Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.083
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell Proteomics ; 23(7): 100797, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866076

RESUMEN

Targeted protein degradation is the selective removal of a protein of interest through hijacking intracellular protein cleanup machinery. This rapidly growing field currently relies heavily on the use of the E3 ligase cereblon (CRBN) to target proteins for degradation, including the immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide which work through a molecular glue mechanism of action with CRBN. While CRBN recruitment can result in degradation of a specific protein of interest (e.g., efficacy), degradation of other proteins (called CRBN neosubstrates) also occurs. Degradation of one or more of these CRBN neosubstrates is believed to play an important role in thalidomide-related developmental toxicity observed in rabbits and primates. We identified a set of 25 proteins of interest associated with CRBN-related protein homeostasis and/or embryo/fetal development. We developed a targeted assay for these proteins combining peptide immunoaffinity enrichment and high-resolution mass spectrometry and successfully applied this assay to rabbit embryo samples from pregnant rabbits dosed with three IMiDs. We confirmed previously reported in vivo decreases in neosubstrates like SALL4, as well as provided evidence of neosubstrate changes for proteins only examined in vitro previously. While there were many proteins that were similarly decreased by all three IMiDs, no compound had the exact same neosubstrate degradation profile as another. We compared our data to previous literature reports of IMiD-induced degradation and known developmental biology associations. Based on our observations, we recommend monitoring at least a major subset of these neosubstrates in a developmental test system to improve CRBN-binding compound-specific risk assessment. A strength of our assay is that it is configurable, and the target list can be readily adapted to focus on only a subset of proteins of interest or expanded to incorporate new findings as additional information about CRBN biology is discovered.

2.
Development ; 149(20)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134893

RESUMEN

Recent publications describe the development of in vitro models of human development, for which applications in developmental toxicity testing can be envisaged. To date, these regulatory assessments have exclusively been performed in animal studies, the relevance of which to adverse reactions in humans may be questioned. Recently developed cell culture-based models of embryo-fetal development, however, do not yet exhibit sufficient levels of standardisation and reproducibility. Here, the advantages and shortcomings of both in vivo and in vitro developmental toxicity testing are addressed, as well as the possibility of integrated testing strategies as a viable option in the near future.


Asunto(s)
Técnicas de Cultivo de Célula , Pruebas de Toxicidad , Animales , Humanos , Reproducibilidad de los Resultados
3.
Biol Reprod ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959857

RESUMEN

Quaternary ammonium compounds (QACs) are a class of chemicals commonly used as disinfectants in household and healthcare settings. Their usage has significantly increased in recent years due to the COVID-19 pandemic. In addition, QACs have replaced the recently banned disinfectants triclosan and triclocarban in consumer products. QACs are found in daily antimicrobial and personal care products such as household disinfectants, mouthwash, and hair care products. Due to the pervasiveness of QACs in daily use products, humans are constantly exposed. However, little is known about the health effects of everyday QAC exposure, particularly effects on human reproduction and development. Studies that investigate the harmful effects of QACs on reproduction are largely limited to high-dose studies, which may not be predictive of low dose, daily exposure, especially as QACs may be endocrine disrupting chemicals. This review analyzes recent studies on QAC effects on reproductive health, identifying knowledge gaps, and recommending future directions in QAC-related research.

4.
Toxicol Appl Pharmacol ; 482: 116789, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103741

RESUMEN

Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.


Asunto(s)
Ketamina , Contaminantes Químicos del Agua , Pez Cebra , Humanos , Animales , Niño , Embrión no Mamífero , Proteína X Asociada a bcl-2/metabolismo , Saco Vitelino , Larva , Contaminantes Químicos del Agua/toxicidad
5.
Toxicol Appl Pharmacol ; 483: 116805, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38191078

RESUMEN

Fluoxetine is an antidepressant used to treat several conditions including postpartum depression. This disease causes cognitive, emotional, behavioral and physical changes, negatively affecting the mother, child and family life. However, fluoxetine is excreted in breast milk, causing short and long-term effects on children who were exposed to the drug during lactation, so studies that seek to uncover the consequences of these effects are needed. Thus, the aim of this study was to evaluate the effects of fluoxetine on the nutritional characteristics of milk and on growth and neurobehavioral development of the offspring on a rat model. Lactating rats were divided into 4 groups: control group and three experimental groups, which were treated with different doses of fluoxetine (1, 10 and 20 mg/kg) during the lactation. Dams body weight and milk properties were measured, as well as offspring's growth and physical and neurobehavioral development. Results showed that the use of fluoxetine during lactation decreased dam's body weight and alters milk's properties, leading to a decrease in offspring's growth until adulthood. Therefore, the use of fluoxetine during lactation needs to be cautiously evaluated, with the benefits to the mothers and the associated risk to the offspring carefully balance.


Asunto(s)
Fluoxetina , Lactancia , Humanos , Femenino , Niño , Ratas , Animales , Adulto , Fluoxetina/toxicidad , Leche Humana , Antidepresivos/farmacología , Peso Corporal
6.
Toxicol Appl Pharmacol ; 484: 116879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38431230

RESUMEN

In vitro methods are widely used in modern toxicological testing; however, the data cannot be directly employed for risk assessment. In vivo toxicity of chemicals can be predicted from in vitro data using physiologically based toxicokinetic (PBTK) modelling-facilitated reverse dosimetry (PBTK-RD). In this study, a minimal-PBTK model was constructed to predict the in-vivo kinetic profile of fenarimol (FNL) in rats and humans. The model was verified by comparing the observed and predicted pharmacokinetics of FNL for rats (calibrator) and further applied to humans. Using the PBTK-RD approach, the reported in vitro developmental toxicity data for FNL was translated to in vivo dose-response data to predict the assay equivalent oral dose in rats and humans. The predicted assay equivalent rat oral dose (36.46 mg/kg) was comparable to the literature reported in vivo BMD10 value (22.8 mg/kg). The model was also employed to derive the chemical-specific adjustment factor (CSAF) for interspecies toxicokinetics variability of FNL. Further, Monte Carlo simulations were performed to predict the population variability in the plasma concentration of FNL and to derive CSAF for intersubject human kinetic differences. The comparison of CSAF values for interspecies and intersubject toxicokinetic variability with their respective default values revealed that the applied uncertainty factors were adequately protective.


Asunto(s)
Modelos Biológicos , Pirimidinas , Ratas , Humanos , Animales , Toxicocinética , Método de Montecarlo , Medición de Riesgo
7.
Environ Sci Technol ; 58(2): 1064-1075, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38163761

RESUMEN

Perfluoro-2-methoxyacetic acid (PFMOAA) is a short-chain perfluoroalkyl ether carboxylic acid that has been detected at high concentrations (∼10 µg/L) in drinking water in eastern North Carolina, USA, and in human serum and breastmilk in China. Despite documented human exposure there are almost no toxicity data available to inform risk assessment of PFMOAA. Here we exposed pregnant Sprague-Dawley rats to a range of PFMOAA doses (10-450 mg/kg/d) via oral gavage from gestation day (GD) 8 to postnatal day (PND) 2 and compared results to those we previously reported for perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). Newborn pups displayed reduced birthweight (≥30 mg/kg), depleted liver glycogen concentrations (all doses), hypoglycemia (≥125 mg/kg), and numerous significantly altered genes in the liver associated with fatty acid and glucose metabolism similar to gene changes produced by HFPO-DA. Pup survival was significantly reduced at ≥125 mg/kg, and at necropsy on PND2 both maternal and neonatal animals displayed increased liver weights, increased serum aspartate aminotransferase (AST), and reduced serum thyroid hormones at all doses (≥10 mg/kg). Pups also displayed highly elevated serum cholesterol at all doses. PFMOAA concentrations in serum and liver increased with maternal oral dose in both maternal and F1 animals and were similar to those we reported for PFOA but considerably higher than HFPO-DA. We calculated 10% effect levels (ED10 or EC10) and relative potency factors (RPF; PFOA = index chemical) among the three compounds based on maternal oral dose and maternal serum concentration (µM). Reduced pup liver glycogen, increased liver weights and reduced thyroid hormone levels (maternal and pup) were the most sensitive end points modeled. PFMOAA was ∼3-7-fold less potent than PFOA for most end points based on maternal serum RPFs, but slightly more potent for increased maternal and pup liver weights. PFMOAA is a maternal and developmental toxicant in the rat producing a constellation of adverse effects similar to PFOA and HFPO-DA.


Asunto(s)
Caprilatos , Fluorocarburos , Glucógeno Hepático , Propionatos , Embarazo , Humanos , Femenino , Ratas , Animales , Ratas Sprague-Dawley , Fluorocarburos/toxicidad , Lactancia , Hormonas Tiroideas , Exposición Materna
8.
Environ Sci Technol ; 58(1): 121-131, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38118121

RESUMEN

The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 µg/g), copper (32.5 µg/g), and chromium (up to 5.7 µg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Humanos , Ecosistema , Máscaras , Pandemias , Polipropilenos , Polietilenos
9.
Environ Sci Technol ; 58(19): 8215-8227, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38687897

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are extensively utilized in varieties of products and tend to accumulate in the human body including umbilical cord blood and embryos/fetuses. In this study, we conducted an assessment and comparison of the potential early developmental toxicity of perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid, perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate, and perfluorobutyric acid at noncytotoxic concentrations relevant to human exposure using models based on human embryonic stem cells in both three-dimensional embryoid body (EB) and monolayer differentiation configurations. All six compounds influenced the determination of cell fate by disrupting the expression of associated markers in both models and, in some instances, even led to alterations in the formation of cystic EBs. The expression of cilia-related gene IFT122 was significantly inhibited. Additionally, PFOS and PFOA inhibited ciliogenesis, while PFOA specifically reduced the cilia length. Transcriptome analysis revealed that PFOS altered 1054 genes and disrupted crucial signaling pathways such as WNT and TGF-ß, which play integral roles in cilia transduction and are critical for early embryonic development. These results provide precise and comprehensive insights into the potential adverse health effects of these six PFAS compounds directly concerning early human embryonic development.


Asunto(s)
Fluorocarburos , Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/efectos de los fármacos , Fluorocarburos/toxicidad , Diferenciación Celular/efectos de los fármacos
10.
Environ Res ; 260: 119617, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004392

RESUMEN

Dimefluthrin (DIM) is a synthetic pyrethroid insecticide commonly used for the control of pests, particularly for mosquitoes and other flying insects. However, the effects of DIM on non-target aquatic organisms are not known. In this study, we evaluated the long-term effects of DIM on juvenile Acrossocheilus fasciatus (a species of teleost fish) by exposing them to two different concentrations (0.8 µg/L and 4 µg/L) for 60 days. After 60 d of exposure, DIM induced a significant decrease in body weight and irregular, diffused villi in the intestines of A. fasciatus, accompanied by alterations in the expression of immune-related genes. Furthermore, Gene Ontology (GO) enrichment analysis revealed that among the differentially expressed genes (DEGs), all downregulated genes were enriched in processes such as small molecule/cellular amino acid metabolism, generation of precursor metabolites and energy, and phosphatase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the downregulated genes were associated with processes such as cytokine-cytokine receptor interaction, chemokine signaling pathway, JAK-STAT signaling pathway, intestinal immune network for IgA production, natural killer cell-mediated cytotoxicity, and antigen processing and presentation. In contrast, upregulated DEGs were linked to processes such as necroptosis, phototransduction, and Hippo signaling pathway. These results demonstrate the potential toxicity of DIM to non-target aquatic organisms, indicating the broader ecological implications of its use.

11.
Environ Res ; 252(Pt 1): 118811, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555090

RESUMEN

Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 µg/L, 1 µg/L, and 2 µg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.


Asunto(s)
Sistema Cardiovascular , Estrés Oxidativo , Compuestos de Trialquiltina , Pez Cebra , Animales , Pez Cebra/embriología , Compuestos de Trialquiltina/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos
12.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760761

RESUMEN

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Asunto(s)
Exposición por Inhalación , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Masculino , Femenino , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Tamaño de la Partícula , Administración por Inhalación , Daño del ADN , Ratas , Ensayo Cometa , Ratas Wistar , Reproducción/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo
13.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38285066

RESUMEN

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Asunto(s)
Inhibidores de la Angiogénesis , Pez Cebra , Animales , Humanos , Inhibidores de la Angiogénesis/toxicidad , Inhibidores de la Angiogénesis/metabolismo , Angiogénesis , Metotrexato/toxicidad , Rotenona/farmacología , Embrión no Mamífero , Metabolómica
14.
Arch Toxicol ; 98(4): 1209-1224, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311648

RESUMEN

To meet the growing demand for developmental toxicity assessment of chemicals, New Approach Methodologies (NAMs) are needed. Previously, we developed two 3D in vitro assays based on human-induced pluripotent stem cells (hiPSC) and cardiomyocyte differentiation: the PluriBeat assay, based on assessment of beating differentiated embryoid bodies, and the PluriLum assay, a reporter gene assay based on the expression of the early cardiac marker NKX2.5; both promising assays for predicting embryotoxic effects of chemicals and drugs. In this work, we aimed to further describe the predictive power of the PluriLum assay and compare its sensitivity with PluriBeat and similar human stem cell-based assays developed by others. For this purpose, we assessed the toxicity of a panel of ten chemicals from different chemical classes, consisting of the known developmental toxicants 5-fluorouracil, all-trans retinoic acid and valproic acid, as well as the negative control compounds ascorbic acid and folic acid. In addition, the fungicides epoxiconazole and prochloraz, and three perfluoroalkyl substances (PFAS), PFOS, PFOA and GenX were tested. Generally, the PluriLum assay displayed higher sensitivity when compared to the PluriBeat assay. For several compounds the luminescence readout of the PluriLum assay showed effects not detected by the PluriBeat assay, including two PFAS compounds and the two fungicides. Overall, we find that the PluriLum assay has the potential to provide a fast and objective detection of developmental toxicants and has a level of sensitivity that is comparable to or higher than other in vitro assays also based on human stem cells and cardiomyocyte differentiation for assessment of developmental toxicity.


Asunto(s)
Fluorocarburos , Fungicidas Industriales , Células Madre Pluripotentes Inducidas , Humanos , Pruebas de Toxicidad/métodos , Cuerpos Embrioides , Diferenciación Celular , Sustancias Peligrosas
15.
Arch Toxicol ; 98(6): 1891-1908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522057

RESUMEN

Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.


Asunto(s)
Dexametasona , Relación Dosis-Respuesta a Droga , Desarrollo Fetal , Animales , Femenino , Embarazo , Dexametasona/toxicidad , Dexametasona/administración & dosificación , Masculino , Desarrollo Fetal/efectos de los fármacos , Ratones , Retardo del Crecimiento Fetal/inducido químicamente , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glucocorticoides/toxicidad , Glucocorticoides/administración & dosificación , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
16.
Arch Toxicol ; 98(2): 551-565, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085275

RESUMEN

The present study evaluates the in vitro developmental toxicity and the possible underlying mode of action of DMSO extracts of a series of highly complex petroleum substances in the mouse embryonic stem cell test (mEST), the zebrafish embryotoxicity test (ZET) and the aryl hydrocarbon receptor reporter gene assay (AhR CALUX assay). Results show that two out of sixteen samples tested, both being poorly refined products that may contain a substantial amount of 3- to 7-ring polycyclic aromatic compounds (PACs), induced sustained AhR activation in the AhR CALUX assay, and concentration-dependent developmental toxicity in both mEST and ZET. The other samples tested, representing highly refined petroleum substances and petroleum-derived waxes (containing typically a very low amount or no PACs at all), were negative in all assays applied, pointing to their inability to induce developmental toxicity in vitro. The refining processes applied during the production of highly refined petroleum products, such as solvent extraction and hydrotreatment which focus on the removal of undesired constituents, including 3- to 7-ring PACs, abolish the in vitro developmental toxicity. In conclusion, the obtained results support the hypothesis that 3- to 7-ring PACs are the primary inducers of the developmental toxicity induced by some (i.e., poorly refined) petroleum substances and that the observed effect is partially AhR-mediated.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Ratones , Animales , Petróleo/toxicidad , Petróleo/análisis , Pez Cebra , Células Madre Embrionarias de Ratones
17.
Regul Toxicol Pharmacol ; 147: 105540, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070761

RESUMEN

Aminocarboxylic acid (ethylenediamine-based) chelating agents such as DTPA are widely used in a variety of products and processes. Recently, DTPA was classified in the European Union as a developmental toxicant CLP Category 1B. However, according to the CLP regulation (CLP, 2008) classification as a developmental toxicant requires a chemical to possess an intrinsic, specific property to do so. This paper provides overwhelming evidence that shows the developmental toxicity only seen at a sustained high dose of 1000 mg DTPA/kg bw/day in rats during pregnancy is mediated by zinc depletion which leads to non-specific secondary effects associated with zinc deficiency. Therefore, based on the CLP regulation itself, viz. the lack of a specific, intrinsic property, supported by significant differences in zinc kinetics and physiology between pregnant rats and pregnant women, DTPA should not be classified as a developmental toxicant. Moreover, classification for developmental toxicity resulting from zinc deficiency, and only observed at high doses, would not increase protection of human health; instead, it will only lead to onerous and disproportionate restrictions being placed on the use of this substance.


Asunto(s)
Quelantes , Zinc , Femenino , Ratas , Humanos , Embarazo , Animales , Quelantes/toxicidad , Zinc/toxicidad , Ácido Pentético/toxicidad
18.
Regul Toxicol Pharmacol ; 148: 105581, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342133

RESUMEN

Thrombopoietin mimic peptide (TMP) is a novel thrombopoietin receptor agonist. In this report, we evaluated the potential toxicity of TMP in repeat-dose toxicity and reproductive/developmental toxicity studies (segment Ⅰ, Ⅱ, Ⅲ). TMP was administered subcutaneously to Sprague-Dawley (SD) rats at 5, 15 or 50 mcg/kg. In repeat-dose toxicity study, the rats were administrated three times a week for 26 week with a 4-week recovery. TMP could produce anti-drug antibodies and induce platelet counts increase, megakaryocyte proliferation. While platelet counts decreased gradually and returned to normal after 4 weeks in male rats. Other significant findings included myelofibrosis of bone marrow, hepatic extramedullary hematopoiesis, splenic lymphocytic depletion and bone hyperostosis. All treatment-related effects were reversed following recovery. The NOAEL of repeat-dose toxicity in female rats is 5 mcg/kg. In the reproductive/developmental toxicity (segment Ⅰ, Ⅲ), no deaths occurred, and no general toxicological effects or abnormal reproductive functions were observed. In embryo-fetal developmental toxicity study (segment Ⅱ), the number of resorbed fetuses in the 50 mcg/kg group was significantly increased. The NOAEL as related to reproductive/developmental toxicity in these rats was 15 mcg/kg.


Asunto(s)
Reproducción , Trombopoyetina , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Trombopoyetina/toxicidad , Médula Ósea , Nivel sin Efectos Adversos Observados
19.
J Appl Toxicol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531109

RESUMEN

As part of the US Environmental Protection Agency's perfluoroalkyl and polyfluoroalkyl substances (PFAS) Action Plan, the agency is committed to increasing our understanding of the potential ecological effects of PFAS. The objective of these studies was to examine the developmental toxicity of PFAS using the laboratory model amphibian species Xenopus laevis. We had two primary aims: (1) to understand the developmental toxicity of a structurally diverse set of PFAS compounds in developing embryos and (2) to characterize the potential impacts of perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide-dimer acid (HFPO-DA a.k.a. GenX), on growth and thyroid hormone-controlled metamorphosis. We employed a combination of static renewal and flow-through exposure designs. Embryos were exposed to 17 structurally diverse PFAS starting at the midblastula stage through the completion of organogenesis (96 h). To investigate impacts on PFOS, PFOA, PFHxS, and HFPO-DA on development and metamorphosis, larvae were exposed from premetamorphosis (Nieuwkoop Faber stage 51 or 54) through pro metamorphosis. Of the PFAS tested in embryos, only 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol) and perfluorohexanesulfonamide (FHxSA) exposure resulted in clear concentration-dependent developmental toxicity. For both of these PFAS, a significant increase in mortality was observed at 2.5 and 5 mg/L. For FC10-diol, 100% of the surviving embryos were malformed at 1.25 and 2.5 mg/L, while for FHxSA, a significant increase in malformations (100%) was observed at 2.5 and 5 mg/L. Developmental stage achieved was the most sensitive endpoint with significant effects observed at 1.25 and 0.625 mg/L for FC10-diol and FHxSA, respectively. In larval studies, we observed impacts on growth following exposure to PFHxS and PFOS at concentrations of 100 and 2.5 mg/L, respectively, while no impacts were observed in larvae when exposed to PFOA and HFPO-DA at concentration of 100 mg/L. Further, we did not observe impacts on thyroid endpoints in exposed larvae. These experiments have broadened our understanding of the impact of PFAS on anuran development.

20.
Ecotoxicol Environ Saf ; 271: 116001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38277973

RESUMEN

Dichlorodiphenyltrichloroethane (DDT) is a broad-spectrum insecticide, widely detected in environments due to its high stability characteristic and long natural half-life period. The adverse impact of DDT exposure on organisms and humans has attracted great concern worldwide. The current study explored the developmental and neurobehavioral toxicity response of DDT in embryonic zebrafish. The embryos were treated with DDT (0, 0.1, 1, 2.5 and 5 µM) during 6 h post fertilization (hpf) to 144 hpf. Our result indicated that DDT exposures increased the embryo hatching rate at 48 and 60 hpf, the larval malformation rate at 120 hpf and mortality rate at 144 hpf. The manifested malformations included uninflated swim bladder, bent spine and tail, deformed liver, and pericardial edema. The 120 hpf larval organs size of the gut and swim bladder was decreased in higher exposed concentration groups. Besides, DDT exposure resulted in hyperactivity for the embryo spontaneous movement at 24 hpf and tremor like movement measured by the free larval activity at 72 hpf, as well as the larval activity at 96 hpf under light-dark transition stimulus. Mechanistic examinations at 120 hpf revealed DDT exposure elevated oxidative stress through MDA formation increase, ATP level decrease as well as antioxidant enzyme genes (sod1 and gpx1a) expression decrease. DDT exposure induced abnormal neurotransmitters expression with DA level increase, 5-HT and NOS level decrease. DDT exposure suppressed the gene expressions involved in axon development (rab33a and nrxn2a) and potassium channel (kcnq2 and kcnq3). Our results suggest that the hyperactivity and tremor like movement in DDT-exposed embryos/larvae may result from oxidative stress involved with neuronal damage.


Asunto(s)
DDT , Pez Cebra , Animales , Humanos , Pez Cebra/metabolismo , DDT/metabolismo , Embrión no Mamífero/metabolismo , Temblor/metabolismo , Relación Dosis-Respuesta a Droga , Larva/fisiología , Desarrollo Embrionario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA