Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.632
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Neurosci ; 46: 341-358, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37018916

RESUMEN

The field of stereotactic neurosurgery developed more than 70 years ago to address a therapy gap for patients with severe psychiatric disorders. In the decades since, it has matured tremendously, benefiting from advances in clinical and basic sciences. Deep brain stimulation (DBS) for severe, treatment-resistant psychiatric disorders is currently poised to transition from a stage of empiricism to one increasingly rooted in scientific discovery. Current drivers of this transition are advances in neuroimaging, but rapidly emerging ones are neurophysiological-as we understand more about the neural basis of these disorders, we will more successfully be able to use interventions such as invasive stimulation to restore dysfunctional circuits to health. Paralleling this transition is a steady increase in the consistency and quality of outcome data. Here, we focus on obsessive-compulsive disorder and depression, two topics that have received the most attention in terms of trial volume and scientific effort.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Humanos , Estimulación Encefálica Profunda/métodos , Depresión , Procedimientos Neuroquirúrgicos/métodos , Trastorno Obsesivo Compulsivo/cirugía , Neuroimagen
2.
Annu Rev Neurosci ; 40: 453-477, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28772097

RESUMEN

Modern functional neurosurgery for movement disorders such as Parkinson's disease, tremor, and dystonia involves the placement of focal lesions or the application of deep brain stimulation (DBS) within circuits that modulate motor function. Precise targeting of these motor structures can be further refined by the use of electrophysiological approaches. In particular, microelectrode recordings enable the delineation of neuroanatomic structures. In the course of these operations, there is an opportunity not only to map basal ganglia structures but also to gain insights into how disturbances in neural activity produce movement disorders. In this review, we aim to highlight what the field has uncovered thus far about movement disorders through DBS. The work to date lays the foundation for future studies that will shed further light on dysfunctional circuits mediating diseases of the nervous system and how we might modulate these circuits therapeutically.


Asunto(s)
Ganglios Basales/fisiopatología , Trastornos Distónicos/fisiopatología , Trastornos Distónicos/terapia , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Temblor/fisiopatología , Temblor/terapia , Ganglios Basales/cirugía , Estimulación Encefálica Profunda , Trastornos Distónicos/cirugía , Humanos , Procedimientos Neuroquirúrgicos , Enfermedad de Parkinson/cirugía , Temblor/cirugía
3.
Brain ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808482

RESUMEN

Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomo-functional mechanisms governing human behaviour as well as the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. While the ventral tegmental area has been successfully targeted with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region has not been fully understood. Here using fiber micro-dissections in human cadaveric hemispheres, population-based high-definition fiber tractography, and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain, and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches, and aggressive behaviors.

4.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38124548

RESUMEN

Why does unilateral deep brain stimulation improve motor function bilaterally? To address this clinical observation, we collected parallel neural recordings from sensorimotor cortex (SMC) and the subthalamic nucleus (STN) during repetitive ipsilateral, contralateral, and bilateral hand movements in patients with Parkinson's disease. We used a cross-validated electrode-wise encoding model to map electromyography data to the neural signals. Electrodes in the STN encoded movement at a comparable level for both hands, whereas SMC electrodes displayed a strong contralateral bias. To examine representational overlap across the two hands, we trained the model with data from one condition (contralateral hand) and used the trained weights to predict neural activity for movements produced with the other hand (ipsilateral hand). Overall, between-hand generalization was poor, and this limitation was evident in both regions. A similar method was used to probe representational overlap across different task contexts (unimanual vs. bimanual). Task context was more important for the STN compared to the SMC indicating that neural activity in the STN showed greater divergence between the unimanual and bimanual conditions. These results indicate that SMC activity is strongly lateralized and relatively context-free, whereas the STN integrates contextual information with the ongoing behavior.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Corteza Sensoriomotora , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Mano/fisiología , Movimiento/fisiología , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos
5.
J Infect Dis ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700101

RESUMEN

We evaluated hair tenofovir (TFV) concentrations as an adherence metric for HIV pre-exposure prophylaxis (PrEP) during pregnancy and postpartum and compared hair levels with tenofovir-diphosphate (TFV-DP) levels in dried blood spots (DBS). Overall, 152 hair samples from 102 women and 36 hair-DBS paired samples from 29 women were collected from a subset of women in a cluster randomized trial. Having a partner known to be living with HIV was associated with higher hair TFV levels (p<0.001). Hair TFV concentrations were strongly correlated with DBS TFV-DP levels (r=0.76, p<0.001), indicating hair as promising cumulative adherence metric for perinatal PrEP assessment.

6.
J Physiol ; 602(2): 373-395, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38084073

RESUMEN

Parkinson's disease is characterized by exaggerated beta activity (13-35 Hz) in cortico-basal ganglia motor loops. Beta activity includes both periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and excitation/inhibition balance (i.e. non-oscillatory activity). However, the relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. We recorded, modelled and analysed subthalamic local field potentials in parkinsonian patients at rest while off or on medication. Autoregressive modelling with additive 1/f noise clarified the relationships between measures of beta activity in the time domain (i.e. amplitude and duration of beta bursts) or in the frequency domain (i.e. power and sharpness of the spectral peak) and oscillatory vs. non-oscillatory activity: burst duration and spectral sharpness are specifically sensitive to oscillatory activity, whereas burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Our experimental data confirmed the model predictions and assumptions. We subsequently analysed the effect of levodopa, obtaining strong-to-extreme Bayesian evidence that oscillatory beta activity is reduced in patients on vs. off medication, with moderate evidence for absence of modulation of the non-oscillatory component. Finally, specifically the oscillatory component of beta activity correlated with the rate of motor progression of the disease. Methodologically, these results provide an integrative understanding of beta-based biomarkers relevant for adaptive deep brain stimulation. Biologically, they suggest that primarily the oscillatory component of subthalamic beta activity is dopamine dependent and may play a role not only in the pathophysiology but also in the progression of Parkinson's disease. KEY POINTS: Beta activity in Parkinson's disease includes both true periodic fluctuations (i.e. oscillatory activity) and aperiodic fluctuations reflecting spiking activity and synaptic balance (i.e. non-oscillatory activity). The relative contribution, dopamine dependency and clinical correlations of oscillatory vs. non-oscillatory beta activity remain unclear. Burst duration and spectral sharpness are specifically sensitive to oscillatory activity, while burst amplitude and spectral power are ambiguously sensitive to both oscillatory and non-oscillatory activity. Only the oscillatory component of subthalamic beta activity is dopamine-dependent. Stronger beta oscillatory activity correlates with faster motor progression of the disease.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Dopamina/farmacología , Teorema de Bayes , Ganglios Basales , Estimulación Encefálica Profunda/métodos
7.
J Neurophysiol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985938

RESUMEN

Bradykinesia is a term describing several manifestations of movement disruption caused by Parkinson's disease (PD), including movement slowing, amplitude reduction, and gradual decrease of speed and amplitude over multiple repetitions of the same movement. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves bradykinesia in patients with PD. We examined the effect of DBS on specific components of bradykinesia when applied at two locations within the STN, using signal processing techniques to identify the time course of amplitude and frequency of repeated hand pronation-supination movements performed by participants with and without PD. Stimulation at either location increased movement amplitude, increased frequency, and decreased variability, though not to the range observed in the control group. Amplitude and frequency showed decrement within trials, which was similar in PD and control groups and did not change with DBS. Decrement across trials, by contrast, differed between PD and control groups, and was reduced by stimulation. We conclude that DBS improves specific aspects of movement that are disrupted by PD, whereas it does not affect short-term decrement that could reflect muscular fatigue.

8.
Neurobiol Dis ; 195: 106490, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561111

RESUMEN

The auditory oddball is a mainstay in research on attention, novelty, and sensory prediction. How this task engages subcortical structures like the subthalamic nucleus and substantia nigra pars reticulata is unclear. We administered an auditory OB task while recording single unit activity (35 units) and local field potentials (57 recordings) from the subthalamic nucleus and substantia nigra pars reticulata of 30 patients with Parkinson's disease undergoing deep brain stimulation surgery. We found tone modulated and oddball modulated units in both regions. Population activity differentiated oddball from standard trials from 200 ms to 1000 ms after the tone in both regions. In the substantia nigra, beta band activity in the local field potential was decreased following oddball tones. The oddball related activity we observe may underlie attention, sensory prediction, or surprise-induced motor suppression.


Asunto(s)
Estimulación Acústica , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Porción Reticular de la Sustancia Negra , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Masculino , Persona de Mediana Edad , Femenino , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Anciano , Porción Reticular de la Sustancia Negra/fisiología , Estimulación Encefálica Profunda/métodos , Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Potenciales Evocados Auditivos/fisiología , Sustancia Negra/fisiología , Adulto
9.
Mol Genet Metab ; 142(1): 108361, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442492

RESUMEN

INTRODUCTION: Phenylketonuria (PKU) requires regular phenylalanine monitoring to ensure optimal outcome. However, home sampling methods used for monitoring suffer high pre-analytical variability, inter-laboratory variability and turn-around-times, highlighting the need for alternative methods of home sampling or monitoring. METHODS: A survey was distributed through email and social media to (parents of) PKU patients and professionals working in inherited metabolic diseases in Denmark, The Netherlands, and United Kingdom regarding satisfaction with current home sampling methods and expectations for future point-of-care testing (POCT). RESULTS: 210 parents, 156 patients and 95 professionals completed the survey. Countries, and parents and patients were analysed together, in absence of significant group differences for most questions. Important results are: 1) Many patients take less home samples than advised. 2) The majority of (parents of) PKU patients are (somewhat) dissatisfied with their home sampling method, especially with turn-around-times (3-5 days). 3) 37% of professionals are dissatisfied with their home sampling method and 45% with the turn-around-times. 4) All responders are positive towards developments for POCT: 97% (n = 332) of (parents of) patients is willing to use a POC-device and 76% (n = 61) of professionals would recommend their patients to use a POC-device. 5) Concerns from all participants for future POC-devices are costs/reimbursements and accuracy, and to professionals specifically, accessibility to results, over-testing, patient anxiety, and patients adjusting their diet without consultation. CONCLUSION: The PKU community is (somewhat) dissatisfied with current home sampling methods, highlighting the need for alternatives of Phe monitoring. POCT might be such an alternative and the community is eager for its arrival.


Asunto(s)
Padres , Fenilcetonurias , Pruebas en el Punto de Atención , Humanos , Fenilcetonurias/diagnóstico , Fenilcetonurias/sangre , Masculino , Femenino , Encuestas y Cuestionarios , Padres/psicología , Recolección de Muestras de Sangre , Reino Unido , Países Bajos , Adulto , Satisfacción del Paciente , Fenilalanina/sangre , Dinamarca , Niño , Adolescente
10.
J Viral Hepat ; 31(5): 266-270, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366329

RESUMEN

Dried blood spots (DBS) have emerged as a promising alternative to traditional venous blood for hepatitis C virus (HCV) testing. However, their capacity to accurately reflect the genetic diversity of HCV remains poorly understood. We employed deep sequencing and advanced phylogenetic analyses on paired plasma and DBS samples from two common subtypes to evaluate the suitability of DBS for genomic surveillance. Results demonstrated that DBS captured equivalent viral diversity compared to plasma with no phylogenetic discordance observed. The ability of DBS to accurately reflect the profile of viral genetic diversity suggests it may be a promising avenue for future surveillance efforts to curb HCV outbreaks.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/genética , Filogenia , Anticuerpos contra la Hepatitis C , Sensibilidad y Especificidad , Hepatitis C/diagnóstico , Hepatitis C/epidemiología , Genómica
11.
J Med Virol ; 96(3): e29529, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38516764

RESUMEN

Studies on the impact of the COVID-19 pandemic in sub-Saharan Africa have yielded varying results, although authors universally agree the real burden surpasses reported cases. The primary objective of this study was to determine SARS-CoV-2 seroprevalence among patients attending Monkole Hospital in Kinshasa (D.R. Congo). The secondary objective was to evaluate the analytic performance of two chemiluminescence platforms: Elecsys® (Roche) and VirClia® (Vircell) on dried blood spot samples (DBS). The study population (N = 373) was recruited in two stages: a mid-2021 blood donor cohort (15.5% women) and a mid-2022 women cohort. Crude global seroprevalence was 61% (53.9%-67.8%) pre-Delta in 2021 and 90.2% (84.7%-94.2%) post-Omicron in 2022. Anti-spike (S) antibody levels significantly increased from 53.1 (31.8-131.3) U/mL in 2021 to 436.5 (219.3-950.5) U/mL in 2022 and were significantly higher above 45 years old in the 2022 population. Both platforms showed good analytic performance on DBS samples: sensitivity was 96.8% for IgG (antiN/S) (93.9%-98.5%) and 96.0% (93.0%-98.0%) for anti-S quantification. These results provide additional support for the notion that exposure to SARS-CoV-2 is more widespread than indicated by case-based surveillance and will be able to guide the pandemic response and strategy moving forward. Likewise, this study contributes evidence to the reliability of DBS as a tool for serological testing and diagnosis in resource-limited settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Persona de Mediana Edad , Masculino , COVID-19/diagnóstico , COVID-19/epidemiología , República Democrática del Congo/epidemiología , Pandemias , Reproducibilidad de los Resultados , Estudios Seroepidemiológicos , Anticuerpos Antivirales
12.
Mov Disord ; 39(7): 1131-1144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38646731

RESUMEN

BACKGROUND: The evidence in the effectiveness of deep brain stimulation in children with medication-refractory non-degenerative monogenic dystonia is heterogeneous and long-term results are sparse. OBJECTIVES: The objective is to describe long-term outcomes in a single-center cohort and compare our results with a meta-analysis cohort form literature. METHODS: We performed a retrospective single-center cohort study including consecutive pediatric patients with non-degenerative genetic or idiopathic dystonia treated with globus pallidus internus deep brain stimulation at our center and a systematic review and individual-patient data meta-analysis with the same inclusion criteria. The primary outcome was the change from baseline in the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M) score. RESULTS: The clinical cohort included 25 patients with a mean study follow-up of 11.4 years. The meta-analysis cohort included 224 patients with a mean follow-up of 3 years. Overall, the BFMDRS-M mean improvements at 1 year and at last follow-up were 41% and 33% in the clinical cohort and 58.9% and 57.2% in the meta-analysis cohort, respectively. TOR1A-dystonia showed the greatest and most stable BFMDRS-M improvement in both cohorts at 1 year and at last follow-up (76.3% and 74.3% in the clinical cohort; 69.6% and 67.3% in the meta-analysis cohort), followed by SGCE-dystonia (63% and 63.9% in the meta-analysis cohort). THAP1-dystonia (70.1% and 29.8% in the clinical cohort; 52.3% and 42.0% in the meta-analysis cohort) and KMT2B-dystonia (33.3% and 41.3% in the clinical cohort; 38.0% and 26.7% in the meta-analysis cohort) showed a less pronounced or sustained response. CONCLUSION: Globus pallidus deep brain stimulation long-term treatment seems effective with a possible gene-specific differential effect. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Niño , Femenino , Humanos , Masculino , Estudios de Cohortes , Estimulación Encefálica Profunda/métodos , Distonía/terapia , Trastornos Distónicos/terapia , Trastornos Distónicos/fisiopatología , Estudios Retrospectivos , Resultado del Tratamiento
13.
Mov Disord ; 39(2): 424-428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38111224

RESUMEN

BACKGROUND: Transcutaneous vagus nerve stimulation (VNS) showed early evidence of efficacy for the gait treatment of Parkinson's disease (PD). OBJECTIVES: Providing data on neurophysiological and clinical effects of transauricular VNS (taVNS). METHODS: Ten patients with recording deep brain stimulation (DBS) have been enrolled in a within participant design pilot study, double-blind crossover sham-controlled trial of taVNS. Subthalamic local field potentials (ß band power), Unified Parkinson's Disease Rating Scales (UPDRS), and a digital timed-up-and-go test (TUG) were measured and compared with real versus sham taVNS during medication-off/DBS-OFF condition. RESULTS: The left taVNS induced a reduction of the total ß power in the contralateral (ie, right) subthalamic nucleus and an improvement of TUG time, speed, and variability. The taVNS-induced ß reduction correlated with the improvement of gait speed. No major clinical changes were observed at UPDRS. CONCLUSIONS: taVNS is a promising strategy for the management of PD gait, deserving prospective trials of chronic neuromodulation. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Estimulación del Nervio Vago , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Estudios Prospectivos , Proyectos Piloto , Equilibrio Postural , Estudios de Tiempo y Movimiento , Marcha , Resultado del Tratamiento
14.
Epilepsia ; 65(6): 1531-1547, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506635

RESUMEN

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a widespread invasive procedure for treating drug-resistant epilepsy. Nonetheless, there is a persistent debate regarding the short-term and long-term efficacy and safety of ANT-DBS. Thus we conducted a systematic review and meta-analysis. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we searched PubMed, Cochrane, Embase, and Web of Science for studies treating refractory epilepsy with ANT-DBS. Short-term analysis was considered for studies with a mean follow-up of 3 years or less. The following outcomes were assessed for data extraction: procedure responders and nonresponders, increased seizure frequency, complications, and procedure-related mortality. Of 650 studies, 25 fit our inclusion criteria, involving 427 patients. Previous surgical treatments have been reported in 214 patients (50.1%) and a median average baseline seizure frequency of 64.9 monthly seizures. In the short-term analysis, we observed a proportion of 67% (95% confidence interval [CI] 54%-79%) of responders and 33% (95% CI 21%-46%) of nonresponders. In addition, 4% (95% CI 0%-9%) of the patients presented increased seizure frequency. In the long-term analysis, we observed 72% (95% CI 66%-78%) responders and 27% (95% CI 21%-34%) nonresponders. Moreover, there was a 2% (95% CI 0%-5%) increase in seizure frequency. No procedure-related mortality was reported at any follow-up. ANT-DBS effectively treats refractory epilepsy, with lasting short-term and long-term benefits. It remains safe and efficient despite complications, showing no procedure-linked fatalities, high patient responsiveness, and minimal increased seizures. Consistent results over time and low morbidity/mortality rates emphasize its worth. Further research is necessary to diminish the discrepancy among results.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia Refractaria , Humanos , Estimulación Encefálica Profunda/métodos , Epilepsia Refractaria/terapia , Resultado del Tratamiento
15.
Epilepsia ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837755

RESUMEN

OBJECTIVE: Short-term outcomes of deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) were reported for people with drug-resistant focal epilepsy (PwE). Because long-term data are still scarce, the Medtronic Registry for Epilepsy (MORE) evaluated clinical routine application of ANT-DBS. METHODS: In this multicenter registry, PwE with ANT-DBS were followed up for safety, efficacy, and battery longevity. Follow-up ended after 5 years or upon study closure. Clinical characteristics and stimulation settings were compared between PwE with no benefit, improvers, and responders, that is, PwE with average monthly seizure frequency reduction rates of ≥50%. RESULTS: Of 170 eligible PwE, 104, 62, and 49 completed the 3-, 4-, and 5-year follow-up, respectively. Most discontinuations (68%) were due to planned study closure as follow-up beyond 2 years was optional. The 5-year follow-up cohort had a median seizure frequency reduction from 16 per month at baseline to 7.9 per month at 5-year follow-up (p < .001), with most-pronounced effects on focal-to-bilateral tonic-clonic seizures (n = 15, 77% reduction, p = .008). At last follow-up (median 3.5 years), 41% (69/170) of PwE were responders. Unifocal epilepsy (p = .035) and a negative history of epilepsy surgery (p = .002) were associated with larger average monthly seizure frequency reductions. Stimulation settings did not differ between response groups. In 179 implanted PwE, DBS-related adverse events (AEs, n = 225) and serious AEs (n = 75) included deterioration in epilepsy or seizure frequency/severity/type (33; 14 serious), memory/cognitive impairment (29; 3 serious), and depression (13; 4 serious). Five deaths occurred (none were ANT-DBS related). Most AEs (76.3%) manifested within the first 2 years after implantation. Activa PC depletion (n = 37) occurred on average after 45 months. SIGNIFICANCE: MORE provides further evidence for the long-term application of ANT-DBS in clinical routine practice. Although clinical benefits increased over time, side effects occurred mainly during the first 2 years. Identified outcome modifiers can help inform PwE selection and management.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38613674

RESUMEN

Device aided therapies (DAT) comprising the intrajejunal administration of levodopa/carbidopa intestinal gel (LCIG) and levodopa/carbidopa/entacapone intestinal gel (LECIG), the continuous subcutaneous application of foslevodopa/foscarbidopa or apomorphine infusion (CSAI) and deep brain stimulation (DBS) are used to treat Parkinson's disease with insufficient symptom alleviation under intensified pharmacotherapy. These DAT significantly differ in their efficacy profiles, indication, invasiveness, contraindications, and potential side effects. Usually, the evaluation of all these procedures is conducted simultaneously at the same point in time. However, as disease progression and symptom burden is extremely heterogeneous, clinical experience shows that patients reach the individual milestones for a certain therapy at different points in their disease course. Therefore, advocating for an individualized therapy evaluation for each DAT, requiring an ongoing evaluation. This necessitates that, during each consultation, the current symptomatology should be analyzed, and the potential suitability for a DAT be assessed. This work represents a critical interdisciplinary appraisal of these therapies in terms of their individual profiles and compares these DAT regarding contraindications, periprocedural considerations as well as their efficacy regarding motor- and non-motor deficits, supporting a personalized approach.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38684577

RESUMEN

The impact of STN-DBS on NMS remains rather as an underestimated topic. Besides, the significance of NMSs in QOL indexes of PD subjects with STN-DBS is unknown. We primarily aimed to evaluate the NMSs and their significance in QOL indexes in PD subjects comparatively with and without STN-DBS therapy. We enrolled all consecutive PD subjects with and without STN-DBS who applied to our movement disorders outpatient clinics between January/2023 and September/2023. We performed comprehensive assessments of the motor and nonmotor features including the clinical scales of Movement Disorder Society-sponsored revision of the MDS-UPDRS, NMSS, HAM-A, HAM-D, and the PDQ-39. Overall, 48 PD subjects with STN-DBS and 161 without STN-DBS treatment were included. The comparative analyses revealed that the sub-scores of the MDS-UPDRS-2, -3 and -4 were higher in the STN-DBS group. However, the MDS-UDPRS-1 and the total scores of the NMSS were similar between groups. Among eight subitems of the NMSS, only, the sub scores of the mood/cognition and the gastrointestinal tract differed. Remarkably, the significant correlations between the scores of the QOL and the NMSS scores in the STN-DBS (-) group, did not persist within the STN-DBS group. Remarkably, the correlations between the NMSS and PQQ-39 disappeared for most of the sub scores within the STN-DBS group. We found indirect evidence regarding the benefit of STN-DBS therapy on NMSs in our cross-sectional study. Besides, we found weaker impact of NMSs in QOL indexes in PD subjects with STN-DBS therapy.

18.
Clin Chem Lab Med ; 62(5): 881-890, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999931

RESUMEN

OBJECTIVES: Blood microsampling, particularly dried blood spots (DBSs), is an attractive minimally-invasive approach that is well suited for home sampling and predictive medicine associated with longitudinal follow-up of the elderly. However, in vitro diagnostic quantification of biomarkers from DBS poses a major challenge. Clinical mass spectrometry can reliably quantify blood proteins in various research projects. Our goal here was to use mass spectrometry of DBS in a real-world clinical setting and compared it to the standard immunoassay method. We also sought to correlate DBS mass spectrometry measurements with clinical indices. METHODS: A clinical trial of diagnostic equivalence was conducted to compare conventional venous samples quantified by immunoassay and DBSs quantified by mass spectrometry in an elderly population. We assayed three protein biomarkers of nutritional and inflammatory status: prealbumin (transthyretin), C-reactive protein, and transferrin. RESULTS: The analysis of DBSs showed satisfactory variability and low detection limits. Statistical analysis confirmed that the two methods give comparable results at clinical levels of accuracy. In conclusion, we demonstrated, in a real-life setting, that DBSs can be used to measure prealbumin, CRP and transferrin, which are commonly used markers of nutritional status and inflammation in the elderly. However, there was no correlation with patient frailty for these proteins. CONCLUSIONS: Early detection and regular monitoring of nutritional and inflammatory problems using DBS appear to be clinically feasible. This could help resolve major public health challenges in the elderly for whom frailty leads to serious risks of health complications.


Asunto(s)
Fragilidad , Prealbúmina , Anciano , Humanos , Espectrometría de Masas en Tándem/métodos , Biomarcadores , Pruebas con Sangre Seca/métodos , Transferrinas
19.
Brain ; 146(10): 4174-4190, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37141283

RESUMEN

Tourette syndrome is a childhood-onset neuropsychiatric disorder characterized by intrusive motor and vocal tics that can lead to self-injury and deleterious mental health complications. While dysfunction in striatal dopamine neurotransmission has been proposed to underlie tic behaviour, evidence is scarce and inconclusive. Deep brain stimulation (DBS) of the thalamic centromedian parafascicular complex (CMPf), an approved surgical interventive treatment for medical refractory Tourette syndrome, may reduce tics by affecting striatal dopamine release. Here, we use electrophysiology, electrochemistry, optogenetics, pharmacological treatments and behavioural measurements to mechanistically examine how thalamic DBS modulates synaptic and tonic dopamine activity in the dorsomedial striatum. Previous studies demonstrated focal disruption of GABAergic transmission in the dorsolateral striatum of rats led to repetitive motor tics recapitulating the major symptom of Tourette syndrome. We employed this model under light anaesthesia and found CMPf DBS evoked synaptic dopamine release and elevated tonic dopamine levels via striatal cholinergic interneurons while concomitantly reducing motor tic behaviour. The improvement in tic behaviour was found to be mediated by D2 receptor activation as blocking this receptor prevented the therapeutic response. Our results demonstrate that release of striatal dopamine mediates the therapeutic effects of CMPf DBS and points to striatal dopamine dysfunction as a driver for motor tics in the pathoneurophysiology of Tourette syndrome.


Asunto(s)
Estimulación Encefálica Profunda , Tics , Síndrome de Tourette , Humanos , Ratas , Animales , Niño , Tics/terapia , Síndrome de Tourette/terapia , Dopamina , Estimulación Encefálica Profunda/métodos , Tálamo
20.
Brain ; 146(1): 91-108, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35136942

RESUMEN

Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation-a more immediately translatable approach-targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency and pulse width, resulting in over 1000 different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in MATLAB with an Expected Improvement Plus acquisition function. We examined three different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Regardless of experimental setup, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia del Lóbulo Temporal , Animales , Estimulación Encefálica Profunda/métodos , Teorema de Bayes , Estimulación Eléctrica , Convulsiones/terapia , Cerebelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA