Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 167(7): 1814-1828.e12, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984729

RESUMEN

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a "locked" conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.


Asunto(s)
Alicyclobacillus/enzimología , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Alicyclobacillus/clasificación , Alicyclobacillus/genética , Alicyclobacillus/metabolismo , Cristalografía por Rayos X , Endodesoxirribonucleasas/genética , Edición Génica , Proteínas de Homeodominio/genética , Humanos , Modelos Moleculares , ARN no Traducido/metabolismo , Factores de Transcripción/genética
2.
Adv Exp Med Biol ; 1389: 45-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350506

RESUMEN

In mammals, three major DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains. For instance, Dnmt3a and Dnmt3b each contain a Pro-Trp-Trp-Pro (PWWP) domain that recognizes the histone H3K36me2/3 mark, an Atrx-Dnmt3-Dnmt3l (ADD) domain that recognizes unmodified histone H3 tail, and a catalytic domain that methylates CpG sites. Dnmt1 contains an N-terminal independently folded domain (NTD) that interacts with a variety of regulatory factors, a replication foci-targeting sequence (RFTS) domain that recognizes the histone H3K9me3 mark and H3 ubiquitylation, a CXXC domain that recognizes unmodified CpG DNA, two tandem Bromo-Adjacent-homology (BAH1 and BAH2) domains that read the H4K20me3 mark with BAH1, and a catalytic domain that preferentially methylates hemimethylated CpG sites. In this chapter, the structures and functions of these domains are described.


Asunto(s)
Metilación de ADN , Histonas , Animales , Histonas/metabolismo , ADN Metiltransferasa 3A , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasa 1/genética , Metilasas de Modificación del ADN/genética , ADN/metabolismo , Mamíferos/genética
3.
J Enzyme Inhib Med Chem ; 36(1): 1988-1995, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34482770

RESUMEN

Carbonic anhydrases (CAs, EC 4.2.1.1) have been studied for decades and have been classified as a superfamily of enzymes which includes, up to date, eight gene families or classes indicated with the Greek letters α, ß, γ, δ, ζ, η, θ, ι. This versatile enzyme superfamily is involved in multiple physiological processes, catalysing a fundamental reaction for all living organisms, the reversible hydration of carbon dioxide to bicarbonate and a proton. Recently, the ι-CA (LCIP63) from the diatom Thalassiosira pseudonana and a bacterial ι-CA (BteCAι) identified in the genome of Burkholderia territorii were characterised. The recombinant BteCAι was observed to act as an excellent catalyst for the physiologic reaction. Very recently, the discovery of a novel ι-CAs (COG4337) in the eukaryotic microalga Bigelowiella natans and the cyanobacterium Anabaena sp. PCC7120 has brought to light an unexpected feature for this ancient superfamily: this ι-CAs was catalytically active without a metal ion cofactor, unlike the previous reported ι-CAs as well as all known CAs investigated so far. This review reports recent investigations on ι-CAs obtained in these last three years, highlighting their peculiar features, and hypothesising that possibly this new CA family shows catalytic activity without the need of metal ions.


Asunto(s)
Burkholderia/enzimología , Anhidrasas Carbónicas/metabolismo , Cianobacterias/enzimología , Eucariontes/enzimología , Biocatálisis , Anhidrasas Carbónicas/genética
4.
Biochim Biophys Acta ; 1840(6): 1872-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24412328

RESUMEN

BACKGROUND: Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB. METHODS: Site-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency. RESULTS: Substitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion. CONCLUSION: Gln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters.


Asunto(s)
Aminopeptidasas/química , Secuencia de Aminoácidos , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/metabolismo , Dominio Catalítico , Glutamina , Humanos , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Cloruro de Sodio/farmacología , Relación Estructura-Actividad , Especificidad por Sustrato
5.
J Biotechnol ; 364: 40-49, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36708995

RESUMEN

D-Pantothenic acid (D-PA) is an essential vitamin with wide applications. However, the biotechnological production of D-PA is still not competitive with the chemical synthesis in terms of production cost. Ketopantoate hydroxymethyltransferase is a crucial enzyme in the D-PA synthetic pathway in Escherichia coli encoded by the panB gene. Here a hot spots study was applied to a ketopantoate hydroxymethyltransferase from Corynebacterium glutamicum (CgKPHMT) to relieve the product inhibitory effect and thus improve the D-PA production. Compared with the wild type, the double-site variant CgKPHMT-K25A/E189S showed 1.8 times higher enzyme activity and 2.1 times higher catalytic efficiency, 1.88 and 3.32 times higher inhibitory constant of α-ketoisovalerate and D-PA, respectively. The D-PA yield using E. coli W3110 adopted the double-site variant was 41.17 g·L-1 within 48 h, a 9.80 g·L-1 increase. Structural analysis of K25A/E189S revealed the expansion of the entry channel and the change of the electric charge from negative to uncharged due to the substitution from glutamic acid to serine at site 189. Our study emphasized the positive roles of ketopantoate hydroxymethyltransferase in D-PA production and paved the way by analyzing critical enzymes in the synthetic pathway of E. coli to increase the D-PA yield.


Asunto(s)
Transferasas de Hidroximetilo y Formilo , Ácido Pantoténico , Ácido Pantoténico/química , Ácido Pantoténico/genética , Escherichia coli/metabolismo , Secuencia de Bases , Transferasas de Hidroximetilo y Formilo/genética , Transferasas de Hidroximetilo y Formilo/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo
6.
J Biotechnol ; 373: 34-41, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37392996

RESUMEN

D-pantolactone (D-PL) is one of the important chiral intermediates in the synthesis of D-pantothenic acid. Our previous study has revealed that ketopantolactone (KPL) reductase in Saccharomyces cerevisiae (SceCPR) could asymmetrically reduce KPL to D-PL with a relatively weak activity. In this study, engineering of SceCPR was performed using a semi-rational design to enhance its catalytic activity. Based on the computer-aided design including phylogenetic analysis and molecular dynamics simulation, Ser158, Asn159, Gln180, Tyr208, Tyr298 and Trp299 were identified as the potential sites. Semi-saturation, single and combined-site mutagenesis was performed on all six residues, and several mutants with improved enzymatic activities were obtained. Among them, the mutant SceCPRS158A/Y298H exhibited the highest catalytic efficiency in which the kcat/Km value is 2466.22 s-1·mM-1, 18.5 times higher than that of SceCPR. The 3D structural analysis showed that the mutant SceCPRS158A/Y298H had an expanded and increased hydrophilicity catalytic pocket, and an enhanced π-π interaction which could contribute to faster conversion efficiency and higher catalytic rate. The whole cell system containing SceCPRS158A/Y298H and glucose dehydrogenase (GDH), under the optimized condition, could reduce 490.21 mM D-PL with e.e.≧ 99%, conversion rate = 98%, and the space-time yield = 382.80 g·L-1·d-1, which is the highest level reported so far.


Asunto(s)
Oxidorreductasas , Saccharomyces cerevisiae , Filogenia , Mutagénesis Sitio-Dirigida , Catálisis , Saccharomyces cerevisiae/genética , Ingeniería de Proteínas , Cinética
7.
ACS Synth Biol ; 11(11): 3865-3873, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36321874

RESUMEN

Plant-derived cytochrome P450-dependent flavonoid 3'-hydroxylases are the rate-limiting enzymes in flavonoid biosynthesis. In this study, the large component (HpaB) of a prokaryotic 4-hydroxyphenylacetate (4-HPA) 3-hydroxylase was engineered for efficient 3'-hydroxylation of naringenin. First, we selected four HpaBs through database search and phylogenetic analysis and compared their catalytic activities toward 4-HPA and naringenin. HpaB from Rhodococcus opacus B-4 (RoHpaB) showed better preference toward naringenin. To elucidate the underlying mechanism, we analyzed the structural differences of HpaBs through homologous modeling, molecular docking, and molecular dynamics simulation, and the substrate preference of RoHpaB was mainly attributed to the shorter chain length of loop 212-222 and the larger substrate binding pocket. RoHpaB was further engineered by alanine scanning and structural replacement, and the RoHpaBY215A variant was obtained, whose catalytic efficiency (kcat/Km) toward naringenin is 25.3 times higher than that of RoHpaB. In addition, RoHpaBY215A also showed significantly improved activity toward flavonoids apigenin and kaempferol. This work opens the possibility of using engineered HpaB as a versatile hydroxylase to produce functionalized flavonoids.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Flavonoides , Hidroxilación , Flavonoides/metabolismo , Simulación del Acoplamiento Molecular , Filogenia , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
8.
J Biochem ; 171(6): 619-629, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35191956

RESUMEN

Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) of Trypanosoma brucei, the causative protozoan parasite of African trypanosomiasis, is a membrane-bound enzyme essential for antigenic variation, because it catalyses the release of the membrane-bound form of variable surface glycoproteins. Here, we performed a fragment-based drug discovery of TbGPI-PLC inhibitors using a combination of enzymatic inhibition assay and water ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiment. The TbGPI-PLC was cloned and overexpressed using an Escherichia coli expression system followed by purification using three-phase partitioning and gel filtration. Subsequently, the inhibitory activity of 873 fragment compounds against the recombinant TbGPI-PLC led to the identification of 66 primary hits. These primary hits were subjected to the WaterLOGSY NMR experiment where 10 fragment hits were confirmed to directly bind to the TbGPI-PLC. These included benzothiazole, chlorobenzene, imidazole, indole, pyrazol and quinolinone derivatives. Molecular docking simulation indicated that six of them share a common binding site, which corresponds to the catalytic pocket. The present study identified chemically diverse fragment hits that could directly bind and inhibit the TbGPI-PLC activity, which constructed a framework for fragment optimization or linking towards the design of novel drugs for African trypanosomiasis.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Descubrimiento de Drogas , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Análisis Espectral , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Fosfolipasas de Tipo C/metabolismo , Agua
9.
Bioresour Bioprocess ; 9(1): 25, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38647800

RESUMEN

Pullulanase is a well-known debranching enzyme that can specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides, however, it suffers from low stability and catalytic efficiency under industrial conditions. In the present study, four residues (A365, V401, H499, and T504) lining the catalytic pocket of Anoxybacillus sp. AR-29 pullulanase (PulAR) were selected for site-directed mutagenesis (SDM) by using a structure-guided consensus approach. Five beneficial mutants (PulAR-A365V, PulAR-V401C, PulAR-A365/V401C, PulAR-A365V/V401C/T504V, and PulAR-A365V/V401C/T504V/H499A) were created, which showed enhanced thermostability, pH stability, and catalytic efficiency. Among them, the quadruple mutant PulAR-A365V/V401C/T504V/H499A displayed 6.6- and 9.6-fold higher catalytic efficiency toward pullulan at 60 ℃, pH 6.0 and 5.0, respectively. In addition, its thermostabilities at 60 ℃ and 65 ℃ were improved by 2.6- and 3.1-fold, respectively, compared to those of the wild-type (WT). Meanwhile, its pH stabilities at pH 4.5 and 5.0 were 1.6- and 1.8-fold higher than those of WT, respectively. In summary, the catalytic performance of PulAR was significantly enhanced by a structure-guided consensus approach. The resultant quadruple mutant PulAR-A365V/V401C/T504V/H499A demonstrated potential applications in the starch industry.

10.
Front Microbiol ; 12: 798194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069500

RESUMEN

Esterases are a class of enzymes that split esters into an acid and an alcohol in a chemical reaction with water, having high potential in pharmaceutical, food and biofuel industrial applications. To advance the understanding of esterases, we have identified and characterized E53, an alkalophilic esterase from a marine bacterium Erythrobacter longus. The crystal structures of wild type E53 and three variants were solved successfully using the X-ray diffraction method. Phylogenetic analysis classified E53 as a member of the family IV esterase. The enzyme showed highest activity against p-nitrophenyl butyrate substrate at pH 8.5-9.5 and 40°C. Based on the structural feature, the catalytic pocket was defined as R1 (catalytic center), R2 (pocket entrance), and R3 (end area of pocket) regions. Nine variants were generated spanning R1-R3 and thorough functional studies were performed. Detailed structural analysis and the results obtained from the mutagenesis study revealed that mutations in the R1 region could regulate the catalytic reaction in both positive and negative directions; expanding the bottleneck in R2 region has improved the enzymatic activity; and R3 region was associated with the determination of the pH pattern of E53. N166A in R3 region showed reduced activity only under alkaline conditions, and structural analysis indicated the role of N166 in stabilizing the loop by forming a hydrogen bond with L193 and G233. In summary, the systematic studies on E53 performed in this work provide structural and functional insights into alkaliphilic esterases and further our knowledge of these enzymes.

11.
Eur J Med Chem ; 190: 112117, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061959

RESUMEN

Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, regulates cell proliferation, differentiation, apoptosis and survival via releasing intramolecular autoinhibition and modulating various signaling pathways, such as mitogen-activated protein kinase (MAPK) pathway. Mutations and aberrant expression of SHP2 are implicated in human developmental disorders, leukemias and several solid tumors. As an oncoprotein in some cancers, SHP2 represents a rational target for inhibitors to interfere. Nevertheless, its tumor suppressive effect has also been uncovered, indicating the context-specificity. Even so, two types of SHP2 inhibitors including targeting catalytic pocket and allosteric sites have been developed associated with resolved cocrystal complexes. Herein, we describe its structure, biological function, deregulation in human diseases and summarize recent advance in development of SHP2 inhibitors, trying to give an insight into the therapeutic potential in future.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Animales , Sitios de Unión , Inhibidores Enzimáticos/metabolismo , Humanos , Síndrome LEOPARD/genética , Mutación , Neoplasias/genética , Síndrome de Noonan/genética , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-33130354

RESUMEN

An affinity ligand was designed from 1-aminocyclohexane based on the crystal structure of Streptomyces albidoflavus phospholipase A1 (saPLA1) by using Discovery Studio software. The molecular docking results indicated that the designed ligand could interact with the active pocket of saPLA1. Epichlorohydrin, cyanuric chloride and 1-aminocyclohexane were used to synthesize the affinity ligand, which was composed to Sepharose beads. The density of the ligand on Sepharose beads was 22.5 ± 1.1 µmol/g wet gel. Adsorption analysis of the sorbent indicated the maximum adsorption (Qmax) of the enzyme was 10.7 ± 0.29 mg/g and the desorption constant (Kd) was 426.6 ± 29.7 µg/mL. The sorbent could bind the enzyme in the supernatant of disrupted recombinant Escherichia coli through one step of affinity adsorption. After the optimization of the purification process, a single band was obtained at approximately 30 kDa, which was confirmed as saPLA1 by the matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry and activity assay. The purity of the isolated enzyme was about 96.6% with the purify fold at 7.62, and the activity recovery was 52.5%.


Asunto(s)
Cromatografía de Afinidad/métodos , Fosfolipasas A1 , Adsorción , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Sitios de Unión , Simulación del Acoplamiento Molecular , Fosfolipasas A1/análisis , Fosfolipasas A1/química , Fosfolipasas A1/aislamiento & purificación , Fosfolipasas A1/metabolismo , Unión Proteica , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sefarosa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Streptomyces/enzimología , Streptomyces/genética
13.
Enzyme Microb Technol ; 131: 109331, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31615665

RESUMEN

Acinetobacter sp. strain LMB-5 can produce a kind of esterase degrading phthalate esters. However, low activity of Est3563 esterase limited its large-scale application. In this study, computer-aided simulation mutagenesis was used to improve the esterase activity with a tightened screening library and enlarged success rate. Two positive mutants, P218R and A242R, were obtained with 2.5 and 2.1 folds higher than the WT Est3563 esterase, with 11.96 ± 0.45 U·mg-1 and 9.90 ± 0.52 U·mg-1, respectively. With the help of bioinformatics analysis and three-dimensional printing technology, it was found that the mutations could increase the 240-280 residues swing distance and make them deviate from the catalytic pocket. The instability and deviation of these residues on the lid-like structure of the esterase could deteriorate the seal of the binding pocket and expose the active site. Thus, the catalytic efficiency of the mutants became higher. This result demonstrates that the instability and deviation of the lid-like structure could expand the binding pocket of the esterase and enhance the esterase activity.


Asunto(s)
Acinetobacter/enzimología , Esterasas/metabolismo , Ácidos Ftálicos/metabolismo , Biología Computacional , Esterasas/química , Esterasas/genética , Cinética , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Conformación Proteica
14.
Materials (Basel) ; 12(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769907

RESUMEN

N-lipidated short peptides and amino acids immobilized on the cellulose were used ascatalysts cleaved amide bonds under biomimetic conditions. In order to select catalytically mostactive derivatives a library of 156 N-lipidated amino acids, dipeptides and tripeptides immobilizedon cellulose was obtained. The library was synthesized from serine, histidine and glutamic acidpeptides N-acylated with heptanoic, octanoic, hexadecanoic and (E)-octadec-9-enoic acids.Catalytic efficiency was monitored by spectrophotometric determination of p-nitroaniline formedby the hydrolysis of a 0.1 M solution of Z-Leu-NP. The most active 8 structures contained tripeptidefragment with 1-3 serine residues. It has been found that incorporation of metal ions into catalyticpockets increase the activity of the synzymes. The structures of the 17 most active catalysts selectedfrom the library of complexes obtained with Cu2+ ion varied from 16 derivatives complexed withZn2+ ion. For all of them, a very high reaction rate during the preliminary phase of measurementswas followed by a substantial slowdown after 1 h. The catalytic activity gradually diminished aftersubsequent re-use. HPLC analysis of amide bond splitting confirmed that substrate consumptionproceeded in two stages. In the preliminary stage 24⁻40% of the substrate was rapidly hydrolysedfollowed by the substantially lower reaction rate. Nevertheless, using the most competentsynzymes product of hydrolysis was formed with a yield of 60⁻83% after 48h under mild andstrictly biomimetic conditions.

15.
Enzyme Microb Technol ; 111: 74-80, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29421041

RESUMEN

A Rieske non-heme iron ring-hydroxylating oxygenase (RHO) from Sphingobium sp. PNB involved in the initial oxidation of a wide range of low and high molecular weight polycyclic aromatic hydrocarbons (PAHs) was investigated. The RHO was shown to comprise of the gene products of distantly located ahdA1f-ahdA2f, ahdA3 and ahdA4 genes, which encoded the oxygenase α- and ß-subunits, ferredoxin and reductase, respectively. In silico structural analysis of AhdA1f revealed a very large substrate-binding pocket, satisfying the spatial requirements to accommodate high molecular weight substrates. In addition, an atypical substrate access channel was noticed from the topology analysis of the oxygenase. Guided by molecular docking studies, dioxygenation of several PAHs as well as alkyl- and aryl benzenes was examined with the recombinant AhdA1fA2f expressed in Escherichia coli. Chromatographic and mass spectrometric analyses confirmed that AhdA1fA2f displays broad substrate specificity towards a wide range of aromatic hydrocarbons including potential xenobiotics, demonstrating metabolic robustness of strain PNB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrocarburos Aromáticos/metabolismo , Oxigenasas/metabolismo , Sphingomonadaceae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Biodegradación Ambiental , Clonación Molecular , Genes Bacterianos , Hidrocarburos Aromáticos/química , Simulación del Acoplamiento Molecular , Oxigenasas/química , Oxigenasas/genética , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sphingomonadaceae/genética , Especificidad por Sustrato
16.
J Agric Food Chem ; 66(50): 13236-13242, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30499289

RESUMEN

Pullulanases are well-known debranching enzymes that hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. However, most of the pullulanases exhibit limited activity for practical applications. Here, two sites (787 and 621) lining the catalytic pocket of Bacillus naganoensis pullulanase were identified as being critical for enzymatic activity by triple-code saturation mutagenesis. Subsequently, both sites were subjected to NNK-based saturation mutagenesis to obtain positive variants. Among the variants showing enhanced activity, the enzymatic activity and specific activity of D787C were 1.5-fold higher than those of the wild-type (WT). D787C also showed a 1.8-fold increase in kcat and a 1.7-fold increase in kcat/ Km. In addition, D787C maintained higher activity compared with that of WT at temperatures over 60 °C. All the positive variants showed higher acid resistance, with D787C maintaining 90% residual activity at pH 4.0. Thus, enzymes with improved properties were obtained by saturation mutagenesis at the active site.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Almidón/metabolismo , Bacillus/química , Bacillus/genética , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Estabilidad de Enzimas , Glicósido Hidrolasas/genética , Hidrólisis , Almidón/química
17.
J Biomol Struct Dyn ; 34(3): 475-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25990646

RESUMEN

Enzymes are known to be denatured upon boiling, although Cu,Zn superoxide dismutase of Potentilla atrosanguinea (Pot-SOD) retains significant catalytic activity even after autoclaving (heating at 121 °C at a pressure of 1.1 kg per square cm for 20 min). The polypeptide backbone of Pot-SOD consists of 152 amino acids with a central core spanning His45 to Cys145 that is involved in coordination of Cu(2+) and Zn(2+) ions. While the central core is essential for imparting catalytic activity and structural stability to the enzyme, the role of sequences flanking the central core was not understood. Experiments with deletion mutants showed that the amino acid sequences flanking the central core were important in retaining activity of Pot-SOD after autoclaving. Molecular dynamics simulations demonstrated the unfavorable structure of mutants due to increased size of binding pocket and enhanced negative charge on the electrostatic surface, resulting in unavailability of the substrate superoxide radical ([Formula: see text]) to the catalytic pocket. Deletion caused destabilization of structural elements and reduced solvent accessibility that further produced unfavorable structural geometry of the protein.


Asunto(s)
Aminoácidos/química , Dominio Catalítico , Cobre/química , Superóxido Dismutasa/química , Zinc/química , Activación Enzimática , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Desnaturalización Proteica , Estabilidad Proteica , Eliminación de Secuencia , Relación Estructura-Actividad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
18.
Biochimie ; 102: 29-36, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24556587

RESUMEN

The lipase from Malassezia globosa (SMG1) has specific activity on mono- and diacylglycerol but not on triacylglycerol. The structural analysis of SMG1 structure shows that two bulky aromatic residues, W116 and W229, lie at the entrance of the active site. To study the functions of these two residues in the substrate recognition and the catalytic reaction, they were mutated to a series of amino acids. Subsequently, biochemical properties of these mutants were investigated. Although the activities decrease, W229L and W116A show a significant shift in substrate preference. W229L has an increased preference for short-chain substrates whereas W116A has preference for long-chain substrates. Besides, the half-lives of W116A and W116H at 45 °C are 346.6 min and 115.5 min respectively, which improve significantly compared to that of native enzyme. Moreover, the optimum substrate of W116A, W116F and W229F mutants shifted from p-nitrophenyl caprylate to p-nitrophenyl myristate. These findings not only shed light onto the lipase structure/function relationship but also lay the framework for the potential industrial applications.


Asunto(s)
Lipasa/química , Malassezia/enzimología , Mutagénesis Sitio-Dirigida , Triglicéridos/química , Secuencia de Aminoácidos , Catálisis , Dominio Catalítico , Lipasa/genética , Mutación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA