biophysical properties and biosynthetic pathways. Additionally, we highlight the roles of mitochondrial phospholipids in human health by describing the various genetic diseases caused by disruptions in their biosynthesis and discuss advances in therapeutic strategies for Barth syndrome, the best-studied disorder of mitochondrial phospholipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Mitocondrias , Humanos , Membranas Mitocondriales , Fosfolípidos , Transporte Biológico , Enfermedades Raras
9.
Brain ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39279645

RESUMEN

Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.

10.
Mol Cell ; 67(3): 471-483.e7, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28712724

RESUMEN

Mutations in mitochondrial acylglycerol kinase (AGK) cause Sengers syndrome, which is characterized by cataracts, hypertrophic cardiomyopathy, and skeletal myopathy. AGK generates phosphatidic acid and lysophosphatidic acid, bioactive phospholipids involved in lipid signaling and the regulation of tumor progression. However, the molecular mechanisms of the mitochondrial pathology remain enigmatic. Determining its mitochondrial interactome, we have identified AGK as a constituent of the TIM22 complex in the mitochondrial inner membrane. AGK assembles with TIMM22 and TIMM29 and supports the import of a subset of multi-spanning membrane proteins. The function of AGK as a subunit of the TIM22 complex does not depend on its kinase activity. However, enzymatically active AGK is required to maintain mitochondrial cristae morphogenesis and the apoptotic resistance of cells. The dual function of AGK as lipid kinase and constituent of the TIM22 complex reveals that disturbances in both phospholipid metabolism and mitochondrial protein biogenesis contribute to the pathogenesis of Sengers syndrome.


Asunto(s)
Cardiomiopatías/enzimología , Catarata/enzimología , Mitocondrias/enzimología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Translocador 1 del Nucleótido Adenina/metabolismo , Antiportadores/metabolismo , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Catarata/genética , Catarata/patología , Predisposición Genética a la Enfermedad , Células HEK293 , Células HeLa , Humanos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos , Mutación , Fenotipo , Fosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transporte de Proteínas , Factores de Tiempo , Transfección
11.
Nano Lett ; 24(1): 370-377, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38154104

RESUMEN

The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.


Asunto(s)
Citocromos c , Espectrometría Raman , Citocromos c/química , Citocromos c/metabolismo , Citocromos c/farmacología , Complejo IV de Transporte de Electrones/metabolismo , Oxidación-Reducción , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacología , Membranas Mitocondriales/metabolismo , Apoptosis
12.
J Lipid Res ; 65(10): 100643, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303982

RESUMEN

Mitochondrial membranes are defined by their diverse functions, complex geometries, and unique lipidomes. In the inner mitochondrial membrane, highly curved membrane folds known as cristae house the electron transport chain and are the primary sites of cellular energy production. The outer mitochondrial membrane is flat by contrast, but is critical for the initiation and mediation of processes key to mitochondrial physiology: mitophagy, interorganelle contacts, fission and fusion dynamics, and metabolite transport. While the lipid composition of both the inner mitochondrial membrane and outer mitochondrial membrane have been characterized across a variety of cell types, a mechanistic understanding for how individual lipid classes contribute to mitochondrial structure and function remains nebulous. In this review, we address the biophysical properties of mitochondrial lipids and their related functional roles. We highlight the intrinsic curvature of the bulk mitochondrial phospholipid pool, with an emphasis on the nuances surrounding the mitochondrially-synthesized cardiolipin. We also outline emerging questions about other lipid classes - ether lipids, and sterols - with potential roles in mitochondrial physiology. We propose that further investigation is warranted to elucidate the specific properties of these lipids and their influence on mitochondrial architecture and function.

13.
J Lipid Res ; 65(8): 100601, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39038656

RESUMEN

Cardiolipin (CL) is a unique, four-chain phospholipid synthesized in the inner mitochondrial membrane (IMM). The acyl chain composition of CL is regulated through a remodeling pathway, whose loss causes mitochondrial dysfunction in Barth syndrome (BTHS). Yeast has been used extensively as a model system to characterize CL metabolism, but mutants lacking its two remodeling enzymes, Cld1p and Taz1p, exhibit mild structural and respiratory phenotypes compared to mammalian cells. Here, we show an essential role for CL remodeling in the structure and function of the IMM in yeast grown under reduced oxygenation. Microaerobic fermentation, which mimics natural yeast environments, caused the accumulation of saturated fatty acids and, under these conditions, remodeling mutants showed a loss of IMM ultrastructure. We extended this observation to HEK293 cells, where phospholipase A2 inhibition by Bromoenol lactone resulted in respiratory dysfunction and cristae loss upon mild treatment with exogenous saturated fatty acids. In microaerobic yeast, remodeling mutants accumulated unremodeled, saturated CL, but also displayed reduced total CL levels, highlighting the interplay between saturation and CL biosynthesis and/or breakdown. We identified the mitochondrial phospholipase A1 Ddl1p as a regulator of CL levels, and those of its precursors phosphatidylglycerol and phosphatidic acid, under these conditions. Loss of Ddl1p partially rescued IMM structure in cells unable to initiate CL remodeling and had differing lipidomic effects depending on oxygenation. These results introduce a revised yeast model for investigating CL remodeling and suggest that its structural functions are dependent on the overall lipid environment in the mitochondrion.


Asunto(s)
Cardiolipinas , Membranas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Membranas Mitocondriales/metabolismo , Células HEK293 , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Lipidómica , Ácidos Grasos/metabolismo , Síndrome de Barth/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/patología , Aciltransferasas , Fosfolipasas
14.
J Biol Chem ; 299(3): 102978, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36739949

RESUMEN

The mitochondrial phospholipid cardiolipin (CL) is critical for numerous essential biological processes, including mitochondrial dynamics and energy metabolism. Mutations in the CL remodeling enzyme TAFAZZIN cause Barth syndrome, a life-threatening genetic disorder that results in severe physiological defects, including cardiomyopathy, skeletal myopathy, and neutropenia. To study the molecular mechanisms whereby CL deficiency leads to skeletal myopathy, we carried out transcriptomic analysis of the TAFAZZIN-knockout (TAZ-KO) mouse myoblast C2C12 cell line. Our data indicated that cardiac and muscle development pathways are highly decreased in TAZ-KO cells, consistent with a previous report of defective myogenesis in this cell line. Interestingly, the muscle transcription factor myoblast determination protein 1 (MyoD1) is significantly repressed in TAZ-KO cells and TAZ-KO mouse hearts. Exogenous expression of MyoD1 rescued the myogenesis defects previously observed in TAZ-KO cells. Our data suggest that MyoD1 repression is caused by upregulation of the MyoD1 negative regulator, homeobox protein Mohawk, and decreased Wnt signaling. Our findings reveal, for the first time, that CL metabolism regulates muscle differentiation through MyoD1 and identify the mechanism whereby MyoD1 is repressed in CL-deficient cells.


Asunto(s)
Síndrome de Barth , Cardiolipinas , Proteína MioD , Animales , Ratones , Aciltransferasas/genética , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Ratones Noqueados , Músculos/metabolismo , Factores de Transcripción/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo
15.
J Biol Chem ; 299(5): 104659, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997087

RESUMEN

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.


Asunto(s)
Carboxiliasas , Malaria , Fosfolípidos , Plasmodium , Secuencias de Aminoácidos , Calcio/metabolismo , Calcio/farmacología , Carboxiliasas/antagonistas & inhibidores , Carboxiliasas/química , Carboxiliasas/metabolismo , Precursores Enzimáticos/metabolismo , Liposomas , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacología , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacología , Fosfatidilgliceroles/metabolismo , Fosfatidilgliceroles/farmacología , Fosfatidilinositoles/metabolismo , Fosfatidilinositoles/farmacología , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacología , Fosfolípidos/química , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Unión Proteica , Malaria/parasitología , Proteolisis/efectos de los fármacos , Resonancia por Plasmón de Superficie , Plasmodium/enzimología
16.
Plant J ; 114(2): 338-354, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36789486

RESUMEN

Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Glucógeno Sintasa/metabolismo , Citidina Difosfato/metabolismo , Diglicéridos/metabolismo , Diacilglicerol Colinafosfotransferasa/metabolismo , Mitocondrias/metabolismo , Fosfatidilgliceroles/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
J Neurochem ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213385

RESUMEN

Mitochondria are essential organelles known to serve broad functions, including in cellular metabolism, calcium buffering, signaling pathways and the regulation of apoptotic cell death. Maintaining the integrity of the outer (OMM) and inner mitochondrial membranes (IMM) is vital for mitochondrial health. Cardiolipin (CL), a unique dimeric glycerophospholipid, is the signature lipid of energy-converting membranes. It plays a significant role in maintaining mitochondrial architecture and function, stabilizing protein complexes and facilitating efficient oxidative phosphorylation (OXPHOS) whilst regulating cytochrome c release from mitochondria. CL is especially enriched in the IMM and at sites of contact between the OMM and IMM. Disorders of protein misfolding, such as Alzheimer's and Parkinson's diseases, involve amyloidogenic peptides like amyloid-ß, tau and α-synuclein, which form metastable toxic oligomeric species that interact with biological membranes. Electrophysiological studies have shown that these oligomers form ion-conducting nanopores in membranes mimicking the IMM's phospholipid composition. Poration of mitochondrial membranes disrupts the ionic balance, causing osmotic swelling, loss of the voltage potential across the IMM, release of pro-apoptogenic factors, and leads to cell death. The interaction between CL and amyloid oligomers appears to favour their membrane insertion and pore formation, directly implicating CL in amyloid toxicity. Additionally, pore formation in mitochondrial membranes is not limited to amyloid proteins and peptides; other biological peptides, as diverse as the pro-apoptotic Bcl-2 family members, gasdermin proteins, cobra venom cardiotoxins and bacterial pathogenic toxins, have all been described to punch holes in mitochondria, contributing to cell death processes. Collectively, these findings underscore the vulnerability of mitochondria and the involvement of CL in various pathogenic mechanisms, emphasizing the need for further research on targeting CL-amyloid interactions to mitigate mitochondrial dysfunction.

18.
Clin Exp Immunol ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192704

RESUMEN

Clinical manifestations, as distinct from thrombotic and obstetric morbidity, were recently included in the update of classification criteria of the antiphospholipid syndrome (APS). However, the existence of several patients with clinical manifestations suggestive of APS, but negative for criteria antiphospholipid antibodies (aPLs) [anti-cardiolipin antibodies (aCL), anti-ß2-glycoprotein I antibodies (aß2-GPI) and lupus anticoagulant] may suggest an update of diagnostic criteria. In this study, we analyzed the prevalence of six non-criteria aPLs in a large monocentric cohort of patients with seronegative APS (SN-APS), to investigate their possible diagnostic role. aCL IgA, aß2-GPI IgA and aß2-GPI Domain 1 antibodies were detected by chemiluminescence, anti-phosphatidylserine/prothrombin (aPS/PT) IgG, anti-vimentin/cardiolipin (aVim/CL) IgG and anti-carbamylated-ß2-glycoprotein I (aCarb-ß2-GPI) IgG by ELISA in sera from 144 SN-APS patients. In SN-APS patients, aCL IgA were detected in 4/144 (2.77%), aß2-GPI IgA in 2/144 (1.39%), aß2-GPI-Domain 1 in 1/144 (0.69%), aPS/PT in 16/144 (11.11%), aVim/CL in 37/144 (25.69%) and aCarb-ß2-GPI in 43/144 patients (29.86%). Patients negative for all non-criteria aPL assays were 77/144 (53.47%). Notably, the Venn diagram showed that aCarb-ß2-GPI together with aVim/CL represented the prevalent combination of positive antibodies. In SN-APS patients, aCL IgA were associated with recurrent thrombosis (OR11.48; p=0.03); in obstetric SN-APS patients, aPS/PT were significantly associated with foetal deaths (OR4.84; p=0.01), aVim/CL with spontaneous abortions (OR2.71; p=0.016). This study indicates that aPS/PT, aVim/CL and aCarb-ß2-GPI antibodies may represent useful tools to identify "seronegative" APS patients, who are negative for criteria aPLs, supporting the need to make testing for non-criteria aPLs more accessible in patients with SN-APS.

19.
Genet Med ; 26(7): 101138, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38602181

RESUMEN

PURPOSE: Evaluate long-term efficacy and safety of elamipretide during the open-label extension (OLE) of the TAZPOWER trial in individuals with Barth syndrome (BTHS). METHODS: TAZPOWER was a 28-week randomized, double-blind, and placebo-controlled trial followed by a 168-week OLE. Patients entering the OLE continued elamipretide 40 mg subcutaneous daily. OLE primary endpoints were safety and tolerability; secondary endpoints included change from baseline in the 6-minute walk test (6MWT) and BarTH Syndrome Symptom Assessment (BTHS-SA) Total Fatigue score. Muscle strength, physician- and patient-assessed outcomes, echocardiographic parameters, and biomarkers, including cardiolipin (CL) and monolysocardiolipin (MLCL), were assessed. RESULTS: Ten patients entered the OLE; 8 reached the week 168 visit. Elamipretide was well tolerated, with injection-site reactions being the most common adverse events. Significant improvements from OLE baseline on 6MWT occurred at all OLE time points (cumulative 96.1 m of improvement [week 168, P = .003]). Mean BTHS-SA Total Fatigue scores were below baseline (improved) at all OLE time points. Three-dimensional (3D) left ventricular stroke, end-diastolic, and end-systolic volumes improved, showing significant trends for improvement from baseline to week 168. MLCL/CL values showed improvement, correlating to important clinical outcomes. CONCLUSION: Elamipretide was associated with sustained long-term tolerability and efficacy, with improvements in functional assessments and cardiac function in BTHS.


Asunto(s)
Síndrome de Barth , Oligopéptidos , Humanos , Síndrome de Barth/tratamiento farmacológico , Masculino , Femenino , Adulto , Método Doble Ciego , Resultado del Tratamiento , Oligopéptidos/uso terapéutico , Oligopéptidos/efectos adversos , Oligopéptidos/administración & dosificación , Persona de Mediana Edad , Adulto Joven , Fuerza Muscular/efectos de los fármacos , Fatiga/tratamiento farmacológico , Cardiolipinas , Adolescente
20.
Int J Med Microbiol ; 316: 151627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908301

RESUMEN

The release of host mitochondrial cardiolipin is believed to be the main factor that contributes to the production of anti-cardiolipin antibodies in syphilis. However, the precise mechanism by which mitochondria release cardiolipin in this context remains elusive. This study aimed to elucidate the mechanisms underlying mitochondrial cardiolipin release in syphilis. We conducted a cardiolipin quantitative assay and immunofluorescence analysis to detect mitochondrial cardiolipin release in human microvascular endothelial cells (HMEC-1), with and without Treponema pallidum (Tp) infection. Furthermore, we explored apoptosis, a key mechanism for mitochondrial cardiolipin release. The potential mediator molecules were then analyzed through RNA-sequence and subsequently validated using in vitro knockout techniques mediated by CRISPR-Cas9 and pathway-specific inhibitors. Our findings confirm that live-Tp is capable of initiating the release of mitochondrial cardiolipin, whereas inactivated-Tp does not exhibit this capability. Additionally, apoptosis detection further supports the notion that the release of mitochondrial cardiolipin occurs independently of apoptosis. The RNA-sequencing results indicated that microtubule-associated protein2 (MAP2), an axonogenesis and dendrite development gene, was up-regulated in HMEC-1 treated with Tp, which was further confirmed in syphilitic lesions by immunofluorescence. Notably, genetic knockout of MAP2 inhibited Tp-induced mitochondrial cardiolipin release in HMEC-1. Mechanically, Tp-infection regulated MAP2 expression via the MEK-ERK-HES1 pathway, and MEK/ERK phosphorylation inhibitors effectively block Tp-induced mitochondrial cardiolipin release. This study demonstrated that the infection of live-Tp enhanced the expression of MAP2 via the MEK-ERK-HES1 pathway, thereby contributing to our understanding of the role of anti-cardiolipin antibodies in the diagnosis of syphilis.


Asunto(s)
Apoptosis , Cardiolipinas , Células Endoteliales , Mitocondrias , Sífilis , Treponema pallidum , Humanos , Cardiolipinas/metabolismo , Mitocondrias/metabolismo , Sífilis/microbiología , Sífilis/metabolismo , Treponema pallidum/metabolismo , Células Endoteliales/microbiología , Células Endoteliales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA