RESUMEN
Cystathionine ß-synthase (CBS) catalyzes the committing step in the transsulfuration pathway, which is important for clearing homocysteine and furnishing cysteine. The transsulfuration pathway also generates H2S, a signaling molecule. CBS is a modular protein with a heme and pyridoxal phosphate-binding catalytic core, which is separated by a linker region from the C-terminal regulatory domain that binds S-adenosylmethionine (AdoMet), an allosteric activator. Recent cryo-EM structures reveal that CBS exists in a fibrillar form and undergoes a dramatic architectural rearrangement between the basal and AdoMet-bound states. CBS is the single most common locus of mutations associated with homocystinuria, and, in this study, we have characterized three clinical variants (K384E/N and M391I), which reside in the linker region. The native fibrillar form is destabilized in the variants, and differences in their limited proteolytic fingerprints also reveal conformational alterations. The crystal structure of the truncated K384N variant, lacking the regulatory domain, reveals that the overall fold of the catalytic core is unperturbed. M391I CBS exhibits a modest (1.4-fold) decrease while the K384E/N variants exhibit a significant (â¼8-fold) decrease in basal activity, which is either unresponsive to or inhibited by AdoMet. Pre-steady state kinetic analyses reveal that the K384E/N substitutions exhibit pleiotropic effects and that the differences between them are expressed in the second half reaction, that is, homocysteine binding and reaction with the aminoacrylate intermediate. Together, these studies point to an important role for the linker in stabilizing the higher-order oligomeric structure of CBS and enabling AdoMet-dependent regulation.
Asunto(s)
Cistationina betasintasa , Mutación , Humanos , Regulación Alostérica/genética , Cristalografía por Rayos X , Cistationina betasintasa/química , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Homocisteína/metabolismo , Homocistinuria/enzimología , Homocistinuria/genética , Cinética , S-Adenosilmetionina/metabolismo , Conformación Proteica , Dominio CatalíticoRESUMEN
Epidemiological data suggest that moderate hyperoxemia may be associated with an improved outcome after traumatic brain injury. In a prospective, randomized investigation of long-term, resuscitated acute subdural hematoma plus hemorrhagic shock (ASDH + HS) in 14 adult, human-sized pigs, targeted hyperoxemia (200 < PaO2 < 250 mmHg vs. normoxemia 80 < PaO2 < 120 mmHg) coincided with improved neurological function. Since brain perfusion, oxygenation and metabolism did not differ, this post hoc study analyzed the available material for the effects of targeted hyperoxemia on cerebral tissue markers of oxidative/nitrosative stress (nitrotyrosine expression), blood-brain barrier integrity (extravascular albumin accumulation) and fluid homeostasis (oxytocin, its receptor and the H2S-producing enzymes cystathionine-ß-synthase and cystathionine-γ-lyase). After 2 h of ASDH + HS (0.1 mL/kgBW autologous blood injected into the subdural space and passive removal of 30% of the blood volume), animals were resuscitated for up to 53 h by re-transfusion of shed blood, noradrenaline infusion to maintain cerebral perfusion pressure at baseline levels and hyper-/normoxemia during the first 24 h. Immediate postmortem, bi-hemispheric (i.e., blood-injected and contra-lateral) prefrontal cortex specimens from the base of the sulci underwent immunohistochemistry (% positive tissue staining) analysis of oxidative/nitrosative stress, blood-brain barrier integrity and fluid homeostasis. None of these tissue markers explained any differences in hyperoxemia-related neurological function. Likewise, hyperoxemia exerted no deleterious effects.
Asunto(s)
Encéfalo , Hematoma Subdural Agudo , Choque Hemorrágico , Animales , Porcinos , Hematoma Subdural Agudo/metabolismo , Hematoma Subdural Agudo/etiología , Hematoma Subdural Agudo/patología , Choque Hemorrágico/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Barrera Hematoencefálica/metabolismo , Inmunohistoquímica , Estrés Oxidativo , Resucitación/métodos , Modelos Animales de Enfermedad , Oxígeno/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismoRESUMEN
INTRODUCTION: In the regulation of oxytocin (OT) neuronal activity, hydrogen sulfide (H2S), a gaseous neurotransmitter, likely exerts an excitatory role. This role is associated with increased expression of astrocytic cystathionine-ß-synthase (CBS), the key enzyme for H2S synthesis. However, it remains unclear whether H2S is mainly produced in astrocytes and contributes to the autoregulation of OT neurons. METHODS: In hypothalamic slices of male rats, OT and H2S-associated drug effects were observed on the firing activity and spontaneous excitatory postsynaptic currents (sEPSCs) of putative OT neurons in the supraoptic nucleus (SON) in whole-cell patch-clamp recording. Expression of glial fibrillary acidic protein (GFAP) in the SON was analyzed in Western blots. In addition, changes in the length of rat pups' hypothalamic astrocytic processes were observed in primary cultures. RESULTS: In brain slices, OT significantly increased the firing rate of OT neurons, which was simulated by CBS allosteric agonist S-adenosyl-L-methionine (SAM) and H2S slow-releasing donor GYY4137 but blocked by CBS inhibitor aminooxyacetic acid (AOAA). L-α-aminoadipic acid (a gliotoxin) blocked SAM-evoked excitation. OT and SAM also increased the frequency and amplitude of sEPSCs; the effect of OT was blocked by AOAA. Both OT and GYY4137 reduced GFAP expression in the SON. Morphologically, OT or GYY4137 time-dependently reduced the length of astrocytic processes in primary cultures. CONCLUSIONS: These findings indicate that the auto-excitatory effect of OT on OT neurons is mediated by H2S from astrocytes at least partially and astrocytic H2S can elicit retraction of astrocytic processes that subsequently increase OT neuronal excitability.
Asunto(s)
Sulfuro de Hidrógeno , Núcleo Supraóptico , Ratas , Masculino , Animales , Núcleo Supraóptico/metabolismo , Oxitocina/farmacología , Oxitocina/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Astrocitos/metabolismo , Neuronas/metabolismoRESUMEN
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Masculino , Animales , Femenino , Cistationina betasintasa/genética , Drosophila melanogaster , Cistationina , ParaquatRESUMEN
Cystathionine-ß-synthase (CBS) is highly expressed in the liver, and deficiencies in Cbs lead to hyperhomocysteinemia (HHCy) and disturbed production of antioxidants such as hydrogen sulfide. We therefore hypothesized that liver-specific Cbs deficient (LiCKO) mice would be particularly susceptible to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD was induced by a high-fat high-cholesterol (HFC) diet; LiCKO and controls were split into eight groups based on genotype (con, LiCKO), diet (normal diet, HFC), and diet duration (12 weeks, 20 weeks). LiCKO mice displayed intermediate to severe HHCy. Plasma H2O2 was increased by HFC, and further aggravated in LiCKO. LiCKO mice fed an HFC diet had heavier livers, increased lipid peroxidation, elevated ALAT, aggravated hepatic steatosis, and inflammation. LiCKO mice showed decreased L-carnitine in the liver, but this did not result in impaired fatty acid oxidation. Moreover, HFC-fed LiCKO mice demonstrated vascular and renal endothelial dysfunction. Liver and endothelial damage correlated significantly with systemic ROS status. In conclusion, this study demonstrates an important role for CBS in the liver in the development of NAFLD, which is most probably mediated through impaired defense against oxidative stress.
Asunto(s)
Hiperhomocisteinemia , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Especies Reactivas de Oxígeno , Dieta Occidental/efectos adversos , Peróxido de Hidrógeno , Ratones Noqueados , Hígado , Cistationina betasintasa/genética , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Modelos Animales de EnfermedadRESUMEN
Hydrogen Sulfide (H2S) mediates biological effects in a variety of ways. Due to its strong reducing potential, H2S has been recognized to have an important role in oxidative stress induced hypoxia. It has been reported that H2S production and miRNA can mutually regulate each other. H2S is produced by the catalytic activity of cystathionine-ß-synthase (CBS), which is under the regulation of miRNAs. In this study, we used target gene prediction software, and identified miR-203 as a potential regulator of CBS. We verified this finding using an oxygen and glucose deprivation (OGD) hypoxia cell model in SH-SY5Y cells and pMIR-REPORT™ luciferase miRNA expression reporter vector. Furthermore, transfecting SH-SY5Y cells with miRNA agomir (agonist) and antagomir (antagonist) by lipofectamin RNAiMAX, we further validated miR-203 as a direct regulator of CBS. We also found that miR-203 protects from cell injury by regulating lipid peroxidation, cell apoptosis, and mitochondrial membrane potential. These findings suggest that while over-expression of miR-203 can aggravate OGD induced cell injury, inhibition of miR-203 can protect against OGD induced cell injury. Based on our data and that of others, we propose that miR-203 may regulate oxidative stress induced cell injury by regulating CBS expression and adjusting the levels of H2S production.
Asunto(s)
Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo/fisiología , Animales , Antagomirs/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Humanos , Infarto de la Arteria Cerebral Media/metabolismo , Peroxidación de Lípido/fisiología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas Sprague-DawleyRESUMEN
Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Sulfuro de Hidrógeno , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Tronco Encefálico , Cistationina , Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipotálamo/metabolismoRESUMEN
Sarcopenia is a gradual and generalized skeletal muscle (SKM) syndrome, characterized by the impairment of muscle components and functionality. Hydrogen sulfide (H2S), endogenously formed within the body from the activity of cystathionine-γ-lyase (CSE), cystathionine- ß-synthase (CBS), and mercaptopyruvate sulfurtransferase, is involved in SKM function. Here, in an in vitro model of sarcopenia based on damage induced by dexamethasone (DEX, 1 µM, 48 h treatment) in C2C12-derived myotubes, we investigated the protective potential of exogenous and endogenous sources of H2S, i.e., glucoraphanin (30 µM), L-cysteine (150 µM), and 3-mercaptopyruvate (150 µM). DEX impaired the H2S signalling in terms of a reduction in CBS and CSE expression and H2S biosynthesis. Glucoraphanin and 3-mercaptopyruvate but not L-cysteine prevented the apoptotic process induced by DEX. In parallel, the H2S-releasing molecules reduced the oxidative unbalance evoked by DEX, reducing catalase activity, O2- levels, and protein carbonylation. Glucoraphanin, 3-mercaptopyruvate, and L-cysteine avoided the changes in myotubes morphology and morphometrics after DEX treatment. In conclusion, in an in vitro model of sarcopenia, an impairment in CBS/CSE/H2S signalling occurs, whereas glucoraphanin, a natural H2S-releasing molecule, appears more effective for preventing the SKM damage. Therefore, glucoraphanin supplementation could be an innovative therapeutic approach in the management of sarcopenia.
Asunto(s)
Sulfuro de Hidrógeno , Sarcopenia , Cistationina , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/metabolismo , Glucosinolatos , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Oximas , Sarcopenia/tratamiento farmacológico , Sulfóxidos , Sulfurtransferasas/metabolismoRESUMEN
Testosterone deficiency resulted in increased mortality in men. Our previous work found that hydrogen sulphide (H2 S) significantly alleviated the spermatogenesis disorder. To investigate whether H2 S could regulate testosterone synthesis and the relative signalling pathways. Disorder model of testosterone synthesis was constructed in vitro and in vivo. The cell viability was detected using CCK-8 method. The concentration of H2 S and testosterone were examined using ELISA kits. The relative mRNA and protein expression of CBS, PDE4A, PDE8A and proteins related to testosterone synthesis were detected by RT-qPCR and western blotting. PAS staining was used to detect the inflammatory status of testis. The sulfhydryl level of PDE4A and PDE8A was determined by Biotin Switch Technique. CBS overexpression inhibited while knockdown promoted LPS + H2 O2 induced injury in testosterone synthesis of MLTC-1 cells, though regulating the level of H2 S. The LPS + H2 O2 induced inhibition on cAMP and p-PKA was recovered by CBS overexpression, while addition of the specific inhibitor of PKA had opposite effects. CBS overexpression alleviated the inflammation status in testis and promoted the expression of StAR, P450scc, P450c17 and 3ß-HSD. CBS could also exhibit its protective role through promoting sulfhydrylation of PDE4A and PDE8A. H2 S catalysed by CBS could recover testosterone synthesis in vitro and in vivo through inhibiting PDE expression via sulfhydryl modification and activating cAMP/PKA pathway.
Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/metabolismo , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Testosterona/biosíntesis , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Sulfuro de Hidrógeno/farmacología , Masculino , Ratones , Transducción de Señal , Testículo/metabolismo , Testosterona/deficienciaRESUMEN
Circadian clock genes are found in almost every cell that has a nucleus; they regulate the rhythmic nature of all processes that are cyclical. Among the genes controlled by the circadian clock, there are numerous factors that regulate key processes in the functioning of the cell. Disturbances in the functioning of the circadian clock are associated with numerous disorders. A recent study has shown the key role of H2S in regulating circadian rhythm. In this study, we investigated the in vitro effect of pharmacological inhibition of cystathionine-ß-synthase (CBS) and/or cystathionine-γ-lyase (CSE) on the circadian dynamics of Per2 expression in serum-shocked NIH-3T3 cells. Alternatively, Cbs and Cse were knocked down by transfection with siRNA. The 48-h treatment of serum-shocked NIH-3T3 cells with 1 mM dl-propargylglycine (PAG), a specific CSE inhibitor, significantly decreased the amplitude and baseline expression of Per2. During exposure to an effective CBS and CSE inhibitor (aminooxyacetic acid [AOAA]), the amplitude of oscillation and baseline expression of Per2 significantly increased. Incubation of NIH-3T3 cells with both inhibitors also significantly increased the amplitude and baseline expression of Per2 messenger RNA (mRNA). siCbs or siCse knockdowan significantly reduced the baseline and amplitude of oscillation of Per2. In conclusion, we showed that CBS/CSE/H2S pathway participates in the regulation of the circadian clock system. PAG and AOAA, change the general expression and dynamics of Per2 genes, but the increase of amplitude and overall Per2 mRNA level due to exposure to AOAA is probably caused by factors other than CBS and CSE activity.
Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Cistationina betasintasa/antagonistas & inhibidores , Cistationina gamma-Liasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas Circadianas Period/metabolismo , Suero/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Cistationina betasintasa/deficiencia , Cistationina betasintasa/genética , Cistationina gamma-Liasa/deficiencia , Cistationina gamma-Liasa/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ratones , Células 3T3 NIH , ARN Interferente Pequeño/genéticaRESUMEN
Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-ß-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.
Asunto(s)
ATP Citrato (pro-S)-Liasa/antagonistas & inhibidores , Neoplasias del Colon/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Sulfuro de Hidrógeno/antagonistas & inhibidores , ATP Citrato (pro-S)-Liasa/metabolismo , Antineoplásicos/farmacología , Western Blotting , Neoplasias del Colon/enzimología , Neoplasias del Colon/metabolismo , Técnica del Anticuerpo Fluorescente , Células HCT116/efectos de los fármacos , Células HCT116/enzimología , Células HCT116/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Age-related macular degeneration (AMD) is a leading cause of vision loss. Elevated homocysteine (Hcy) (Hyperhomocysteinemia) (HHcy) has been reported in AMD. We previously reported that HHcy induces AMD-like features. This study suggests that N-Methyl-d-aspartate receptor (NMDAR) activation in the retinal pigment epithelium (RPE) is a mechanism for HHcy-induced AMD. Serum Hcy and cystathionine-ß-synthase (CBS) were assessed by ELISA. The involvement of NMDAR in Hcy-induced AMD features was evaluated (1) in vitro using ARPE-19 cells, primary RPE isolated from HHcy mice (CBS), and mouse choroidal endothelial cells (MCEC); (2) in vivo using wild-type mice and mice deficient in RPE NMDAR (NMDARR-/-) with/without Hcy injection. Isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1, and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage, and choroidal neovascularization (CNV). A neovascular AMD patient's serum showed a significant increase in Hcy and a decrease in CBS. Hcy significantly increased HIF-1α, VEGF, and NMDAR in RPE cells, and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retina and CNV. Knocking down RPE NMDAR improved retinal structure and CNV. Our findings underscore the role of RPE NMDAR in Hcy-induced AMD features; thus, NMDAR inhibition could serve as a promising therapeutic target for AMD.
Asunto(s)
Homocisteína/efectos adversos , Homocisteína/sangre , Degeneración Macular/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Línea Celular , Neovascularización Coroidal/etiología , Cistationina betasintasa/sangre , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Humanos , Hiperhomocisteinemia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Degeneración Macular/inducido químicamente , Degeneración Macular/diagnóstico por imagen , Degeneración Macular/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neovascularización Patológica/etiología , Cultivo Primario de Células , Epitelio Pigmentado de la Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Thyroid hormones have a role in the regulation of hydrogen sulfide (H2 S) biosynthesis. In this study, we determined the effects of hyperthyroidism on H2 S levels in various tissues and messenger RNA (mRNA) expression of cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in the liver and muscles of the rat. Sixteen male Wistar rats were divided into the hyperthyroid and the control groups. Hyperthyroidism was induced by adding l-thyroxine (12 mg/L) to drinking water for a period of 21 days. H2 S concentrations in serum, liver, aorta, heart, and soleus muscles, as well as mRNA expressions of CBS, CSE, and 3-MST in these tissues were measured at Day 21. Hyperthyroid rats had lower H2 S levels in the serum compared with controls (14.7 ± 1.4 vs. 25.7 ± 1.6 µmol/L, p < 0.001). Compared with controls, hyperthyroid rats had lower levels of H2 S in the aorta (89%), heart (80%), and soleus (103%) muscles, but higher levels in the liver (35%). Hyperthyroidism decreased the ratio of CBS/CSE mRNA expression in the liver and the CSE/CBS mRNA expression in the muscles by decreasing CBS levels in liver (34% cf. controls) and CSE levels in the aorta, heart, and soleus muscles (respectively, 51%, 7%, and 52% cf.). In addition, hyperthyroidism decreased the mRNA expression of 3-MST in the liver (51%) and aorta (33%), and increased it in the heart (300%) and soleus muscle (182%). In conclusion, hyperthyroidism increased H2 S levels in the liver and decreased it in muscles; these effects are at least in part due to increases and decreases in expression of CSE in the liver and muscles, respectively. These data indicate an association between thyroid hormone status and gene expression of the H2 S-producing enzymes in the rat.
Asunto(s)
Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hipertiroidismo/enzimología , Hígado/enzimología , Músculo Esquelético/enzimología , Músculo Liso Vascular/enzimología , Miocardio/enzimología , Sulfurtransferasas/metabolismo , Animales , Cistationina betasintasa/genética , Cistationina gamma-Liasa/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Sulfuro de Hidrógeno/sangre , Hipertiroidismo/sangre , Hipertiroidismo/genética , Masculino , Ratas Wistar , Sulfurtransferasas/genéticaRESUMEN
Gasotransmitters are endogenous small gaseous messengers exemplified by nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S or sulfide). Gasotransmitters are implicated in myriad physiologic functions including many aspects of reproduction. Our objective was to comprehensively review basic mechanisms and functions of gasotransmitters during pregnancy from conception to uterine involution and highlight future research opportunities. We searched PubMed and Web of Science databases using combinations of keywords nitric oxide, carbon monoxide, sulfide, placenta, uterus, labor, and pregnancy. We included English language publications on human and animal studies from any date through August 2018 and retained basic and translational articles with relevant original findings. All gasotransmitters activate cGMP signaling. NO and sulfide also covalently modify target protein cysteines. Protein kinases and ion channels transduce gasotransmitter signals, and co-expressed gasotransmitters can be synergistic or antagonistic depending on cell type. Gasotransmitters influence tubal transit, placentation, cervical remodeling, and myometrial contractility. NO, CO, and sulfide dilate resistance vessels, suppress inflammation, and relax myometrium to promote uterine quiescence and normal placentation. Cervical remodeling and rupture of fetal membranes coincide with enhanced oxidation and altered gasotransmitter metabolism. Mechanisms mediating cellular and organismal changes in pregnancy due to gasotransmitters are largely unknown. Altered gasotransmitter signaling has been reported for preeclampsia, intrauterine growth restriction, premature rupture of membranes, and preterm labor. However, in most cases specific molecular changes are not yet characterized. Nonclassical signaling pathways and the crosstalk among gasotransmitters are emerging investigation topics.
Asunto(s)
Fertilización/fisiología , Gasotransmisores/fisiología , Parto/fisiología , Animales , Monóxido de Carbono , Cuello del Útero/fisiología , Femenino , Humanos , Sulfuro de Hidrógeno , Miometrio/fisiología , Óxido Nítrico , Circulación Placentaria/fisiología , Placentación/fisiología , Embarazo , Transducción de Señal/fisiología , Útero/fisiologíaRESUMEN
BACKGROUND: Peripheral diabetic neuropathy can be painful and its symptoms include hyperalgesia, allodynia and spontaneous pain. Hydrogen sulfide (H2S) is involved in diabetes-induced hyperalgesia and allodynia. However, the molecular target through which H2S induces hyperalgesia in diabetic animals is unclear. The aim of this study was to determine the possible involvement of transient receptor potential (TRP) channels in H2S-induced hyperalgesia in diabetic rats. RESULTS: Streptozotocin (STZ) injection produced hyperglycemia in rats. Intraplantar injection of NaHS (an exogenous donor of H2S, 3-100 µg/paw) induced hyperalgesia, in a time-dependent manner, in formalin-treated diabetic rats. NaHS-induced hyperalgesia was partially prevented by local intraplantar injection of capsazepine (0.3-3 µg/paw), HC-030031 (100-316 µg/paw) and SKF-96365 (10-30 µg/paw) blockers, at 21 days post-STZ injection. At the doses used, these blockers did not modify formalin-induced nociception. Moreover, capsazepine (0.3-30 µg/paw), HC-030031 (100-1000 µg/paw) and SKF-96365 (10-100 µg/paw) reduced formalin-induced nociception in diabetic rats. Contralateral injection of the highest doses used did not modify formalin-induced flinching behavior. Hyperglycemia, at 21 days, also increased protein expression of cystathionine-ß-synthase enzyme (CBS) and TRPC6, but not TRPA1 nor TRPV1, channels in dorsal root ganglia (DRG). Repeated injection of NaHS enhanced CBS and TRPC6 expression, but hydroxylamine (HA) prevented the STZ-induced increase of CBS protein. In addition, daily administration of SKF-96365 diminished TRPC6 protein expression, whereas NaHS partially prevented the decrease of SKF-96365-induced TRPC6 expression. Concordantly, daily intraplantar injection of NaHS enhanced, and HA prevented STZ-induced intraepidermal fiber loss, respectively. CBS was expressed in small- and medium-sized cells of DRG and co-localized with TRPV1, TRPA1 and TRPC6 in IB4-positive neurons. CONCLUSIONS: Our data suggest that H2S leads to hyperalgesia in diabetic rats through activation of TRPV1, TRPA1 and TRPC channels and, subsequent intraepidermal fibers loss. CBS enzyme inhibitors or TRP-channel blockers could be useful for treatment of painful diabetic neuropathy.
Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hiperalgesia/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Acetanilidas/farmacología , Analgésicos/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Cistationina betasintasa/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Femenino , Formaldehído , Hidroxilamina/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Imidazoles/farmacología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Purinas/farmacología , Ratas Wistar , Piel/inervación , Piel/metabolismo , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Raíces Nerviosas Espinales/patología , SulfitosRESUMEN
Chronic exposure of the retina to light and high concentrations of polyunsaturated fatty acid in photoreceptor cells make this tissue susceptible to oxidative damage. As retinal degenerative diseases are associated with photoreceptor degeneration, the antioxidant activity of both hydrogen sulfide (H2S) and glutathione (GSH) may play an important role in ameliorating disease progression. H2S production is driven by cystathionine-γ-lyase (CSE) and cystathionine-ß-synthase (CBS), the key enzymes that also drive transsulfuration pathway (TSP) necessary for GSH production. As it is currently unclear whether localized production of either H2S or GSH contributes to retinal homeostasis, we undertook a comparative analysis of CBS and CSE expression in canine, non-human primate (NHP) and human retinas to determine if these antioxidants could play a regulatory role in age-related or disease-associated retinal degeneration. Retinas from normal dogs, NHPs and humans were used for the study. Laser capture microdissection (LCM) was performed to isolate individual layers of the canine retina and analyze CBS and CSE gene expression by qRT-PCR. Immunohistochemistry and western blotting were performed for CBS and CSE labeling and protein expression in dog, NHP, and human retina, respectively. Using qRT-PCR, western blot, and immunohistochemistry (IHC), we showed that CBS and CSE are expressed in the canine, NHP, and human retina. IHC results from canine retina demonstrated increased expression levels of CBS but not CSE with post-developmental aging. IHC results also showed non-overlapping localization of both proteins with CBS presenting in rods, amacrine, horizontal, and nerve fiber cell layers while CSE was expressed by RPE, cones and MÏller cells. Finally, we demonstrated that these enzymes localized to all three layers of canine, NHP and human retina: photoreceptors, outer plexiform layer (OPL) and notably in the ganglion cells layer/nerve fiber layer (GCL/NFL). QRT-PCR performed using RNA extracted from tissues isolated from these cell layers using laser capture microdissection (LCM) confirmed that each of CBS and CSE are expressed equally in these three layers. Together, these findings reveal that CSE and CBS are expressed in the retina, thereby supporting further studies to determine the role of H2S and these proteins in oxidative stress and apoptosis in retinal degenerative diseases.
Asunto(s)
Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Retina/metabolismo , Animales , Western Blotting , Perros , Inmunohistoquímica , PrimatesRESUMEN
OBJECTIVE: To investigate the effects of methionine on the activity of cystathionine-ß-synthase. METHODS: A total of 56 male rats of the Wistar were randomly divided into 7 groups: 10% casein(10 C) group, 40% casein(40 C) group, 10 C+0.75% L-methionine(10 CM) group, 10 C+amino acid mixture(10 CAA) group, 10 CAA-methionine(10 CAA-Met) group, 10 C+ essential amino acid(10 C+EAA) group, and 10 C+ non-essential amino acid(10 C+NEAA) group, with 8 rats in each group for 10 days. RESULTS: The plasma homocysteine concentration significantly increased from(17.1±0.3)µmol/L to(50.7±4.8)µmol/L and(40.5±3.9)µmol/L in rats fed 10 CM and 10 C+EAA diets(P<0.01). Supplementation with methionine induced hyperhomocysteinemia. Compared to 10 C, the activity of hepatic cystathionine-ß-synthase(CBS) were significantly increased in the experimental group except for 10 CM(P<0.05). The activity of hepatic CBS was the largest increases in diets with 40 C and the smallest increases in 10 C+NEAA. The activity of hepatic betaine-homocysteine S-methyltransferase(BHMT) were increased in the experimental group except for 10 CAA-Met and 10 C+NEAA(P<0.05). CONCLUSION: The increased CBS activity induced by high protein diets is determined by high amino acid intake rather than methionine supplemention.
Asunto(s)
Metionina/metabolismo , Animales , Betaína-Homocisteína S-Metiltransferasa , Cistationina , Cistationina betasintasa , Homocisteína , Hígado , Masculino , Ratas , Ratas WistarRESUMEN
Although hyperhomocysteinemia (HHcy) occurs because of the deficiency in cystathionine-ß-synthase (CBS) causing skeletal muscle dysfunction, it is still unclear whether this effect is mediated through oxidative stress, endoplasmic reticulum (ER) stress, or both. Nevertheless, there is no treatment option available to improve HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is an antioxidant compound, and patients with CBS mutation do not produce H2S. In this study, we hypothesized that H2S mitigates HHcy-induced redox imbalance/ER stress during skeletal muscle atrophy via JNK phosphorylation. We used CBS+/- mice to study HHcy-mediated muscle atrophy, and treated them with sodium hydrogen sulfide (NaHS; an H2S donor). Proteins and mRNAs were examined by Western blots and quantitative PCR. Proinflammatory cytokines were also measured. Muscle mass and strength were studied via fatigue susceptibility test. Our data revealed that HHcy was detrimental to skeletal mass, particularly gastrocnemius and quadriceps muscle weight. We noticed that oxidative stress was reversed by NaHS in homocysteine (Hcy)-treated C2C12 cells. Interestingly, ER stress markers (GRP78, ATF6, pIRE1α, and pJNK) were elevated in vivo and in vitro, and NaHS mitigated these effects. Additionally, we observed that JNK phosphorylation was upregulated in C2C12 after Hcy treatment, but NaHS could not reduce this effect. Furthermore, inflammatory cytokines IL-6 and TNF-α were higher in plasma from CBS as compared with wild-type mice. FOXO1-mediated Atrogin-1 and MuRF-1 upregulation were attenuated by NaHS. Functional studies revealed that NaHS administration improved muscle fatigability in CBS+/- mice. In conclusion, our work provides evidence that NaHS is beneficial in mitigating HHcy-mediated skeletal injury incited by oxidative/ER stress responses.
Asunto(s)
Cistationina betasintasa/genética , Hiperhomocisteinemia/tratamiento farmacológico , Atrofia Muscular/tratamiento farmacológico , Sulfitos/administración & dosificación , Factor de Transcripción Activador 6/genética , Animales , Antioxidantes/administración & dosificación , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Endorribonucleasas/genética , Proteína Forkhead Box O1/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Humanos , Hiperhomocisteinemia/sangre , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/genética , Interleucina-6/sangre , MAP Quinasa Quinasa 4/genética , Ratones , Proteínas Musculares/genética , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Atrofia Muscular/sangre , Atrofia Muscular/etiología , Atrofia Muscular/genética , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Motivos Tripartitos/genética , Factor de Necrosis Tumoral alfa/sangre , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Irritable bowel syndrome is a disorder of unknown etiology characterized by widespread, chronic abdominal pain associated with altered bowel movements. Increasing amounts of evidence indicate that stressors presented during gestational periods could have long-term effects on the offspring's tissue structure and function, which may predispose to gastrointestinal diseases. The aim of the present study is to determine whether prenatal maternal stressis a adverse factor affecting gastrointestinal sensitivity and to investigate possible mechanisms underlying prenatal maternal stress-induced visceral hypersensitivity in adult offspring. Prenatal maternal stress was induced in pregnant Sprague-Dawley rats by exposure to heterotypic intermitent stress from gestational day 7 to delivery. Prenatal maternal stress significantly increased visceromotor response to colorectal distention in adult offspring from the age of 6 weeks to 10 weeks. Prenatal maternal stress also enhanced neuronal excitability including depolarization of resting membrane potentials, reduction in rheobase, and an increase in the number of action potentials evoked by 2× and 3× rheobase current stimultion of colon-specific dorsal root ganglion neurons. Prenatal maternal stress remarkably enhanced expression of cystathionine-ß-synthase and Nav1.7 in T13-L2 thoracolumbar dorsal root ganglions both at protein and mRNA levels. Intraperitoneal injection of aminooxyacetic acid, an inhibitor of cystathionine-ß-synthase, attenuated prenatal maternal stress-induced visceral hypersensitivity in a dose-dependent manner. A consecutive seven-day administration of aminooxyacetic acid reversed the hyperexcitability of colon-specific dorsal root ganglion neurons and markedly reduced Nav1.7 expression. These results indicate that the presence of multiple psychophysical stressors during pregnancy is associated with visceral hypersensitivity in offspring, which is likely mediated by an upregualtion of cystathionine-ß-synthase and Nav1.7 expression. Prenatal maternal stress might be a significant contributor to irritable bowel syndrome, and cystathionine-ß-synthase might be a potential target for treatment for chronic visceral hypersensitivity in patients with irritable bowel syndrome.
Asunto(s)
Cistationina betasintasa/metabolismo , Efectos Tardíos de la Exposición Prenatal/enzimología , Células Receptoras Sensoriales/enzimología , Transducción de Señal , Estrés Psicológico/complicaciones , Dolor Visceral/enzimología , Dolor Visceral/etiología , Animales , Células Cultivadas , Colon/inervación , Colon/patología , Cistationina betasintasa/antagonistas & inhibidores , Cistationina betasintasa/genética , Electromiografía , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Masculino , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Especificidad de Órganos , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Dolor Visceral/patologíaRESUMEN
BACKGROUND: Knowledge about the expression and thus a role of enzymes that produce endogenous H2S - cystathionine-ß-synthase, cystathionine γ-lyase and mercaptopyruvate sulfurtransferase - in renal tumors is still controversial. In this study we aimed to determine the expression of these enzymes relatively to the expression in unaffected part of kidney from the same patient and to found relation of these changes to apoptosis. To evaluate patient's samples, microarray and immunohistochemistry was used. METHODS: To determine the physiological importance, we used RCC4 stable cell line derived from clear cell renal cell carcinoma, where apoptosis induction by a mixture of five chemotherapeutics with/without silencing of H2S-producing enzymes was detected. Immunofluorescence was used to determine each enzyme in the cells. RESULTS: In clear cell renal cell carcinomas, expression of H2S-producing enzymes was mostly decreased compared to a part of kidney that was distal from the tumor. To evaluate a potential role of H2S-producing enzymes in the apoptosis induction, we used RCC4 stable cell line. We have found that silencing of cystathionine-ß-synthase and cystathionine γ-lyase prevented induction of apoptosis. Immunofluorescence staining clearly showed that these enzymes were upregulated during apoptosis in RCC4 cells. CONCLUSION: Based on these results we concluded that in clear cell renal cell carcinoma, reduced expression of the H2S-producing enzymes, mainly cystathionine γ-lyase, might contribute to a resistance to the induction of apoptosis. Increased production of the endogenous H2S, or donation from the external sources might be of a therapeutic importance in these tumors.