Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2313192121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386706

RESUMEN

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.


Asunto(s)
Aminoácidos , Electricidad , Catálisis , Escherichia coli , Conformación Molecular , Tetrahidrofolato Deshidrogenasa
2.
Mol Cell Proteomics ; 23(3): 100718, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224738

RESUMEN

A functional role has been ascribed to the human dihydrofolate reductase 2 (DHFR2) gene based on the enzymatic activity of recombinant versions of the predicted translated protein. However, the in vivo function is still unclear. The high amino acid sequence identity (92%) between DHFR2 and its parental homolog, DHFR, makes analysis of the endogenous protein challenging. This paper describes a targeted mass spectrometry proteomics approach in several human cell lines and tissue types to identify DHFR2-specific peptides as evidence of its translation. We show definitive evidence that the DHFR2 activity in the mitochondria is in fact mediated by DHFR, and not DHFR2. Analysis of Ribo-seq data and an experimental assessment of ribosome association using a sucrose cushion showed that the two main Ensembl annotated mRNA isoforms of DHFR2, 201 and 202, are differentially associated with the ribosome. This indicates a functional role at both the RNA and protein level. However, we were unable to detect DHFR2 protein at a detectable level in most cell types examined despite various RNA isoforms of DHFR2 being relatively abundant. We did detect a DHFR2-specific peptide in embryonic heart, indicating that the protein may have a specific role during embryogenesis. We propose that the main functionality of the DHFR2 gene in adult cells is likely to arise at the RNA level.


Asunto(s)
ARN , Tetrahidrofolato Deshidrogenasa , Humanos , Línea Celular , Péptidos/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
3.
J Cell Biochem ; 125(3): e30533, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38345373

RESUMEN

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Preparaciones Farmacéuticas , Reposicionamiento de Medicamentos , Malaria/tratamiento farmacológico , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Resistencia a Medicamentos , Ácido Fólico
4.
Antimicrob Agents Chemother ; : e0042324, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136469

RESUMEN

Babesia and Plasmodium pathogens, the causative agents of babesiosis and malaria, are vector-borne intraerythrocytic protozoan parasites, posing significant threats to both human and animal health. The widespread resistance exhibited by these pathogens to various classes of antiparasitic drugs underscores the need for the development of novel and more effective therapeutic strategies. Antifolates have long been recognized as attractive antiparasitic drugs as they target the folate pathway, which is essential for the biosynthesis of purines and pyrimidines, and thus is vital for the survival and proliferation of protozoan parasites. More efficacious and safer analogs within this class are needed to overcome challenges due to resistance to commonly used antifolates, such as pyrimethamine, and to address liabilities associated with the dihydrotriazines, WR99210 and JPC-2067. Here, we utilized an in vitro culture condition suitable for the continuous propagation of Babesia duncani, Babesia divergens, Babesia MO1, and Plasmodium falciparum in human erythrocytes to screen a library of 50 dihydrotriazines and 29 biguanides for their efficacy in vitro and compared their potency and therapeutic indices across different species and isolates. We identified nine analogs that inhibit the growth of all species, including the P. falciparum pyrimethamine-resistant strain HB3, with IC50 values below 10 nM, and display excellent in vitro therapeutic indices. These compounds hold substantial promise as lead antifolates for further development as broad-spectrum antiparasitic drugs.

5.
Antimicrob Agents Chemother ; 68(1): e0071723, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38018963

RESUMEN

The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.


Asunto(s)
Antagonistas del Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Antagonistas del Ácido Fólico/farmacología , Trimetoprim/farmacología , Mycobacterium tuberculosis/metabolismo , Inhibidores Enzimáticos/farmacología , Ácido Fólico , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico
6.
Bioorg Chem ; 148: 107401, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38749115

RESUMEN

New thienopyrimidine derivatives 2-16 have been synthesized and their in vitro cytotoxicity was evaluated against five different human cancer cell lines HCT-116, Hela, MDA-MB-231, MCF7 and PC3. Compounds 6e, 7a, 7b, 7d, 10c and 10e displayed the highest antitumor activity against all tested cell lines compared to Doxorubicin. Enzyme inhibition assay revealed that compounds 6e and 10e showed high inhibitory activity against EGFR-TK, with IC50 values of 0.133 and 0.151 µM, compared to Olmutinib (IC50 = 0.028 µM); while the highest DHFR inhibitory activity was shown by compounds 7d and 10e with IC50 values of 0.462 and 0.541 µM, compared to Methotrexate (IC50 = 0.117 µM). Cell cycle analysis following a flow cytometric study using colorectal HCT-116 cancer cell line proved that compound 6e induced cell cycle arrest in G0-G1 phase, while compound 10e arrested the cell cycle at both G0-G1 and S phases. Additionally, both compounds (6e and 10e) were potently able to induce apoptosis in HCT-116 cell line. Docking results of compounds 6e and 10e into the pocket of EGFR active site showed their similar main binding features with Olmutinib, while compounds 7d and 10e showed only moderate fitting into DHFR compared to methotrexate. In silico studies revealed that most of the tested compounds obeyed Lipinski's RO5 and showed positive drug likeness scores.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Antagonistas del Ácido Fólico , Simulación del Acoplamiento Molecular , Pirimidinas , Tetrahidrofolato Deshidrogenasa , Humanos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Tetrahidrofolato Deshidrogenasa/metabolismo , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química
7.
Bioorg Chem ; 150: 107538, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38861913

RESUMEN

New imidazo[2,1-b]thiazole analogs were designed, synthesized, and biologically evaluated as anticancer agents. In vitro biological evaluation of the anticancer properties of the compounds was performed against different cancer cell lines. Compounds 23 and 39 showed remarkable broad -spectrum cytotoxic potency on most of the tested cell lines. Compounds 23 and 39 exhibited potent activity against the MCF-7 breast cancer cell line, with IC50 values of 1.81 and 4.95 µM, respectively, compared to DOX and SOR (IC50 values of 4.17 and 7.26 µM, respectively). An enzyme inhibition assay was carried out to clarify the possible mode of action of the tested compounds. Compounds 23 and 39 were identified as possible EGFR, HER-2, and DHFR inhibitors. Cell cycle arrest results indicated that compound 23 caused cell cycle arrest at the G0/G1 phase in the MCF-7 cells and at the G2/M phase in the Hep G2 cells. Compound 39 induced cell cycle arrest at the G2/M phase in Hela cells. In vivo testing of the anticancer activity of the two most promising molecules in this study was conducted, and the results indicated that they possess considerable in vivo anticancer activity in mice. Data obtained from the molecular modeling simulation study were consistent with the biological evaluation results.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Antagonistas del Ácido Fólico , Receptor ErbB-2 , Tetrahidrofolato Deshidrogenasa , Tiazoles , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/metabolismo , Relación Estructura-Actividad , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Proliferación Celular/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Estructura Molecular , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/química , Relación Dosis-Respuesta a Droga , Ratones , Imidazoles/química , Imidazoles/farmacología , Imidazoles/síntesis química , Modelos Moleculares , Línea Celular Tumoral
8.
Xenobiotica ; 54(2): 95-105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381003

RESUMEN

Polymorphisms in genes coding folate-metabolising enzymes might alter the pharmacokinetics and sensitivity for methotrexate "MTX".The aim of the study aimed to investigate the influence of MTHFR C677T, DHFR19 Ins/del, GGH -401 C > T, and MTR A2756G polymorphisms on MTX toxicity and pharmacokinetics in Egyptian patients with Acute lymphoblastic leukaemia (ALL) or Non-Hodgkin lymphoma (NHL).Fifty adult Egyptian patients with ALL and NHL, treated with high dose MTX, were prospectively enrolled in the study. Clinical and biochemical data was collected objectively from medical records after each cycle of MTX. Plasma concentrations of MTX were measured after 72 h of initiation of infusion. Genotyping was done with a PCR-ARMS and PCR-RFLP assays.The MTHFR C677T T variants significantly increased the risk of leukopoenia, whereas the genotype MTHFR 677 C > T TT significantly associated with lymphocytopenia, thrombocytopenia, and anaemia. The genotype GGH-401 TT was significantly correlated with anaemia. Plasma MTX level was significantly higher in patients with MTR A2756G G variants.MTHFR polymorphism played the main role in MTX toxicities. The pharmacokinetics of MTX was affected by MTR polymorphism. GGH mutation was mainly concerned with anaemia. Pharmacogenetic testing are recommended to optimise MTX therapy.


Asunto(s)
Anemia , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Metotrexato/efectos adversos , Egipto , Polimorfismo de Nucleótido Simple , Linfoma/tratamiento farmacológico , Genotipo , Anemia/tratamiento farmacológico , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
9.
J Appl Toxicol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135265

RESUMEN

Cardiotoxicity is one of the most devastating complications of cancer treatment by methotrexate (MTX). The present study aimed to investigate the potential anti-cardiotoxic efficacy of taurine (Tau) and enzymatically modified isoquercitrin (EMIQ) alone or combined against MTX-induced cardiotoxicity in adult male rats. A total of 36 rats were randomly divided into six groups (six animals each): control, MTX (a single i.p. dose of 20 mg/kg), EMIQ + MTX (26 mg/kg of EMIQ, p.o. for 16 days), Tau + MTX (500 mg/kg of Tau, p.o. for 16 days), EMIQ + Tau + MTX at the same previous doses, and (EMIQ + Tau)½ + MTX. MTX reduced the percentage of body weight change, the expression of dihydrofolate reductase (DHFR) and folypolyglutamyl synthetase (FPGS), the cleaved tumor necrosis factor alpha (TNF-α) level in the cardiac tissue, and the elevated serum TNF-α level. MTX extensively deteriorated the electrocardiography (ECG), inducing tachycardia with shortening of the time intervals between successive heartbeats (R-R interval), associated with elongation of ventricular depolarization (QRS interval), and the corrected total time for ventricular de- and repolarization (QTc) duration. Treatment with MTX resulted in a significant reduction in atrial depolarization (P amplitude) and rapid repolarization (T amplitude) and a significant elevation in plateau phase (ST height). MTX treatment resulted in swelling of cardiomyocytes with extensive vacuolization of sarcoplasm with numerous variably sized vacuoles in addition to apoptotic cells. Tau and EMIQ protected against MTX-induced deteriorations in the conductivity and rhythmicity of the heart through antioxidative, anti-inflammatory, and antiapoptotic activities. Treatment with tau and EMIQ combined at high or low doses offered superior protection to the heart than using each agent alone.

10.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161270

RESUMEN

Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of ∼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420 Thus, we hypothesized that TA-C may be metabolized by Mtb F420-dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active "prodrug," into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.


Asunto(s)
Antagonistas del Ácido Fólico/farmacología , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Cumarinas/química , Cumarinas/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Ácido Fólico/metabolismo , Antagonistas del Ácido Fólico/química , Genes Bacterianos , Mutación con Pérdida de Función/genética , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Oxidación-Reducción , Tetrahidrofolato Deshidrogenasa/genética
11.
Chem Biodivers ; 21(6): e202400200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570192

RESUMEN

In order to develop novel antimicrobial agents, we prepared quinoline bearing pyrimidine analogues 2-7, 8 a-d and 9 a-d and their structures were elucidated by spectroscopic techniques. Furthermore, our second aim was to predict the interactions between the active compounds and enzymes (DNA gyrase and DHFR). In this work, fourteen pyrimido[4,5-b]quinoline derivatives were prepared and assessed for their antimicrobial potential by estimating zone of inhibition. All the screened candidates displayed antibacterial potential with zone of inhibition range of 9-24 mm compared with ampicillin (20-25 mm) as a reference drug. Moreover, the target derivatives 2 (ZI=16), 9 c (ZI=17 mm) and 9 d (ZI=16 mm) recorded higher antifungal activity against C. albicans to that exhibited by the antifungal drug amphotericin B (ZI=15 mm). Finally, the most potent pyrimidoquinoline compounds (2, 3, 8 c, 8 d, 9 c and 9 d) were docked inside DHFR and DNA gyrase active sites and they recorded excellent fitting within the active regions of DNA gyrase and DHFR. These outcomes revealed us that compounds (2, 3, 8 c, 8 d, 9 c and 9 d) could be lead compounds to discover novel antibacterial candidates.


Asunto(s)
Antibacterianos , Candida albicans , Girasa de ADN , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Quinolinas , Tetrahidrofolato Deshidrogenasa , Quinolinas/química , Quinolinas/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Candida albicans/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , Estructura Molecular , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/síntesis química , Relación Dosis-Respuesta a Droga
12.
Drug Dev Res ; 85(5): e22233, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030842

RESUMEN

Malaria is an intracellular protozoan parasitic disease caused by Plasmodium species with significant morbidity and mortality in endemic regions. The complex lifecycle of the parasite and the emergence of drug-resistant Plasmodium falciparum have hampered the efficacy of current anti-malarial agents. To circumvent this situation, the present study attempts to demonstrate the blood-stage anti-plasmodial action of 26 hybrid compounds containing the three privileged bioactive scaffolds (sulfonamide, chalcone, and nitro group) with synergistic and multitarget action. These three parent scaffolds exhibit divergent activities, such as antibacterial, anti-malarial, anti-fungal, anti-inflammatory, and anticancer. All the synthesised compounds were characterised using various spectroscopic techniques. The in vitro blood-stage inhibitory activity of 26 hybrid compounds was evaluated against mixed-stage culture (asynchronize) of human malarial parasite P. falciparum, Pf 3D7 at different concentrations ranging from 25.0 µg/mL to 0.78 µg/mL using SYBR 1 green assay, with IC50 values determined after 48 h of treatment based on the drug-response curves. Two potent compounds (11 and 10), with 2-Br and 2,6-diCl substitutions, showed pronounced activity with IC50 values of 5.4 µg/mL and 5.6 µg/mL, whereas others displayed varied activity with IC50 values ranging from 7.0 µg/mL to 22.0 µg/mL. Both 11 and 10 showed greater susceptibility towards mature-stage trophozoites than ring-stage parasites. The hemolytic and in vitro cytotoxicity assays revealed that compounds 11 and 10 did not cause any toxic effects on host red blood cells (uninfected), human-derived Mo7e cells, and murine-derived BA/F3 cells. The in vitro observations are consistent with the in silico studies using P. falciparum-dihydrofolate reductase, where 11 and 10 showed a binding affinity of -10.4 Kcal/mol. This is the first report of the hybrid scaffold, 4-nitrobenzenesulfonamide chalcones, demonstrating its potential as an anti-plasmodial agent.


Asunto(s)
Antimaláricos , Chalconas , Diseño de Fármacos , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Humanos , Simulación del Acoplamiento Molecular , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Simulación por Computador , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo
13.
Antimicrob Agents Chemother ; 67(4): e0160122, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36916920

RESUMEN

Sulfadoxine-pyrimethamine (SP) is used for prevention of malaria in pregnant women in Angola. We sequenced the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes, implicated in SP resistance, in samples collected during a 2019 study of artemisinin-based combination therapy efficacy in Benguela, Lunda Sul, and Zaire provinces. A total of 90 day 0 and day of failure samples were individually sequenced, while 508 day 0 samples from participants without recurrent parasitemia were pooled after DNA extraction into 61 pools. The N51I, C59R, and S108N pfdhfr mutations and A437G pfdhps mutations were present at high proportions in all provinces (weighted allele frequencies, 62% to 100%). The K540E pfdhps mutation was present at lower proportions (10% to 14%). The A581G pfdhps mutation was only observed in Zaire, at a 4.6% estimated prevalence. The I431V and A613S mutations were also only observed in Zaire, at a prevalence of 2.8% to 2.9%. The most common (27% to 66%) reconstructed haplotype in all three provinces was the canonical quadruple pfdhfr pfdhps mutant. The canonical quintuple mutant was absent in Lunda Sul and Benguela and present in 7.9% of samples in Zaire. A single canonical sextuple (2.6%) mutant was observed in Zaire Province. Proportions of the pfdhps K540E and A581G mutations were well below the World Health Organization thresholds for meaningful SP resistance (prevalence of 95% for K540E and 10% for A581G). Samples from therapeutic efficacy studies represent a convenient source of samples for monitoring SP resistance markers.


Asunto(s)
Antimaláricos , Malaria Falciparum , Niño , Femenino , Humanos , Embarazo , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Angola , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Combinación de Medicamentos , Tetrahidrofolato Deshidrogenasa/genética , Resistencia a Medicamentos/genética
14.
Mol Syst Biol ; 18(9): e10490, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36124745

RESUMEN

Dose-response relationships are a general concept for quantitatively describing biological systems across multiple scales, from the molecular to the whole-cell level. A clinically relevant example is the bacterial growth response to antibiotics, which is routinely characterized by dose-response curves. The shape of the dose-response curve varies drastically between antibiotics and plays a key role in treatment, drug interactions, and resistance evolution. However, the mechanisms shaping the dose-response curve remain largely unclear. Here, we show in Escherichia coli that the distinctively shallow dose-response curve of the antibiotic trimethoprim is caused by a negative growth-mediated feedback loop: Trimethoprim slows growth, which in turn weakens the effect of this antibiotic. At the molecular level, this feedback is caused by the upregulation of the drug target dihydrofolate reductase (FolA/DHFR). We show that this upregulation is not a specific response to trimethoprim but follows a universal trend line that depends primarily on the growth rate, irrespective of its cause. Rewiring the feedback loop alters the dose-response curve in a predictable manner, which we corroborate using a mathematical model of cellular resource allocation and growth. Our results indicate that growth-mediated feedback loops may shape drug responses more generally and could be exploited to design evolutionary traps that enable selection against drug resistance.


Asunto(s)
Antibacterianos , Tetrahidrofolato Deshidrogenasa , Antibacterianos/farmacología , Escherichia coli/genética , Retroalimentación , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/farmacología , Trimetoprim/farmacología
15.
Malar J ; 22(1): 213, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474966

RESUMEN

BACKGROUND: Artemisinin-based combinations therapy (ACT) is the current frontline curative therapy for uncomplicated malaria in Burkina Faso. Sulfadoxine-pyrimethamine (SP) is used for the preventive treatment of pregnant women (IPTp), while SP plus amodiaquine (SP-AQ) is recommended for children under five in seasonal malaria chemoprevention (SMC). This study aimed to assess the proportions of mutations in the P. falciparum multidrug-resistance 1 (Pfmdr1), P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum dihydrofolate reductase (pfdhfr), and P. falciparum dihydropteroate synthase (pfdhps), genes from isolates collected during household surveys in Burkina Faso. METHODS: Dried blood spots from Plasmodium falciparum-positive cases at three sites (Orodara, Gaoua, and Banfora) collected during the peak of transmission were analysed for mutations in Pfcrt (codons 72-76, 93, 97, 145, 218, 343, 350 and 353), Pfmdr-1 (codons 86, 184, 1034, 1042 and 1246) dhfr (codons 51, 59, 108, 164) and dhps (at codons 431, 436, 437, 540, 581, 613) genes using deep sequencing of multiplexed Polymerase chaine reaction (PCR) amplicons. RESULTS: Of the 377 samples analysed, 346 (91.7%), 369 (97.9%), 368 (97.6%), and 374 (99.2%) were successfully sequenced for Pfcrt, Pfmdr-1, dhfr, and dhps, respectively. Most of the samples had a Pfcrt wild-type allele (89.3%). The 76T mutation was below 10%. The most frequent Pfmdr-1 mutation was detected at codon 184 (Y > F, 30.9%). The single mutant genotype (NFSND) predominated (66.7%), followed by the wild-type genotype (NYSND, 30.4%). The highest dhfr mutations were observed at codon 59R (69.8%), followed by codons 51I (66.6%) and 108 N (14.7%). The double mutant genotype (ACIRSI) predominated (52.4%). For mutation in the dhps gene, the highest frequency was observed at codon 437 K (89.3%), followed by codons 436 A (61.2%), and 613 S (14.4%). The double mutant genotype (IAKKAA) and the single mutant genotype (ISKKAA) were predominant (37.7% and 37.2%, respectively). The most frequent dhfr/dhps haplotypes were the triple mutant ACIRSI/IAKKAA (23%), the wild-type ACNCSI/ISKKAA (19%) and the double mutant ACIRSI/ISKKAA (14%). A septuple mutant ACIRNI/VAKKGA was observed in 2 isolates from Gaoua (0.5%). CONCLUSION: The efficacy of ACT partner drugs and drugs used in IPTp and SMC does not appear to be affected by the low proportion of highly resistant mutants observed in this study. Continued monitoring, including molecular surveillance, is critical for decision-making on effective treatment policy in Burkina Faso.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Niño , Femenino , Embarazo , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Burkina Faso , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Mutación , Tetrahidrofolato Deshidrogenasa/genética , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Codón
16.
Bioorg Med Chem Lett ; 87: 129285, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054758

RESUMEN

A new series of N-[4-(2-substituted hydrazine-1-carbonyl)thiazole-2-yl]acetamides was synthesized and evaluated in vitro against six human cell lines as antitumor agents. Compounds 20, 21 and 22 showed remarkable inhibition to HeLa (IC50 values of 1.67, 3.81, 7.92 µM) and MCF-7 (IC50 values of 4.87, 5.81, 8.36 µM, respectively) cell growth with high selectivity indices and safety profiles. Compound 20 showed significant decreases in both tumor volume and body weight gain compared to vehicle control, in the solid tumor animal model of Ehrlich ascites carcinoma (EAC) with recovered caspase-3 immuno-expression. Flow cytometry cell analysis showed that 20 exerts anti-proliferative activity in mutant Hela and MCF-7 cell lines through arresting the cell growth at the G1/S phase producing cell death via apoptosis rather than necrosis. To explain the antitumor mode of action of the most active compounds, EGFR-TK and DHFR inhibition assays were carried out. Compound 21 conveyed dual EGFR/DHFR inhibition with IC50 0.143 (EGFR) and 0.159 (DHFR) µM. Compound 20 showed DHFR inhibition with IC50 0.262 µM. Compound 22 exhibited the best EGFR inhibitory efficacy with IC50 0.131 µM. Molecular modelling study revealed that 21 and 22 have binding interactions with EGFR amino acid residues Lys745 and Asp855. Compounds 20 and 21 showed affinity toward DHFR amino acid residues Asn64, Ser59 and Phe31. The ADMET profile and Lipinski's rule of five calculated for these compounds were acceptable. Compounds 20, 21 and 22 could be regarded as promising prototype antitumor agents for further optimization.


Asunto(s)
Acetamidas , Antineoplásicos , Animales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Acetamidas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Proliferación Celular , Apoptosis , Células HeLa , Receptores ErbB , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología
17.
J Biochem Mol Toxicol ; 37(4): e23290, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36541419

RESUMEN

In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l-glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (-537.96 kcal/mol) and Asp54, Phe116 (-618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 µM and 14.72 µM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Antimaláricos/farmacología , Antimaláricos/química , Ácido Glutámico , Plasmodium falciparum , Antagonistas del Ácido Fólico/farmacología , Antagonistas del Ácido Fólico/química , Cloroquina/farmacología , Triazinas/farmacología , Triazinas/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
18.
Bioorg Chem ; 141: 106874, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769524

RESUMEN

New series of substituted 2-alkoxycyanopyridine derivatives were synthesized and evaluated for their in vitro and in vivo anticancer activities. Comparing the evaluated activities against cancer cell lines to the broad-spectrum anticancer doxorubicin, and the kinase inhibitor sorafenib, compounds 3a, 4b, 4c, 7a, and 8d demonstrated superior anticancer efficacy with elevated safety profiles and selectivity indices, particularly against MCF7 breast cancer. For exploration of their mechanism of action, assays for inhibition of EGFR, HER2 kinase, and DHFR were performed. The promising synthesized compounds exhibited potent dual kinase EGFR/HER2 inhibitory activity with IC50values of 0.248/0.156 µM for 4b and 0.138/0.092 µM for 4c. Additionally, with IC50 values of 0.138 and 0.193 M, respectively, 4b and 4c had the greatest DHFR inhibitory activity that was comparable to methotrexate. In the MCF7 breast cancer cell line, they caused arrest at the S phase of the cell cycle and exhibited apoptosis induction activity. With restored caspase-3 immunoexpression, the anti-breast cancer assay performed in vivo of 4b and 4c demonstrated a substantial decrease in tumor volume. Results from molecular modeling were in agreement with biological assays proving the importance of the 3-caynopyridine, two substituted phenyl rings attached to central pyridine ring, and propoxy side chain moieties for binding with the receptors. As 4c works by inhibiting both EGFR/HER2 kinase, DHFR enzymes, in addition to cellular apoptosis, it could be viewed as a model of compounds possessing a multi-targeting anticancer activity. Collectively, compounds 4b and 4c might represent prototypes for further development as anticancer molecules.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Estructura Molecular , Relación Estructura-Actividad , Receptores ErbB , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Apoptosis , Inhibidores de Proteínas Quinasas , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular , Línea Celular Tumoral , Simulación del Acoplamiento Molecular
19.
J Enzyme Inhib Med Chem ; 38(1): 2203879, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37080777

RESUMEN

A novel series of multifunctional pyrazolo[3,4-d]pyrimidine-based glutamate analogs (6a-l and 7a,b) have been designed and synthesized as antifolate anticancer agents. Among the tested compounds, 6i exhibited the most potent anti-proliferative activity towards NSCLC, CNS, Ovarian, Prostate, Colon, Melanoma, Breast, and Renal cancers with good to weak cytostatic activity and non-lethal actions. 6i demonstrated higher selectivity for cancer than normal cells. 6i could significantly increase the accumulation of S-phase cells during the cell cycle distribution of cancer cells with high potency in the induction of apoptosis. The results unveiled that 6i probably acts through dual inhibition of DHFR and TS enzymes (IC50 = 2.41 and 8.88 µM, correspondingly). Docking studies of 6i displayed that N1-p-bromophenyl and C3-Methyl groups participate in substantial hydrophobic interactions. The drug-likeness features inferred that 6i met the acceptance criteria of Pfizer. Taking together, 6i could be a promising prototype for further optimization as an effective anticancer drug.


Asunto(s)
Antineoplásicos , Antagonistas del Ácido Fólico , Neoplasias , Humanos , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Pirimidinas/química , Antineoplásicos/química , Estructura Molecular , Proliferación Celular , Diseño de Fármacos
20.
J Enzyme Inhib Med Chem ; 38(1): 203-215, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36382444

RESUMEN

The present study aimed to investigate the antitumor effect of simultaneous inhibition of dihydrofolate reductase (DHFR) enzyme. We designed some novel pyrazolo[3,4-d]pyrimidines bearing different amino acid conjugates as efficient antifolate agents attributable to their structural similarity with methotrexate (MTX) and MTX-related antifolates. All compounds were tested to screen their enzymatic inhibition against DHFR compared with the reference drug MTX and for their in vitro antitumor cytotoxicity against six MTX-resistant cancer cell lines. The flow cytometry indicated that the most potent compound 7f arrested MCF-7 cells in the S-phase and induced apoptosis. Western blot for visualisation proved the ability of compound 7f to induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to diminish the expression of antiapoptotic Bcl-2 protein. Molecular modelling studies concluded that compound 7f displayed better binding energy than that of the normal ligand MTX. HIGHLIGHTSNew pyrazolo[3,4-d]pyrimidine derivatives 7a-m which are structurally similar to the classical methotrexate (MTX) and MTX-related antifolates were synthesised as antitumor agents.Novel N-acyl amino acid compound 7f exhibited marked DHFR inhibition activity that are parralel to both the molecular docking results and cytotoxic activity.Compound 7f could induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to diminish the expression of antiapoptotic Bcl-2 protein.All prepared compounds obey Lipinski rule of five except compound 7f.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antagonistas del Ácido Fólico , Humanos , Femenino , Pirimidinas/química , Proteína X Asociada a bcl-2 , Metotrexato/farmacología , Simulación del Acoplamiento Molecular , Ensayos de Selección de Medicamentos Antitumorales , Aminoácidos , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Caspasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA