Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 882
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int Microbiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028370

RESUMEN

In this study, the mercury-tolerant strain LTC105 was isolated from a contaminated soil sample collected from a molybdenum-lead mine in Luanchuan County, Henan Province, China. The strain was shown to be highly resistant to mercury, with a minimum inhibitory concentration (MIC) of 32 mg·L-1. After a 24-h incubation in LB medium with 10 mg·L-1 Hg2+, the removal, adsorption, and volatilization rates of Hg2+ were 97.37%, 7.3%, and 90.07%, respectively, indicating that the strain had significant influence on mercury removal. Based on the results of Fourier infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), the investigation revealed that the primary function of LTC105 was to encourage the volatilization of mercury. The LTC105 strain also showed strong tolerance to heavy metals such as Mn2+, Zn2+, and Pb2+. According to the results of the soil incubation test, the total mercury removal rate of the LTC105 inoculation increased by 16.34% when the initial mercury concentration of the soil was 100 mg·L-1 and by 62.28% when the initial mercury concentration of the soil was 50 mg·kg-1. These findings indicate that LTC105 has certain bioremediation ability for Hg-contaminated soil and is a suitable candidate strain for microbial remediation of heavy metal-contaminated soil in mining areas.

2.
Environ Sci Technol ; 58(26): 11534-11541, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38865317

RESUMEN

Pteris vittata is the first-reported arsenic (As) hyperaccumulator, which has been applied to phytoremediation of As-contaminated soil. PvACR3, a key arsenite (AsIII) antiporter, plays an important role in As hyperaccumulation in P. vittata. However, its functions in plants are not fully understood. In this study, the PvACR3 gene was heterologously expressed in tobacco, driven by its native promoter (ProPvACR3). After growing at 5 µM AsIII or 10 µM AsV in hydroponics for 1-5 days, PvACR3-expression enhanced the As levels in leaves by 66.4-113 and 51.8-101%, without impacting the As contents in the roots or stems. When cultivated in As-contaminated soil, PvACR3-expressed transgenic plants accumulated 47.9-85.5% greater As in the leaves than wild-type plants. In addition, PvACR3-expression increased the As resistance in transgenic tobacco, showing that enhanced leaf As levels are not detrimental to its overall As tolerance. PvACR3 was mainly expressed in tobacco leaf veins and was likely to unload AsIII from the vein xylem vessels to the mesophyll cells, thus elevating the leaf As levels. This work demonstrates that heterologously expressing PvACR3 under its native promoter specifically enhances leaf As accumulation in tobacco, which helps to reveal the As-hyperaccumulation mechanism in P. vittata and to enhance the As accumulation in plant leaves for phytoremediation.


Asunto(s)
Arsénico , Nicotiana , Hojas de la Planta , Plantas Modificadas Genéticamente , Nicotiana/metabolismo , Nicotiana/genética , Arsénico/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo
3.
Environ Res ; 258: 119455, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906449

RESUMEN

Heterogeneous catalytic processes based on zero-valent iron (ZVI) have been developed to treat soil and wastewater pollutants. However, the agglomeration of ZVI reduces its ability to activate persulfate (PS). In this study, a new Fe-Mn@AC activated material was prepared to activated PS to treat oil-contaminated soil, and using the microscopic characterization of Fe-Mn@AC materials, the electron transfer mode during the Fe-Mn@AC activation of PS was clarified. Firstly, the petroluem degradation rate was optimized. When the PS addition amount was 8%, Fe-Mn@AC addition amount was 3% and the water to soil ratio was 3:1, the petroluem degradation rate in the soil reached to the maximum of 85.69% after 96 h of reaction. Then it was illustrated that sulfate and hydroxyl radicals played major roles in crude oil degradation, while singlet oxygen contributed slightly. Finally, the indigenous microbial community structures remaining after restoring the Fe-Mn@AC/PS systems were analyzed. The proportion of petroleum degrading bacteria in soil increased by 23% after oxidation by Fe-Mn@AC/PS system. Similarly, the germination rate of wheat seeds revealed that soil toxicity was greatly reduced after applying the Fe-Mn@AC/PS system. After the treatment with Fe-Mn@AC/PS system, the germination rate, root length and bud length of wheat seed were increased by 54.05%, 7.98 mm and 6.84 mm, respectively, compared with the polluted soil group. These results showed that the advanced oxidation system of Fe-Mn@AC activates PS and can be used in crude oil-contaminated soil remediation.


Asunto(s)
Hierro , Manganeso , Petróleo , Contaminantes del Suelo , Sulfatos , Contaminantes del Suelo/química , Hierro/química , Manganeso/química , Sulfatos/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos
4.
Biodegradation ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910213

RESUMEN

The main challenge in treating aged soils highly contaminated with total petroleum hydrocarbons (TPH) is to enhance their bioavailability for microbial degradation. Hydrocarbons in soils undergo chemical changes that make them more resistant to biodegradation. This study investigates toluene's efficacy in enhancing the biodegradation of aged hydrocarbon-contaminated soil containing 292,000 mg TPH kg-1 dry soil. Toluene's effect was compared between solid phase (SOP) and slurry phase (SLP) treatments using a microbial consortium isolated from Cyperus laxus rhizosphere. TPH biodegradation and microbial respiration were measured, the latter to estimate the respiratory quotient (RQ, the ratio between moles of carbon dioxide released and moles of oxygen absorbed during respiration). Toluene significantly accelerated TPH biodegradation in both treatments, achieving ~ 30% higher removal than in a non-solvent control, possibly through improved bioavailability of aromatic compounds and other low molecular weight compounds. According to the RQ analysis, toluene enhanced microbial respiratory processes and hydrocarbon catabolism with higher hydrocarbon mineralization (RQ = ~ 0.5) in both SOP and SLP assays. Our results reveal toluene's potential to increase hydrocarbon availability and microbial degradation efficiency in aged contaminated soils; its use in various bioremediation techniques could be of broad applicability across diverse soil types and pollutants.

5.
Ecotoxicol Environ Saf ; 282: 116694, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971101

RESUMEN

In this study, a microcosm experiment was conducted to investigate the effects of Na2S2O8 preoxidation combined with biostimulation on petroleum-contaminated soil remediation. The response of microbial community during this process was explored using BIOLOG ECO microplate carbon utilization method and 16 s rDNA high-throughput sequencing. The results showed that use of 10 mg/g Na2S2O8 removed 19.8 % of the petroleum hydrocarbons, reduced soil biotoxicity and did not affect soil microbial activity compared to other concentrations. Therefore, sodium persulfate of ca. 10 mg/g was used to oxidize petroleum in soil before the biostimulation experiment with organic and inorganic fertilizers. Our finding showed that the content of total petroleum hydrocarbons (TPHs) in soil was reduced by 43.3 % in inorganic fertilizer treatment after 60 days. The results of BIOLOG ECO microplate carbon utilization analysis and 16 S rDNA high-throughput sequencing further confirmed that biostimulation quickly restored the microbial activities in oxidant treated soil. The main marker bacteria in chemical oxidation combined with biostimulation remediation were Arthrobacter and Paenarthrobacter, and their relative abundances were both significantly negatively correlated with the content of petroleum hydrocarbons in soil.


Asunto(s)
Biodegradación Ambiental , Oxidación-Reducción , Petróleo , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Fertilizantes/análisis , Sulfatos , Hidrocarburos , Compuestos de Sodio/toxicidad , Suelo/química , Arthrobacter , Restauración y Remediación Ambiental/métodos , Bacterias/efectos de los fármacos , Bacterias/genética
6.
Ecotoxicol Environ Saf ; 282: 116715, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002378

RESUMEN

Intercropping with hyperaccumulators can facilitate the safe utilization of cadmium-contaminated soil. However, the effectiveness of this approach is influenced by plant species and varieties, which necessitates research on optimal plant consortia. In this study, 8 tomato varieties (3 cherry tomatoes and 5 common large-fruit tomatoes) were intercropped with Sedum alfredii in a moderately Cd-contaminated vegetable field. The results showed that the Cd concentration in the fruits of common large-fruit tomato varieties under monoculture was 1.03-1.50 mg/kg, while that in the fruits of cherry tomato varieties was 0.67-0.71 mg/kg. After intercropping with S. alfredii, the fruit Cd concentrations of Hangza 501, Hangza 503, and Hangza 108 decreased by 16.42 %, 19.72 %, and 6.76 %, respectively, while those of the other varieties significantly increased, except for those of Hangza 8. In contrast, the shoot Cd concentration of cherry tomatoes was greater than that of large-fruit tomatoes under monoculture. Furthermore, a significant increase in the shoot Cd concentration was noted in the Hangza 501, Hangza 503 and Hangza 603 plants following intercropping. Additionally, intercropping with S. alfredii increased the concentration of soluble sugars in the fruits of Hangza 8, Hangza 501, Hangza 503 and Hangza 603 by 4.66 %, 17.91 %, 10.60 % and 17.88 %, respectively. Intercropping with tomatoes resulted in a decrease in both the biomass and Cd uptake of S. alfredii. Interestingly, the inhibitory effect on S. alfredii was less pronounced when intercropped with cherry tomatoes than when intercropped with large-fruit tomatoes. Among the intercropping treatments, S. alfredii exhibited the greatest total Cd accumulation (0.06 mg/plant) when intercropped with Hangza 503. In conclusion, the cherry tomato variety Hangza 503 was the most suitable for intercropping with S. alfredii and can be used safely for vegetable production and simultaneous phytoremediation of polluted soil. Our findings suggest that strategic selection of tomato varieties can optimize the effectiveness of "phytoextraction coupled with agro-safe production" technology for managing soil Cd concentrations.


Asunto(s)
Biodegradación Ambiental , Cadmio , Frutas , Contaminantes del Suelo , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Frutas/metabolismo , Sedum/metabolismo , Suelo/química , Brotes de la Planta/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Agricultura/métodos
7.
Ecotoxicol Environ Saf ; 284: 117011, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241608

RESUMEN

The severity of soil molybdenum (Mo) pollution is increasing, and effective management of contaminated soil is essential for the sustainable development of soil. To investigate this, a pot experiment was carried out to assess the impact of different rates of humic acid (HA) and fulvic acid (FA) on the mobility of Mo in soil solution and its uptake by alfalfa, wheat and green bristlegrass. The concentration of Mo in Plants and soil was determined using an Atomic Absorption Spectrophotometer. The findings revealed that the application of HA led to an increase in Mo accumulation in the shoot and root of green bristlegrass and wheat, ranging from 10.56 % to 28.73 % and 62.15-115.79 % (shoot), and 17.52-46.53 % and 6.29-81.25 % (root), respectively. Nonetheless, the use of HA resulted in a slight inhibition of plant Mo uptake, leading to reduced Mo accumulation in alfalfa roots compared to the control treatment (from 3284.49 mg/kg to 2140.78-2813.54 mg/kg). On the other hand, the application of FA decreased Mo accumulation in the wheat shoot (from 909.92 mg/kg to 338.54-837.45 mg/kg). Furthermore, the bioavailability of green bristlegrass (with HA) and wheat (with FA) decreased, and the percentage of residual fraction of Mo increased (from 0.39 % to 0.78-0.96 %, from 3.95 % to 3.97∼ 4.34 %). This study aims to elucidate the ternary interaction among Mo, humic substances, and plants (alfalfa, wheat, and green bristlegrass), to enhance both the activation and hyperaccumulation of Mo simultaneously.

8.
Ecotoxicol Environ Saf ; 278: 116418, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696873

RESUMEN

Microorganisms have a significant role in regulating the absorption and transportation of Cd in the soil-plant system. However, the mechanism by which key microbial taxa play a part in response to the absorption and transportation of Cd in rice under Cd stress requires further exploration. In this study, the cadmium-tolerant endophytic bacterium Herbaspirillum sp. R3 (R3) and Fe-Mn-modified biochar (Fe-Mn) were, respectively, applied to cadmium-contaminated rice paddies to investigate the effects of key bacterial taxa in the soil-rice system on the absorption and transportation of Cd in rice under different treatments. The results showed that both R3 and Fe-Mn treatments considerably decreased the content of cadmium in roots, stems and leaves of rice at the peak tillering stage by 17.24-49.28% in comparison to the control (CK). The cadmium content reduction effect of R3 treatment is better than that of Fe-Mn treatment. Further analysis revealed that the key bacterial taxa in rice roots under R3 treatment were Sideroxydans and Actinobacteria, and that their abundance showed a substantial positive correlation and a significant negative correlation with the capacity of rice roots to assimilate Cd from the surroundings, respectively. The significant increase in soil pH under Fe-Mn treatment, significant reduction in the relative abundances of Acidobacteria, Verrucomicrobia, Subdivision3 genera incertae sedis, Sideroxydans, Geobacter, Gp1, and Gp3, and the significant increase in the relative abundance of Thiobacillus among the soil bacterial taxa may be the main reasons for the decrease in available Cd content of the soil. In addition, both the R3 and Fe-Mn treatments showed some growth-promoting effects on rice, which may be related to their promotion of transformations of soil available nutrients. This paper describes the possible microbial mechanisms by which strain R3 and Fe-Mn biochar reduce Cd uptake in rice, providing a theoretical basis for the remediation of Cd contamination in rice and soil by utilizing key microbial taxa.


Asunto(s)
Cadmio , Carbón Orgánico , Manganeso , Oryza , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Oryza/microbiología , Cadmio/metabolismo , Carbón Orgánico/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Suelo/química , Hierro/química , Biodegradación Ambiental
9.
Ecotoxicol Environ Saf ; 273: 116117, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377780

RESUMEN

Field rapid determination of soil accessible Cr(Ⅵ) is of great significance for on-site assessment and decision-making about the health risks of contaminated sites. When the thickness of solutions with various concentrations of Cr(Ⅵ) is constant, there would be a quantitative relationship between the chromogenic difference of Cr(Ⅵ) solutions and the concentration of Cr(Ⅵ). The chromogenic difference could be described by Red (R), Green (G), Blue (B) values. Based on the chromogenic reaction between 1,5-diphenylcarbazide and Cr(Ⅵ), this study first established the calibration curve between the chromogenic difference and the concentration of Cr(Ⅵ) in standard solution with or without 0.01 M CaCl2, using an RGB color sensor. This is the subsequent determination basis of the method for rapidly assessing accessible Cr(Ⅵ) in the field (M-RGB). Then, the concentration of accessible Cr(Ⅵ) of contaminated soil with "hand-shaking + standing" field extraction method was compared with "end-over-end shaking" laboratory extraction method. Finally, the accessible Cr(Ⅵ) of contaminated soil extractants was determined via M-RGB integrating the field extraction method. Results indicated there was a highly significant linear relationship between colorimetric difference value (∆E) and Cr(Ⅵ) concentration in the range of 0.1-3 mg/L (R2 > 0.99, P < 0.01), based on the Euclidean formula for calculating ∆E. The "hand-shaking + standing" field extraction method was effective in obtaining accessible Cr(Ⅵ) extractants with or without 0.01 M CaCl2, with the high extraction efficiency within 100±1%. The concentrations of accessible Cr(Ⅵ) in various polluted soils determined by M-RGB were consistent with that determined by the ultraviolet-visible spectrophotometry, with the relative error within ±5%, and the relative standard deviation ≤ 20%. The spiked recovery experiments showed that the recovery of M-RGB was between 95% and 105%, which means M-RGB could realize the trace analysis for accessible Cr(Ⅵ) in the field.


Asunto(s)
Cromo , Suelo , Cloruro de Calcio , Cromo/análisis , Contaminación Ambiental/análisis
10.
Ecotoxicol Environ Saf ; 278: 116406, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728941

RESUMEN

Cadmium contamination inevitably affects the microbially mediated transformation of nitrogen in soils with wheat straw return. The responses of nitrogen functional microorganisms to cadmium in acidic and alkaline soils under wheat straw returned are still unclear. In this study, quantitative polymerase chain reaction (qPCR) and sequencing of nitrifying and denitrifying bacteria were performed to investigate the effects of wheat straw application on nitrogen conversion in different Cd-contaminated soils during an incubation experiment. Results showed that the presence of Cd decreased the abundance of hao gene catalyzing nitrification and norB gene catalyzing denitrification process, resulting the accumulation of NH4+-N and reduction of NO3--N in the acidic soils. Additionally, Cd-contamination stimulates the nitrification catalyzed by bacterial amoA gene and thus reduced the NH4+-N content in the alkaline soils. Meanwhile, Cd dominated the decrease of NO3--N content by promoting denitrification process catalyzed by nirS gene. Among all nitrifying and denitrifying microorganisms, Nitrosospira are tolerant to Cd stress under alkaline condition but sensitive to acidic condition, which dominantly harbored hao gene in the acidic soils and bacterial amoA gene in the alkaline soils. This study aimed to provide reasonable information for the rational adoption of wheat straw returning strategies to realize nitrogen regulation in Cd-contaminated farmland soil.


Asunto(s)
Cadmio , Desnitrificación , Nitrificación , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Cadmio/análisis , Cadmio/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Nitrógeno/metabolismo , Suelo/química , Bacterias/metabolismo , Bacterias/genética , Ciclo del Nitrógeno
11.
Bioprocess Biosyst Eng ; 47(5): 597-620, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456898

RESUMEN

The use of pesticides and the subsequent accumulation of residues in the soil has become a worldwide problem. Organochlorine (OC) pesticides have spread widely in the environment and caused contamination from past agricultural activities. This article reviews the bioremediation of pesticide compounds in soil using microbial enzymes, including the enzymatic degradation pathway and the recent development of enzyme-mediated bioremediation. Enzyme-mediated bioremediation is divided into phase I and phase II, where the former increases the solubility of pesticide compounds through oxidation-reduction and hydrolysis reactions, while the latter transforms toxic pollutants into less toxic or nontoxic products through conjugation reactions. The identified enzymes that can degrade OC insecticides include dehalogenases, phenol hydroxylase, and laccases. Recent developments to improve enzyme-mediated bioremediation include immobilization, encapsulation, and protein engineering, which ensure its stability, recyclability, handling and storage, and better control of the reaction.


Asunto(s)
Biodegradación Ambiental , Plaguicidas , Microbiología del Suelo , Contaminantes del Suelo , Plaguicidas/química , Plaguicidas/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Suelo/química
12.
Int J Phytoremediation ; 26(11): 1824-1838, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38832561

RESUMEN

The agro-waste derived valuable products are prime interest for effective management of toxic heavy metals (THMs). The present study investigated the efficacy of biochars (BCs) on immobilization of THMs (Cr, Zn, Pb, Cu, Ni and Cd), bioaccumulation and health risk. Agro-wastes derived BCs including wheat straw biochar (WSB), orange peel biochar (OPB), rice husk biochar (RHB) and their composite biochar (CB) were applied in industrial contaminated soil (ICS) at 1% and 3% amendments rates. All the BCs significantly decreased the bioavailable THMs and significantly (p < 0.001) reduced bioaccumulation at 3% application with highest efficiency for CB followed by OPB, WSB and RHB as compared to control treatment. The bioaccumulation factor (BAF), concentration index (CI) and ecological risk were decreased with all BCs. The hazard quotient (HQ) and hazard index (HI) of all THMs were <1, except Cd, while carcer risk (CR) and total cancer risk index (TCRI) were decreased through all BCs. The overall results depicted that CB at 3% application rate showed higher efficacy to reduce significantly (p < 0.001) the THMs uptake and reduced health risk. Hence, the present study suggests that the composite of BCs prepared from agro-wastes is eco-friendly amendment to reduce THMs in ICS and minimize its subsequent uptake in vegetables.


The present study has a scientific research scope, based on reduction of bioavailability and bioaccumulation of toxic heavy metals (THMs) by the addition of biochars derived from agro-wastes and their composite biochar (CB), thereby decreasing the potential health risk. Limited study has been conducted, especially on the impact of CB in THMs-contaminated soil. This study could fill the scientific research gap and provides useful information for mitigation of THMs present in contaminated soil, which could be followed by the Environmental Protection Agency, Ministry of Agriculture and farmers in degraded lands.


Asunto(s)
Biodegradación Ambiental , Disponibilidad Biológica , Carbón Orgánico , Metales Pesados , Contaminantes del Suelo , Carbón Orgánico/química , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Agricultura , Suelo/química , Residuos Industriales , Triticum , Oryza
13.
J Environ Manage ; 366: 121810, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002460

RESUMEN

Pb-contaminated soil poses significant environmental and health risks as well as soil stability issues. Research on sandy soils highlights CO2-enhanced reactive MgO as a promising solution for improving the solidification of Pb-contaminated soils. However, carbonation effects can differ markedly between soil types owing to varying soil properties. In this study, we evaluated the effects of CO2-enhanced reactive MgO on the engineering and environmental characteristics of Pb-contaminated red clay and explored its mechanism of carbonation solidification. The results showed that CO2-enhanced reactive MgO increased the strength of Pb-contaminated red clay to over 3 MPa within 1 h, which was approximately 25 times the strength of untreated soil (0.2 MPa) and significantly higher than that of reactive MgO-treated, uncarbonated soil (0.8 MPa). The pH of the carbonated soil (9-10) facilitated Pb2+ immobilization, and the increase over the initial parameter elevated the electrical conductivity value. Moreover, CO2-enhanced reactive MgO reduced the Pb2+ leaching concentration to below 0.1 mg/L, even at high Pb concentrations (10,000 mg/kg). Pb2+ transformed into lead carbonates during the carbonation process, with the hydrated magnesium carbonates forming a dense internal structure. This solidification mechanism included chemical precipitation, physical adsorption, and encapsulation. Notably, the carbonation time should be controlled within 1 h to prevent soil expansion. Together, these findings support the potential of CO2-enhanced reactive MgO for efficient and low-carbon application in the solidification of Pb-contaminated red clay.


Asunto(s)
Dióxido de Carbono , Arcilla , Plomo , Contaminantes del Suelo , Suelo , Dióxido de Carbono/química , Contaminantes del Suelo/química , Plomo/química , Arcilla/química , Suelo/química , Óxido de Magnesio/química
14.
J Environ Manage ; 365: 121599, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968895

RESUMEN

To enhance the remediation effect of heavy metal pollution, organic fertilizers with different maturity levels were added to cadmium-contaminated soil. The remediation effect was determined by evaluating the form transformation and bioavailability of cadmium in heavy metal-contaminated soil. -Results showed that when the maturity was 50%, although the soil humus (HS) content increased, it didn't contribute to reducing the bioavailability of soil Cd. Appropriately increasing the maturity (GI ≥ 80%), the HS increased by 113.95%∼157.96%, and reduced significantly the bioavailability of soil Cd, among the exchangeable Cd decreased by 16.04%∼33.51% (P < 0.01). The structural equation modeling (SEM) revealed that HS content is a critical factor influencing the transformation of Cd forms and the reduction of exchangeable Cd accumulation; the HS and residual Cd content were positively correlated with the maturity (P < 0.01), while exchangeable Cd content was negatively correlated with maturity (P < 0.01), and the correlation increased with increasing maturity. In summary, appropriately increasing the maturity (GI ≥ 80%) can increase significantly HS, promote the transformation of exchangeable Cd into residual Cd, and ultimately enhance the effectiveness of organic fertilizers in the remediation of soil Cd pollution. These results provide a new insight into the remediation of Cd-contaminated soil through organic fertilizer as soil amendment in Cd-contaminated soil.


Asunto(s)
Cadmio , Fertilizantes , Contaminantes del Suelo , Suelo , Fertilizantes/análisis , Cadmio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Metales Pesados/análisis
15.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792066

RESUMEN

The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including mercury (Hg2+), cadmium (Cd2+), and lead (Pb2+). The adsorption kinetics of metal ions in aqueous solutions with different concentrations was tested, and the fitting effects of the two models were compared. The findings demonstrate that the joint application of biochar and KH2PO4 could markedly enhance the immobilization efficacy of Pb2+, whereas the utilization of KH2PO4 on its own exhibited a more pronounced immobilization impact on Cd2+. Furthermore, the present study underscores the shortcomings of various remediation techniques that must be taken into account when addressing heavy metal-contaminated soils. It also emphasizes the value of comprehensive remediation techniques that integrate multiple remediation agents. This study offers a novel approach and methodology for addressing the intricate and evolving challenges posed by heavy metal contamination in soil. Its practical value and potential for application are significant.


Asunto(s)
Cadmio , Carbón Orgánico , Plomo , Mercurio , Fosfatos , Compuestos de Potasio , Contaminantes del Suelo , Carbón Orgánico/química , Contaminantes del Suelo/química , Cadmio/química , Plomo/química , Adsorción , Mercurio/química , Fosfatos/química , Compuestos de Potasio/química , Restauración y Remediación Ambiental/métodos , Medición de Riesgo , Suelo/química , Metales Pesados/química , Cinética
16.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792204

RESUMEN

Environmental pollution stands as one of the significant global challenges we face today. Polycyclic aromatic hydrocarbons (PAHs), a class of stubborn organic pollutants, have long been a focal point of bioremediation research. This study aims to explore the impact and mechanisms of graphene oxide (GO) on the phytoremediation effectiveness of PAHs. The results underscore the significant efficacy of GO in accelerating the degradation of PAHs. Additionally, the introduction of GO altered the diversity and community structure of endophytic bacteria within the roots, particularly those genera with potential for PAH degradation. Through LEfSe analysis and correlation studies, we identified specific symbiotic bacteria, such as Mycobacterium, Microbacterium, Flavobacterium, Sphingomonas, Devosia, Bacillus, and Streptomyces, which coexist and interact under the influence of GO, synergistically degrading PAHs. These bacteria may serve as key biological markers in the PAH degradation process. These findings provide new theoretical and practical foundations for the application of nanomaterials in plant-based remediation of polluted soils and showcase the immense potential of plant-microbe interactions in environmental restoration.


Asunto(s)
Bacterias , Biodegradación Ambiental , Grafito , Hidrocarburos Policíclicos Aromáticos , Microbiología del Suelo , Contaminantes del Suelo , Grafito/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Endófitos/metabolismo , Raíces de Plantas/microbiología , Sphingomonas/metabolismo , Plantas/microbiología , Plantas/metabolismo , Mycobacterium/efectos de los fármacos , Mycobacterium/metabolismo , Flavobacterium/efectos de los fármacos , Flavobacterium/metabolismo , Streptomyces/metabolismo , Microbacterium/metabolismo
17.
Molecules ; 29(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39202865

RESUMEN

This study explores the sorption capacity and field application of activated carbons (ACs) derived from plant residues for the remediation of oil-contaminated soils. ACs were prepared from rice husks, reed stalks, pine sawdust and wheat straw using two-stage pyrolysis and chemical activation with potassium hydroxide. The structural and physicochemical properties of these ACs were analyzed using BET surface area measurements, SEM analysis, Raman spectroscopy and FTIR spectroscopy. Sorption experiments at room temperature demonstrated that AC from rice husks (OSL) exhibited the highest sorption capacities for gasoline, kerosene and diesel fuel, with values of 9.3 g/g, 9.0 g/g and 10.1 g/g, respectively. These results are attributed to the well-developed microporous and mesoporous structures of OSL, as confirmed by SEM images and a BET surface area of 2790 m2/g. Field tests conducted at the "Zhanatalap" oil deposit showed that the ACs effectively reduced the oil content in contaminated soils from 79.2 g/kg to as low as 2.6 g/kg, achieving a purification degree of up to 67% within 16 days. This study highlights the critical role of structural properties, such as porosity and graphitization degree, in enhancing the sorption efficiency of ACs.

18.
J Sci Food Agric ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109748

RESUMEN

BACKGROUND: An issue of pressing concern is the manganese contamination in farmland soils adjacent to industrial areas. To address this, intercropping hyperaccumulator plants with crops emerges as a sustainable approach to ensuring food security. This study aims to investigate the influence of intercropping Sedum alfredii with maize or soybean on their growth and the dynamics of manganese accumulation through field experiments. RESULTS: The results showed that compared with monoculture, the Sedum alfredii-maize intercropping system exhibited a land equivalent ratio (LER) of 1.89, signifying a 71.13% augmentation in bioaccumulation amount (BCA). Additionally, it led to a significant reduction in manganese content in various organs, ranging from 17.05% to 25.50%. However, the Sedum alfredii-soybean intercropping system demonstrated a LER of 1.94, accompanied by a 66.11% increase in BCA, but did not significantly reduce the manganese content in the roots, stems, and pods of soybeans. Furthermore, manganese accumulation in maize and soybean grains was primarily attributed to the aboveground translocation of manganese. The intercropping effect on blocking manganese absorption of maize during growth and maturity is primarily attributed to the earlier manganese accumulation in intercropped maize by 2.63 to 4.35 days, and a reduction of 21.95% in the maximum manganese accumulation rate. CONCLUSIONS: The study found that manganese accumulation dynamics vary significantly depending on the crop family. Intercropping Sedum alfredii with maize enhances land-use efficiency and reduces manganese uptake by crops, making it a promising strategy for remediating manganese-contaminated farmland near industrial areas. © 2024 Society of Chemical Industry.

19.
Environ Geochem Health ; 46(8): 273, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958773

RESUMEN

To enhance risk assessment for contaminated sites, incorporating bioavailability through bioaccessibility as a corrective factor to total concentration is essential to provide a more realistic estimate of exposure. While the main in vitro tests have been validated for As, Cd, and/or Pb, their potential for assessing the bioaccessibility of additional elements remains underexplored. In this study, the physicochemical parameters, pseudototal Cr and Ni concentrations, soil phase distribution, and oral bioaccessibility of twenty-seven soil samples were analysed using both the ISO 17924 standard and a simplified test based on hydrochloric acid. The results showed wide variability in terms of the concentrations (from 31 to 21,079 mg kg-1 for Cr, and from 26 to 11,663 mg kg-1 for Ni) and generally low bioaccessibility for Cr and Ni, with levels below 20% and 30%, respectively. Bioaccessibility variability was greater for anthropogenic soils, while geogenic enriched soils exhibited low bioaccessibility. The soil parameters had an influence on bioaccessibility, but the effects depended on the soils of interest. Sequential extractions provided the most comprehensive explanation for bioaccessibility. Cr and Ni were mostly associated with the residual fraction, indicating limited bioaccessibility. Ni was distributed in all phases, whereas Cr was absent from the most mobile phase, which may explain the lower bioaccessibility of Cr compared to that of Ni. The study showed promising results for the use of the simplified test to predict Cr and Ni bioaccessibility, and its importance for more accurate human exposure evaluation and effective soil management practices.


Asunto(s)
Disponibilidad Biológica , Cromo , Níquel , Contaminantes del Suelo , Níquel/análisis , Níquel/farmacocinética , Contaminantes del Suelo/análisis , Contaminantes del Suelo/farmacocinética , Cromo/farmacocinética , Cromo/análisis , Humanos , Medición de Riesgo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Suelo/química
20.
Environ Geochem Health ; 46(8): 289, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970698

RESUMEN

Low molecular weight organic acids (LMWOAs) are important soil components and play a key role in regulating the geochemical behavior of heavy metal(loid)s. Biochar (BC) is a commonly used amendment that could change LMWOAs in soil. Here, four LMWOAs of oxalic acid (OA), tartaric acid (TA), malic acid (MA), and citric acid (CA) were evaluated for their roles in changing Cd and SB desorption behavior in contaminated soil with (S1-BC) or without BC (S1) produced from Paulownia biowaste. The results showed that OA, TA, MA, and CA reduced soil pH with rising concentrations, and biochar partially offset the pH reduction by LMWOAs. The LMWOAs reduced Cd desorption from the soil at low concentrations but increased Cd desorption at high concentrations, and CA was the most powerful in this regard. The LMWOAs had a similar effect on Sb desorption, and CA was the most effective species of LMWOAs. Adding BC to the soil affects Cd and Sb dynamics by reducing the Cd desorption but increasing Sb desorption from the soil and increasing the distribution coefficient (Kd) values of Cd but lowering the Kd values of Sb. This study helped understand the effects of LMWOAs on the geochemical behavior of Cd and Sb in the presence of biochar, as well as the potential risks of biochar amendment in enhancing Sb desorption from contaminated soil.


Asunto(s)
Carbón Orgánico , Metales Pesados , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Contaminantes del Suelo/química , Metales Pesados/química , Suelo/química , Peso Molecular , Concentración de Iones de Hidrógeno , Cadmio/química , Tartratos/química , Malatos/química , Ácido Cítrico/química , Restauración y Remediación Ambiental/métodos , Ácido Oxálico/química , Adsorción , Oryza/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA