Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137020

RESUMEN

As global freshwater shortages worsen, solar steam generation (SSG) emerges as a promising, eco-friendly, and cost-effective solution for water purification. However, widespread SSG implementation requires efficient photothermal materials and solar evaporators that integrate enhanced light-to-heat conversion, rapid water transportation, and optimal thermal management. This study investigates using nonoxidized graphene flakes (NOGF) with negligible defects as photothermal materials capable of absorbing over 98% of sunlight. By combining NOGF with cellulose nanofibers (CNF) through bidirectional freeze casting, we created a vertically and radially aligned solar evaporator. The hybrid aerogel exhibited exceptional solar absorption, efficient solar-to-thermal conversion, and improved surface wettability. Inspired by tree structures, our design ensures rapid water supply while minimizing heat loss. With low NOGF content (∼10.0%), the NOGF/CNF aerogel achieves a solar steam generation rate of 2.39 kg m-2 h-1 with an energy conversion efficiency of 93.7% under 1-sun illumination, promising applications in seawater desalination and wastewater purification.

2.
Nano Lett ; 24(9): 2861-2869, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408922

RESUMEN

Advanced portable healthcare devices with high efficiencies, small pressure drops, and high-temperature resistance are urgently desired in harsh environments with high temperatures, high humidities, and high levels of atmospheric pollution. Triboelectric nanogenerators (TENGs), which serve as energy converters in a revolutionary self-powered sensor device, present a sustainable solution for meeting these requirements. In this work, we developed a porous negative triboelectric material by synthesizing ZIF-8 on the surface of a cellulose/graphene oxide aerogel, grafting it with trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane, and adding a negative corona treatment, and it was combined with a positive triboelectric material to create a cellulose nanofiber-based TENG self-powered filter. The devices achieved a balance between a small pressure drop (53 Pa) and high filtration efficiency (98.97%, 99.65%, and 99.93% for PM0.3, PM0.5, and PM1, respectively), demonstrating robust filtration properties at high temperatures and high humidities. Our work provides a new approach for developing self-powered wearable healthcare devices with excellent air filtration properties.

3.
Small ; 20(3): e2304575, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37675819

RESUMEN

The exponential interest in covalent organic frameworks (COFs) arises from the direct correlation between their diverse and intriguing properties and the modular design principle. However, the insufficient interlamellar interaction among COF nanosheets greatly hinders the formation of defect-free membranes. Therefore, developing a methodology for the facile fabrication of these materials remains an enticing and highly desirable objective. Herein, ultrahigh proton conductivity and superior stability are achieved by taking advantage of COF composite membranes where 2D TB-COF nanosheets are linked by 1D lignocellulosic nanofibrils (LCNFs) through π-π and electrostatic interactions to form a robust and ordered structure. Notably, the high concentration of -SO3 H groups within the COF pores and the abundant proton transport paths at COFs-LCNFs interfaces impart composite membranes ultrahigh proton conductivity (0.348 S cm-1 at 80 °C and 100% RH). Moreover, the directional migration of protons along the stacked nanochannels of COFs is facilitated by oxygen atoms on the keto groups, as demonstrated by density functional theory (DFT) calculations. The simple design concept and reliable operation of the demonstrated mixed-dimensional composite membrane are expected to provide an ideal platform for next-generation conductive materials.

4.
Small ; 20(5): e2304739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726489

RESUMEN

The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.

5.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731558

RESUMEN

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Asunto(s)
Celulosa , Escherichia coli , Nanopartículas del Metal , Plata , Staphylococcus aureus , Plata/química , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Celulosa/química , Celulosa/análogos & derivados , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/química , Antiinfecciosos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
6.
Molecules ; 29(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792108

RESUMEN

Dye/salt separation has gained increasing attention in recent years, prompting the quest to find cost-effective and environmentally friendly raw materials for synthesizing high performance nanofiltration (NF) membrane for effective dye/salt separation. Herein, a high-performance loose-structured NF membrane was fabricated via a simple vacuum filtration method using a green nanomaterial, 2,2,6,6-tetramethylpiperidine-1-oxide radical (TEMPO)-oxidized cellulose nanofiber (TOCNF), by sequentially filtrating larger-sized and finer-sized TOCNFs on a microporous substrate, followed by crosslinking with trimesoyl chloride. The resulting TCM membrane possessed a separating layer composed entirely of pure TOCNF, eliminating the need for other polymer or nanomaterial additives. TCM membranes exhibit high performance and effective dye/salt selectivity. Scanning Electron Microscope (SEM) analysis shows that the TCM membrane with the Fine-TOCNF layer has a tight layered structure. Further characterizations via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the presence of functional groups and chemical bonds of the crosslinked membrane. Notably, the optimized TCM-5 membrane exhibits a rejection rate of over 99% for various dyes (Congo red and orange yellow) and 14.2% for NaCl, showcasing a potential candidate for efficient dye wastewater treatment.

7.
J Sci Food Agric ; 104(1): 125-133, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37535855

RESUMEN

BACKGROUND: Pickering emulsions are a kind of emulsion stabilized by solid particles. These particles generate a physical or mechanical barrier that provides long-term stability to emulsion. Cellulose nanofibers are effective Pickering emulsifiers given their long length, high flexibility and entanglement capability. In this work, soybean hull insoluble polysaccharides (HIPS) were used as source of cellulose nanofibers by using a combination of chemical and mechanical treatment. The chemical composition, morphology, flow behavior, water holding capacity (WHC) and emulsifying properties of the nanofibers were studied. RESULTS: Nanofibers with diameters between 35 and 110 nm were obtained. The WHC increased significantly after the mechanical treatment, and the rheological behavior of the nanofibers was typical of cellulosic materials. Nanofibers were effective emulsifiers in oil-in-water (O/W) emulsions formulated under acidic conditions, without the need of using any additional surfactant. Emulsions were not affected by changes in the pH of the medium (3.00-5.00), and were stable to coalescence. CONCLUSION: It is possible that cellulose nanofibers form an entangled network which acts as a mechanical steric barrier, providing stability to coalescence. These results are important for the development of effective O/W Pickering emulsifiers/stabilizers, with large applications in the food industry. © 2023 Society of Chemical Industry.


Asunto(s)
Glycine max , Nanofibras , Emulsiones/química , Nanofibras/química , Polisacáridos/química , Celulosa/química , Emulsionantes/química , Agua/química
8.
Small ; 19(52): e2302335, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661587

RESUMEN

Strong, conductive, and flexible materials with improving ion accessibility have attracted significant attention in electromagnetic interference (EMI) and foldable wearable electronics. However, it still remains a great challenge to realize high performance at the same time for both properties. Herein, a microscale structural design combined with nanostructures strategy to fabricate TOCNF(F)/Ti3 C2 Tx (M)@AgNW(A) composite films via a facile vacuum filtration process followed by hot pressing (TOCNF = TEMPO-oxidized cellulose nanofibrils, NW = nanowires) is described. The comparison reveals that different microscale structures can significantly influence the properties of thin films, especially their electrochemical properties. Impressively, the ultrathin MA/F/MA film with enhanced layer in the middle exhibits an excellent tensile strength of 107.9 MPa, an outstanding electrical conductivity of 8.4 × 106 S m-1 , and a high SSE/t of 26 014.52 dB cm2 g-1 . The assembled asymmetric MA/F/MA//TOCNF@CNT (carbon nanotubes) supercapacitor leads to a significantly high areal energy density of 49.08 µWh cm-2 at a power density of 777.26 µW cm-2 . This study proposes an effective strategy to circumvent the trade-off between EMI performance and electrochemical properties, providing an inspiration for the fabrication of multifunctional films for a wide variety of applications in aerospace, national defense, precision instruments, and next-generation electronics.

9.
Small ; 19(27): e2207433, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978239

RESUMEN

The intracellular uptake and interaction behavior of emulsion microparticles in liver cells critical to host defense and inflammation is significant to understanding their potential cytotoxicity and biomedical applications. In this study, the cell death responses of fibroblastic, hepatocyte, and Kupffer cells (KCs) induced by four types of emulsion particles that are stabilized by polysaccharide nanofibers (cellulose or chitin), an inorganic nanoparticle (ß-tricalcium phosphate), or surfactants are compared. Pickering emulsion (PE) microparticles stabilized by polysaccharide nanofibers or inorganic nanoparticles have a droplet size of 1-3 µm, while the surfactant-stabilized emulsion has a diameter of ≈190 nm. Polysaccharide nanofiber-stabilized PEs (PPEs) markedly induce lactate dehydrogenase release in all cell types. Additionally, characteristic pyroptotic cell death, which is accompanied by cell swelling, membrane blebbing, and caspase-1 activation, occurs in hepatocytes and KCs. These PE microparticles are co-cultured with lipopolysaccharide-primed KCs associated with cytokine interleukin-1ß release, and the PPEs demonstrate biological activity as a mediator of the inflammation response. Well-designed PPE microparticles induce pyroptosis of liver cells, which may provide new insight into regulating inflammation-related diseases for designing potent anticancer drugs and vaccine adjuvants.


Asunto(s)
Macrófagos del Hígado , Nanofibras , Humanos , Macrófagos del Hígado/metabolismo , Piroptosis , Emulsiones , Hepatocitos/metabolismo , Celulosa , Inflamación/metabolismo
10.
Macromol Rapid Commun ; 44(17): e2300186, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37265024

RESUMEN

Water containing low amounts of cellulose nanofiber (CNF) is widely used as a thickening agent owing to its three unique properties: high transparency, viscosity, and controllable viscosity based on the shear rate. CNF dry powders are used to reduce the transportation and storage costs or expand applications as a thickening agent. Herein, the preparation of CNF dry powders that can be used to obtain redispersions while maintaining the aforementioned properties is reported. In this regard, the dehydration and vaporization procedures for a CNF water dispersion without using additives are discussed. When dry powders are prepared by removing water by boiling, their redispersions do not exhibit all their unique properties because of dense aggregations. However, when their redispersions are vigorously stirred to break the dense aggregations, they become transparent, although they do not recover their initial viscosity. Freeze-dried powders recover all their initial properties after redispersion. Nevertheless, their large volume does not reduce the transportation and storage costs. When the liquid is evaporated from the solvent-exchanged CNF organogels, their redispersions also fully recover all their properties. Furthermore, the evaporative dry powders with dense small volumes and good handling contribute to reducing the transportation and storage costs.


Asunto(s)
Nanofibras , Agua , Polvos , Viscosidad , Celulosa
11.
Environ Res ; 219: 114995, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36529324

RESUMEN

A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 µM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.


Asunto(s)
Clorofenoles , Nanofibras , Contaminantes del Agua , Humanos , Carbono/química , Celulosa , Técnicas Electroquímicas/métodos , Electrodos
12.
Appl Microbiol Biotechnol ; 107(21): 6487-6496, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37672071

RESUMEN

Today, enzymatic treatment is a progressive field in combating biofilm producing pathogens. In this regard, serratiopeptidase, a medicinally important metalloprotease, has been recently highlighted as an enzyme with proved anti-biofilm activity. In the present study, in order to increase the long-lasting effects of the enzyme, serratiopeptidase and the novel engineered forms with enhanced anti-biofilm activity were immobilized on the surface of cellulose nanofibers (CNFs) as a natural polymer with eminent properties. For this, recombinant serratiopeptidases including the native and previously designed enzymes were produced, purified and conjugated to the CNF by chemical and physical methods. Immobilization was confirmed using different scanning and microscopic methods. The enzyme activity was assessed using casein hydrolysis test. Enzyme release analysis was performed using dialysis tube method. Anti-biofilm activity of free and immobilized enzymes has been examined on Staphylococcus aureus and Pseudomonas aeruginosa strains. Finally, cytotoxicity of enzyme-conjugated CNFs was performed by MTT assay. The casein hydrolysis results confirmed fixation of all recombinant enzymes on CNFs by chemical method; however, inadequate fixation of these enzymes was found using cold atmospheric plasma (CAP). The AFM, FTIR, and SEM analysis confirmed appropriate conjugation of enzymes on the surface of CNFs. Immobilization of enzymes on CNFs improved the anti-biofilm activity of serratiopeptidase enzymes. Interestingly, the novel engineered serratiopeptidase (T344 [8-339ss]) exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms. In conclusion, incorporation of serratiopeptidases into CNFs improves their anti-biofilm activities without baring any cytotoxicity. KEY POINTS: • Enzymes were successfully immobilized on cellulose nanofibers using chemical method. • Immobilization of enzymes on CNFs improved their anti-biofilm activity. • T344 [8-339ss] exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Nanofibras/química , Caseínas , Biopelículas
13.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047002

RESUMEN

Textile industries currently face vast challenges for the active removal of colored wastewater. Indeed, sustainable, recyclable, and green approaches are still lacking to achieve this aim. Thus, the present study explored the utilization of highly functional, green, recyclable, fully bio-based, and cost-effective composite membranes from post-consumer cotton fabrics and palm waste for wastewater treatment purposes. Highly functional cellulose nanofibers (CNF) were produced from waste cotton fabrics and filter paper using an acid hydrolysis technique. The yield of nanofibers extracted from waste cotton fabrics and filter paper was 76.74 and 54.50%, respectively. The physical, chemical, and structural properties of nanofibers were studied using various advanced analytical techniques. The properties of isolated nanofibers were almost similar and comparable to those of commercial nanofibers. The surface charge densities were -94.0, -80.7, and -90.6 mV for the nanofibers of palm waste, cotton fibers, and filter paper, respectively. After membrane fabrication using vacuum and hot-pressing techniques, the characteristics of the membrane were analyzed. The results showed that the average pore size of the palm-waste membrane was 1.185 nm, while it was 1.875 nm for membrane from waste cotton fibers and filter paper. Congo red and methylene blue dyes were used as model solutions to understand the behavior of available functional groups and the surface ζ-potential of the membrane frameworks' interaction. The membrane made from palm waste had the highest dye removal efficiency, and it was 23% for Congo red and 44% for methylene blue. This study provides insights into the challenges associated with the use of postconsumer textile and agricultural waste, which can be potentially used in high-performance liquid filtration devices for a more sustainable society.


Asunto(s)
Colorantes , Rojo Congo , Colorantes/química , Azul de Metileno , Celulosa/química , Fibra de Algodón
14.
Toxicol Mech Methods ; 33(9): 741-754, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37496379

RESUMEN

Cellulose nanofibers (CNFs) are fibrous nanomaterials produced from plants. Since some nanomaterials are toxic, toxicity evaluation, including in vitro examinations using cultured cells, is essential for the effective use of CNFs. On the other hand, microorganisms in the environment can contaminate CNF suspensions. The contamination of CNF samples and the effects of contaminating microorganisms on in vitro examinations were investigated in this study. Microorganism contamination in CNF samples was examined, and microbial inactivation of CNF suspensions using gamma irradiation was evaluated. After gamma-ray irradiation at absorbed doses of 0.5, 1, 5, and 10 kGy, the cellular effects of CNF suspensions were examined using 6 types of cultured cell, HaCaT, A549, Caco-2, MeT-5A, THP-1, and NR8383 cells. CNF samples were contaminated with bacteria and CNF suspensions exhibited endotoxin activity. Gamma irradiation effectively inactivated the microorganisms contained in the CNF suspensions. When the absorbed dose was 10 kGy, the fiber length of CNF was shortened, but the effect on CNF was small at 1.0 kGy or less. CNF suspensions showed lipopolysaccharides (LPS)-like cellular responses and strongly induced interleukin-8, especially in macrophages. Absorbed doses of at least 10 kGy did not affect the LPS-like activity. In this study, it was shown that the CNF suspension may be contaminated with microorganisms. Gamma irradiation was effective for microbial inactivation of suspension for invitor toxicity evaluation of CNF. In vitro evaluation of CNFs requires attention to the effects of contaminants such as LPS.


Asunto(s)
Celulosa , Nanofibras , Humanos , Celulosa/toxicidad , Nanofibras/toxicidad , Células CACO-2 , Viabilidad Microbiana , Lipopolisacáridos
15.
Small ; 18(20): e2201045, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35429099

RESUMEN

The interface plays a pivotal role in stabilizing metal anode. Extensive studies have been made but systematic research is lacking. In this study, preliminary studies are conducted to explore the prime conditions of interfacial modification to approach the practical requirements. Critical factors including reaction kinetics, transport rate, and modulus are identified to affect the Zn anode morphology significantly. The fundamental principle to enhance the Zn anode stability is systematically studied using the TEMPO-oxidized cellulose nanofiber (TOCNF) coating layer with thin a separator. Its advantageous mechanical properties buffer the huge volume variation. The existence of hydrophilic TOCNF in the Zn anode interface enhances the mass transfer process and alters the Zn2+ distribution with a record high double-layer capacitance (390 uF cm-2 ). With the synergetic effect, the modified Zn anode works stably under 5 mA cm-2 with a thin nonwoven paper as the separator (thickness 113 µm). At an ultra-high current density of 10 mA cm-2 , this coated anode cycles for more than 300 h. This strategy shows an immense potential to drive the Zn anode forward toward practical applications.


Asunto(s)
Suministros de Energía Eléctrica , Nanofibras , Electrodos , Zinc
16.
Macromol Rapid Commun ; 43(7): e2100917, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35213061

RESUMEN

This study introduces a cellulose nanofiber surfactant system, in which the surface is hydrophobically modified with different alkyl chain structures for the effective envelopment of solid lipid microparticles (SLMs). To endow bacterial cellulose nanofibers (BCNFs) with excellent ability to assemble at the lipid-water interface, alkyl chains with designated molecular structures, such as decane, didecane, and eicosane, are covalently grafted onto the BCNF surface. Interfacial tension and interfacial rheology measurements indicate that dialkyl chain-grafted BCNFs (diC10 BCNF) exhibit strong interfibrillar association at the interface. The formation of a dense and tough fibrillary membrane contributes significantly to the enveloping of the SLMs, regardless of the lipid type. Because the diC10 BCNF-enveloped SLMs exhibit a core molecular crystalline phase at the microscale, they can immobilize an oil-soluble antioxidant while maintaining its long-term storage stability. These findings show that the cellulose-surfactant-based SLM technology is applicable to the stabilization and formulation of readily denatured active ingredients.


Asunto(s)
Nanofibras , Antioxidantes , Bacterias , Celulosa/química , Lípidos , Nanofibras/química
17.
Environ Res ; 205: 112417, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856164

RESUMEN

Sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs) have recently attracted much attention due to their potential in degrading organic pollutants. Metal-organic frameworks (MOFs) have been reported as effective materials to generate SO4•-. However, it is challenging to separate and recover the dispersed MOF particles from the reaction solution when MOFs are used alone. We used cellulose nanofibers (CNFs) as a porous filter template to immobilize Zn-based MOF, zeolitic imidazolate framework-8 (ZIF-8), and obtained a catalytic composite membrane having peroxymonosulfate (PMS) activating function to produce SO4•-. The CNF was effective in holding ZIF-8 nanoparticle and making a durable porous filter. The activated PMS-produced •OH and SO4•- radicals from ZIF-8 play an important role in the catalytic reaction. More than 90% of methylene blue and rhodamine B was degraded by ZIF-8/CNFs composite membrane in the PMS environment within 60 min. The ZIF-8/CNFs catalytic filters can be used several times without performance reduction for organic dye degradation. The results show that ZIF-8/CNFs catalytic membrane can be separated from organic pollution system quickly and used for the efficient separation and recovery of MOF particle-based catalytic materials. Therefore, this study provides a new perspective for fabricating the MOFs particles-immobilized catalytic filter by biomass nanocellulose-based materials for water purification. This method can be used for facile fabrication of the cellulose-based porous functional filter and open diverse applications.


Asunto(s)
Estructuras Metalorgánicas , Purificación del Agua , Catálisis , Oxidación-Reducción , Zinc
18.
Mikrochim Acta ; 189(8): 308, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35916935

RESUMEN

Chemiresistive ammonia (NH3) detection at room temperature is highly desired due to the unique merits of easy miniaturization, low cost, and minor energy consumption especially for portable and wearable electronics. In this regard, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) has sparked considerable attention due to the benign room-temperature conductivity and environmental stability, but it is undesirably impeded by limited sensitivity and sluggish reaction kinetics. To overcome these, we incorporated cellulose nanofibers (CNF) into PEDOT:PSS via a facile blending. The constituent-optimized composite sensor displayed sensitive (sensitivity of ∼7.46%/ppm in the range of 0.2-3 ppm), selective, and stable NH3 sensing at 25 °C at 55% RH, with higher response and less baseline drift than pure PEDOT:PSS counterparts. Additionally, the response/recovery times (4.9 s/5.2 s toward 1 ppm NH3) ranked the best cases of conducting polymers based NH3 sensors. The humidity involved more than twofold response enhancement indicated a huge potential in exhaled breath monitoring. Furthermore, we observed an excellent flexible NH3-sensing performance with bending-tolerant features. This work provides an alternative strategy for trace NH3 sensing with low power consumption, superfast reaction, and high sensitivity.


Asunto(s)
Celulosa , Nanofibras , Amoníaco , Compuestos Bicíclicos Heterocíclicos con Puentes , Polímeros
19.
Sci Technol Adv Mater ; 23(1): 31-40, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35069011

RESUMEN

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important processes for various energy devices, including polymer electrolyte fuel cells, rechargeable metal-air batteries, and water electrolyzers. We herein report the preparation of a rare metal-free and highly efficient ORR/OER electrocatalyst by calcination of a mixture of blood meal and ascidian-derived cellulose nanofibers. The obtained carbon alloys showed high ORR/OER performances and proved to be promising electrocatalysts. The carbon alloys synthesized entirely from biomass resources not only lead to a new electrocatalyst fabrication process but also contribute to CO2 reduction and the realization of a good life-cycle assessment value in fabrication of a sustainable energy device.

20.
Sensors (Basel) ; 22(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36298086

RESUMEN

In this work, we fabricate cesium lead bromide nanofibers (CsPbBr3 NFs) via the attachment of cesium lead bromide nanocrystals (CsPbBr3 NCs) on the surface of electrospun cellulose nanofibers (CNFs) and employ them in a sensor to effectively detect gaseous nitrogen. The CsPbBr3 NFs are produced initially by producing CsPbBr3 NCs through hot injection and dispersing on hexane, followed by dipping CNFs and ultrasonicate for 1 h. Morphological characterization through visual, SEM and TEM image, and crystalline structure analysis by XRD and FT-IR analysis of CsPbBr3 NFs and NCs show similar spectra except for PL due to unavoidable damage during the ultrasonication. Gaseous nitrogen is subsequently detected using the photoluminescence (PL) property of CsPbBr3 NFs, in which the PL intensity dramatically decreases under various flow rate. Therefore, we believe that the proposed CsPbBr3 NFs show significant promise for use in detection sensors in various industrial field and decrease the potential of fatal damage to workers due to suffocation.


Asunto(s)
Celulosa , Nanocompuestos , Humanos , Celulosa/química , Hexanos , Espectroscopía Infrarroja por Transformada de Fourier , Cesio , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA