Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 77-101, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569517

RESUMEN

DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.


Asunto(s)
ADN/genética , Edición Génica/métodos , Técnicas de Transferencia de Gen , Genes Sintéticos , Ingeniería Genética/métodos , Genoma , Sistemas CRISPR-Cas , ADN/química , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Oligonucleótidos/síntesis química , Oligonucleótidos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/genética , Esferoplastos/metabolismo
2.
Cell ; 176(1-2): 144-153.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554877

RESUMEN

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.


Asunto(s)
5-Metilcitosina/análogos & derivados , Reparación del ADN/fisiología , ADN de Cadena Simple/fisiología , 5-Metilcitosina/metabolismo , Ácido Apurínico/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Escherichia coli/metabolismo , Polinucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
3.
Cell ; 170(3): 534-547.e23, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28753428

RESUMEN

Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Mutación , Neoplasias/genética , Desaminasas APOBEC , Citidina Desaminasa , Citosina Desaminasa/genética , ADN Polimerasa Dirigida por ADN/genética , Humanos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Melanoma/genética , Mutagénesis , Fumar/efectos adversos , Rayos Ultravioleta/efectos adversos
4.
Mol Cell ; 83(20): 3596-3607, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37716351

RESUMEN

Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.


Asunto(s)
Reparación del ADN , Replicación del ADN , Humanos , Fase S/genética , Mitosis/genética , Replicación Viral
5.
Mol Cell ; 83(1): 43-56.e10, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608669

RESUMEN

Endogenous and exogenous agents generate DNA-protein crosslinks (DPCs), whose replication-dependent degradation by the SPRTN protease suppresses aging and liver cancer. SPRTN is activated after the replicative CMG helicase bypasses a DPC and polymerase extends the nascent strand to the adduct. Here, we identify a role for the 5'-to-3' helicase FANCJ in DPC repair. In addition to supporting CMG bypass, FANCJ is essential for SPRTN activation. FANCJ binds ssDNA downstream of the DPC and uses its ATPase activity to unfold the protein adduct, which exposes the underlying DNA and enables cleavage of the adduct. FANCJ-dependent DPC unfolding is also essential for translesion DNA synthesis past DPCs that cannot be degraded. In summary, our results show that helicase-mediated protein unfolding enables multiple events in DPC repair.


Asunto(s)
Daño del ADN , Proteínas de Unión al ADN , Desplegamiento Proteico , ADN/genética , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética
6.
Annu Rev Genet ; 56: 207-228, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36028228

RESUMEN

DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Neoplasias , Animales , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Reparación del ADN por Unión de Extremidades/genética , ADN , Daño del ADN/genética , Neoplasias/genética , ADN Polimerasa theta
7.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002001

RESUMEN

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Asunto(s)
Replicación del ADN , Mitosis , Afidicolina/farmacología , Proteína BRCA2/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Daño del ADN , Inestabilidad Genómica , Humanos , Mitosis/genética
8.
Mol Cell ; 82(18): 3366-3381.e9, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002000

RESUMEN

Oncogene activation during tumorigenesis promotes DNA replication stress (RS), which subsequently drives the formation of cancer-associated chromosomal rearrangements. Many episodes of physiological RS likely arise due to conflicts between the DNA replication and transcription machineries operating simultaneously at the same loci. One role of the RAD51 recombinase in human cells is to protect replication forks undergoing RS. Here, we have identified a key role for RAD51 in preventing transcription-replication conflicts (TRCs) from triggering replication fork breakage. The genomic regions most affected by RAD51 deficiency are characterized by being replicated and transcribed in early S-phase and show significant overlap with loci prone to cancer-associated amplification. Consistent with a role for RAD51 in protecting against transcription-replication conflicts, many of the adverse effects of RAD51 depletion are ameliorated by inhibiting early S-phase transcription. We propose a model whereby RAD51 suppresses fork breakage and subsequent inadvertent amplification of genomic loci prone to experiencing TRCs.


Asunto(s)
Replicación del ADN , Recombinasa Rad51 , Cromosomas/metabolismo , Humanos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Fase S/genética , Transcripción Genética
9.
EMBO J ; 43(7): 1273-1300, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448672

RESUMEN

MAGEA4 is a cancer-testis antigen primarily expressed in the testes but aberrantly overexpressed in several cancers. MAGEA4 interacts with the RING ubiquitin ligase RAD18 and activates trans-lesion DNA synthesis (TLS), potentially favouring tumour evolution. Here, we employed NMR and AlphaFold2 (AF) to elucidate the interaction mode between RAD18 and MAGEA4, and reveal that the RAD6-binding domain (R6BD) of RAD18 occupies a groove in the C-terminal winged-helix subdomain of MAGEA4. We found that MAGEA4 partially displaces RAD6 from the RAD18 R6BD and inhibits degradative RAD18 autoubiquitination, which could be countered by a competing peptide of the RAD18 R6BD. AlphaFold2 and cross-linking mass spectrometry (XL-MS) also revealed an evolutionary invariant intramolecular interaction between the catalytic RING and the DNA-binding SAP domains of RAD18, which is essential for PCNA mono-ubiquitination. Using interaction proteomics, we found that another Type-I MAGE, MAGE-C2, interacts with the RING ubiquitin ligase TRIM28 in a manner similar to the MAGEA4/RAD18 complex, suggesting that the MAGEA4 peptide-binding groove also serves as a ligase-binding cleft in other type-I MAGEs. Our data provide new insights into the mechanism and regulation of RAD18-mediated PCNA mono-ubiquitination.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Péptidos/metabolismo , Daño del ADN
10.
Proc Natl Acad Sci U S A ; 121(34): e2410164121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145927

RESUMEN

In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.


Asunto(s)
ADN , Microfluídica , ADN/biosíntesis , Microfluídica/métodos , Microfluídica/instrumentación , Análisis de Secuencia de ADN/métodos , Almacenamiento y Recuperación de la Información/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
11.
Genes Dev ; 33(19-20): 1397-1415, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31467087

RESUMEN

DNA repair by homologous recombination (HR) is essential for genomic integrity, tumor suppression, and the formation of gametes. HR uses DNA synthesis to repair lesions such as DNA double-strand breaks and stalled DNA replication forks, but despite having a good understanding of the steps leading to homology search and strand invasion, we know much less of the mechanisms that establish recombination-associated DNA polymerization. Here, we report that C17orf53/HROB is an OB-fold-containing factor involved in HR that acts by recruiting the MCM8-MCM9 helicase to sites of DNA damage to promote DNA synthesis. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells and display phenotypes consistent with a prophase I meiotic arrest. The HROB-MCM8-MCM9 pathway acts redundantly with the HELQ helicase, and cells lacking both HROB and HELQ have severely impaired HR, suggesting that they underpin two major routes for the completion of HR downstream from RAD51. The function of HROB in HR is reminiscent of that of gp59, which acts as the replicative helicase loader during bacteriophage T4 recombination-dependent DNA replication. We therefore propose that the loading of MCM8-MCM9 by HROB may similarly be a key step in the establishment of mammalian recombination-associated DNA synthesis.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Animales , Línea Celular , ADN Helicasas/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Infertilidad/genética , Masculino , Ratones Endogámicos C57BL , Eliminación de Secuencia , Células Sf9
12.
Genes Dev ; 33(19-20): 1293-1294, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31575675

RESUMEN

Homologous recombination (HR) is an important route for repairing DNA double-strand breaks (DSBs). The early stages of HR are well understood, but later stages remain mysterious. In this issue of Genes & Development, Hustedt and colleagues (pp. 1397-1415) reveal HROB as a new player in HR required for recruitment of the MCM8-9 complex, which is paralogous to the MCM2-7 replicative helicase. HROB functions closely with MCM8-9 to promote postsynaptic DNA repair synthesis. This study sheds valuable light on late events in HR and suggests that HROB may load MCM8-9 onto HR intermediates to facilitate the DNA unwinding required for DNA repair synthesis.


Asunto(s)
Roturas del ADN de Doble Cadena , Recombinación Homóloga , Reparación del ADN , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma
13.
Trends Biochem Sci ; 47(6): 506-517, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440402

RESUMEN

Telomeres are chromosome-capping structures that protect ends of the linear genome from DNA damage sensors. However, these structures present obstacles during DNA replication. Incomplete telomere replication accelerates telomere shortening and limits replicative lifespan. Therefore, continued proliferation under conditions of replication stress requires a means of telomere repair, particularly in the absence of telomerase. It was recently revealed that replication stress triggers break-induced replication (BIR) and mitotic DNA synthesis (MiDAS) at mammalian telomeres; however, these mechanisms are error prone and primarily utilized in tumorigenic contexts. In this review article, we discuss the consequences of replication stress at telomeres and how use of available repair pathways contributes to genomic instability. Current research suggests that fragile telomeres are ultimately tumor-suppressive and thus may be better left unrepaired.


Asunto(s)
Telomerasa , Telómero , Animales , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Mamíferos , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero
14.
Semin Cancer Biol ; 99: 45-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346544

RESUMEN

Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.


Asunto(s)
Replicación del ADN , Mitosis , Humanos , Fase S/genética , Ciclo Celular/genética , Replicación del ADN/genética , Mitosis/genética , ADN
15.
J Biol Chem ; 300(7): 107461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876299

RESUMEN

Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.


Asunto(s)
ADN Polimerasa theta , ADN Polimerasa Dirigida por ADN , Humanos , Reparación del ADN por Unión de Extremidades , ADN Polimerasa beta/metabolismo , ADN Polimerasa beta/genética , ADN Polimerasa beta/química , Reparación del ADN , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/química , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética
16.
J Virol ; : e0128224, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382273

RESUMEN

Adeno-associated virus type 2 (AAV2) is a small, non-pathogenic, helper virus-dependent parvovirus with a single-stranded (ss) DNA genome of approximately 4.7 kb. AAV2 DNA replication requires the presence of a helper virus such as adenovirus type 5 (AdV5) or herpes simplex virus type 1 (HSV-1) and is generally assumed to occur as a strand-displacement rolling hairpin (RHR) mechanism initiated at the AAV2 3' inverted terminal repeat (ITR). We have recently shown that AAV2 replication supported by HSV-1 leads to the formation of double-stranded head-to-tail concatemers, which provides evidence for a rolling circle replication (RCR) mechanism. We have revisited AAV2 DNA replication and specifically compared the formation of AAV2 replication intermediates in the presence of either HSV-1 or AdV5 as the helper virus. The results confirmed that the AAV2 DNA replication mechanism is helper virus-dependent and follows a strand-displacement RHR mechanism when AdV5 is the helper virus and primarily an RCR mechanism when HSV-1 is the helper virus. We also demonstrate that recombination plays a negligible role in AAV2 genome replication. Interestingly, the formation of high-molecular-weight AAV2 DNA concatemers in the presence of HSV-1 as the helper virus was dependent on an intact HSV-1 DNA polymerase. IMPORTANCE: AAV is a small helper virus-dependent, non-pathogenic parvovirus. The AAV genome replication mechanism was extensively studied in the presence of AdV as the helper virus and described to proceed using RHR. Surprisingly, HSV-1 co-infection facilitates RCR of the AAV2 DNA. We directly compared AdV5 and HSV-1 supported AAV2 DNA replication and showed that AAV2 can adapt its replication mechanism to the helper virus. A detailed understanding of the AAV replication mechanism expands our knowledge of virus biology and can contribute to increase gene therapy vector production.

17.
Mol Ther ; 32(8): 2535-2548, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38867450

RESUMEN

Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Timidina , Timidilato Sintasa , Humanos , Animales , Ratones , Timidina/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Línea Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Sistemas CRISPR-Cas
18.
Mol Cell ; 68(2): 446-455.e3, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033319

RESUMEN

The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa II/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , ADN Polimerasa II/genética , ADN Polimerasa III/genética , ADN de Hongos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
19.
Mol Cell ; 66(5): 658-671.e8, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575661

RESUMEN

The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.


Asunto(s)
Sitios Frágiles del Cromosoma , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/biosíntesis , Endonucleasas/metabolismo , Mitosis , RecQ Helicasas/metabolismo , Origen de Réplica , Sitios de Unión , Proteína Quinasa CDC2 , Inestabilidad Cromosómica , Segregación Cromosómica , Quinasas Ciclina-Dependientes/metabolismo , ADN/genética , Daño del ADN , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Fosforilación , Unión Proteica , Interferencia de ARN , Recombinasa Rad51/metabolismo , RecQ Helicasas/genética , Factores de Tiempo , Transfección
20.
Mol Cell ; 66(3): 306-319, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475867

RESUMEN

Both embryonic and adult stem cells are endowed with a superior capacity to prevent the accumulation of genetic lesions, repair them, or avoid their propagation to daughter cells, which would be particularly detrimental to the whole organism. Inducible pluripotent stem cells also display a robust DNA damage response, but the stability of their genome is often conditioned by the mutational history of the cell population of origin, which constitutes an obstacle to clinical applications. Cancer stem cells are particularly tolerant to DNA damage and fail to undergo senescence or regulated cell death upon accumulation of genetic lesions. Such a resistance contributes to the genetic drift of evolving tumors as well as to their limited sensitivity to chemo- and radiotherapy. Here, we discuss the pathophysiological and therapeutic implications of the molecular pathways through which stem cells cope with DNA damage.


Asunto(s)
Células Madre Adultas/patología , Daño del ADN , Reparación del ADN , Células Madre Embrionarias/patología , Neoplasias/patología , Células Madre Neoplásicas/patología , Células Madre Pluripotentes/patología , Células Madre Adultas/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Flujo Genético , Inestabilidad Genómica , Humanos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Células Madre Pluripotentes/metabolismo , Tolerancia a Radiación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA