Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 932: 172773, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685426

RESUMEN

The possibility of obtaining energy or nutritive streams and bioremediation as an add-on opens new perspectives for the massive culturing of microalgal biomass on waste waters generated by the agro-food sector. Ordinary revenue streams are fully preserved, or even boosted, if they are used in microalgal cultivation; however, the suitability of wastewaters depends on multiple nutritional and toxic factors. Here, the effect of modulating the Olive Mill Wastewater (OMW) and cattle digestate (CD) fraction in the formulation of a growth medium on biomass accumulation and productivity of selected biomass fractions and their relevance for biofuel and/or feed production were tested for the microalga Scenedesmus dimorphus and for the cyanobacterium Arthrospira platensis (Spirulina). Tests highlighted the strong S. dimorphus adaptability to digestate, as on OMW, compared to A. platensis, with the maximum lipid storage (48 %) when culture medium was composed by 50 % of cattle digestate.


Asunto(s)
Biodegradación Ambiental , Microalgas , Olea , Eliminación de Residuos Líquidos , Aguas Residuales , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Animales , Bovinos , Eliminación de Residuos Líquidos/métodos , Spirulina/metabolismo , Spirulina/crecimiento & desarrollo , Biocombustibles , Scenedesmus/metabolismo , Scenedesmus/crecimiento & desarrollo , Biomasa , Alimentación Animal/análisis , Residuos Industriales
2.
Waste Manag ; 105: 457-466, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32135467

RESUMEN

Biochar from agricultural biomasses and solid wastes represents a win-win solution for a rational waste management. Its sustainable usage requires the identification and standardization of biochar characteristics. The aim of this work was to identify the physical-chemical and spatial characteristics of biochars from pruning residues (PR), poultry litter (PL), and anaerobic cattle digestate (CD) at two pyrolysis temperatures (350 °C and 550 °C). The biochar characterization was carried out by applying emerging imaging techniques, 2D automated optical image analysis and hyperspectral enhanced dark-field microscopy (EDFM), and by SEM analysis. As predictable, the feedstock composition and the pyrolysis temperature strongly influence the physical structures of the biochar samples. Irrespective of charring temperature, PR biochar was mainly characterized by a broken and fragmented structure with an irregular and rough particle surface, completely different from the original PR wood cell. The EDFM imaging analysis evidenced the thermal degradation of PR vegetal products, composed primarily of hemicellulose, cellulose and lignin. On the contrary, small and regular particles with a smooth surface were produced by the PL pyrolysis, especially at 550 °C, due to the lower PL morphological homogeneity in comparison with the other biomasses. Finally, CD charring at both temperatures was characterized by changes in chemical composition, suggested by a lower pixel intensity. In conclusion, the emerging imaging techniques used in this study proved to be very effective in analyzing some properties of biochars, and can, therefore be considered as promising experimental strategies for detecting the feedstock and pyrolysis temperature of biochar.


Asunto(s)
Carbón Orgánico , Microscopía , Animales , Bovinos , Temperatura , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA