RESUMEN
BACKGROUND INFORMATION: Antiproliferative and apoptotic activities have been attributed to the phytosteroid diosgenin ((25R)-spirost-5-en-3ß-ol; 1). It is known that combining glucose with two rhamnoses (the chacotrioside framework) linked to diosgenin increases its apoptotic activity. However, the effects of diosgenin glucosamine glycosides on different cancer cell types and cell death have not been entirely explored. RESULTS: This study reports the antiproliferative, cytotoxic, and apoptotic activities of diosgenin and its glycosylated derivative ((25R)-spirost-5-en-3ß-yl ß-D-glucopyranoside; 2). It also explores the effects of two diosgenin glucosamine derivates, diosgenin 2-acetamido-2-deoxy-ß-D-glucopyranoside (3), and diosgenin 2-amino-2-deoxy-ß-D-glucopyranoside hydrochloride (4), on different cancer cell lines. We found that all the compounds affected proliferative activity with minimal toxicity. In addition, all cancer cell lines showed morphological and biochemical characteristics corresponding to an apoptotic process. Apoptotic cell death was higher in all cell lines treated with compounds 2, 3 and 4 than in those treated with diosgenin. Moreover, compounds 3 and 4 induced apoptosis better than compounds 1 and 2. These results suggest that combining glucosamine with modified glucosamine attached to diosgenin has a greater apoptotic effect than diosgenin or its glycosylated derivative (compound 2). Furthermore, diosgenin and the abovementioned glycosides had a selective effect on tumour cells since the proliferative capacity of human lymphocytes, keratinocytes (HaCaT) and epithelial cells (CCD841) was not significantly affected. CONCLUSIONS: Altogether, these results demonstrate that diosgenin glucosamine compounds exert an antiproliferative effect on cancer cell lines and induce apoptotic effects more efficiently than diosgenin alone without affecting non-tumour cells. SIGNIFICANCE: This study evidences the pro-apoptotic and selective activities of diosgenyl glucosamine compounds in cancer cell lines.
Asunto(s)
Antineoplásicos , Diosgenina , Neoplasias , Humanos , Glucosamina/farmacología , Diosgenina/farmacología , Diosgenina/química , Glicósidos/química , Antineoplásicos/farmacología , Línea Celular TumoralRESUMEN
While diosgenin has been demonstrated effective in various cardiovascular diseases, its specific impact on treating heart attacks remains unclear. Our research revealed that diosgenin significantly improved cardiac function in a myocardial infarction (MI) mouse model, reducing cardiac fibrosis and cell apoptosis while promoting angiogenesis. Mechanistically, diosgenin upregulated the Hand2 expression, promoting the proliferation and migration of endothelial cells under hypoxic conditions. Acting as a transcription factor, HAND2 activated the angiogenesis-related gene Aggf1. Conversely, silencing Hand2 inhibited the diosgenin-induced migration of hypoxic endothelial cells and angiogenesis. In summary, these findings provide new insights into the protective role of diosgenin in MI, validating its effect on angiogenic activity and providing a theoretical basis for clinical treatment strategies.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diosgenina , Ratones Endogámicos C57BL , Infarto del Miocardio , Neovascularización Fisiológica , Animales , Humanos , Masculino , Ratones , Angiogénesis , Apoptosis/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diosgenina/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/efectos de los fármacosRESUMEN
BACKGROUND: Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS: The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS: This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.
Asunto(s)
Dioscorea , Diosgenina , Estudio de Asociación del Genoma Completo , Tubérculos de la Planta , Polimorfismo de Nucleótido Simple , Diosgenina/metabolismo , Dioscorea/genética , Dioscorea/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Variación GenéticaRESUMEN
KEY MESSAGE: Both bacterial and fungal endophytes exhibited one or more plant growth-promoting (PGP) traits. Among these strains, the Paenibacillus peoriae SYbr421 strain demonstrated the greatest activity in the direct biotransformation of tuber powder from D. nipponica into diosgenin. Endophytes play crucial roles in shaping active metabolites within plants, significantly influencing both the quality and yield of host plants. Dioscorea nipponica Makino accumulates abundant steroidal saponins, which can be hydrolyzed to produce diosgenin. However, our understanding of the associated endophytes and their contributions to plant growth and diosgenin production is limited. The present study aimed to assess the PGP ability and potential of diosgenin biotransformation by endophytes isolates associated with D. nipponica for the efficient improvement of plant growth and development of a clean and effective approach for producing the valuable drug diosgenin. Eighteen bacterial endophytes were classified into six genera through sequencing and phylogenetic analysis of the 16S rDNA gene. Similarly, 12 fungal endophytes were categorized into 5 genera based on sequencing and phylogenetic analysis of the ITS rDNA gene. Pure culture experiments revealed that 30 isolated endophytic strains exhibited one or more PGP traits, such as nitrogen fixation, phosphate solubilization, siderophore synthesis, and IAA production. One strain of endophytic bacteria, P. peoriae SYbr421, effectively directly biotransformed the saponin components in D. nipponica. Moreover, a high yield of diosgenin (3.50%) was obtained at an inoculum size of 4% after 6 days of fermentation. Thus, SYbr421 could be used for a cleaner and more eco-friendly diosgenin production process. In addition, based on the assessment of growth-promoting isolates and seed germination results, the strains SYbr421, SYfr1321, and SYfl221 were selected for greenhouse experiments. The results revealed that the inoculation of these promising isolates significantly increased the plant height and fresh weight of the leaves and roots compared to the control plants. These findings underscore the importance of preparing PGP bioinoculants from selected isolates as an additional option for sustainable diosgenin production.
Asunto(s)
Dioscorea , Diosgenina , Endófitos/genética , Endófitos/metabolismo , Dioscorea/genética , Dioscorea/microbiología , Diosgenina/metabolismo , Filogenia , Raíces de Plantas , ADN Ribosómico/metabolismoRESUMEN
Oxidative stress and inflammation play a fundamental role in the beginning and advancement of silicosis. Hence, questing active phytocompounds (APCs) with anti-oxidative and anti-inflammatory properties such as diosgenin (DG) and emodin (ED) can be a therapeutic intervention targeting silica-induced pulmonary inflammation and fibrosis. Hydrophobicity and low bioavailability are the barriers that restrict the therapeutic efficacy of DG and ED against pulmonary defects. Encapsulating these APCs in polymeric nanoparticles can overcome this limitation. The present study has thus explored the anti-inflammatory and anti-fibrotic effects of polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) individually loaded with DG (DGn) or ED (EDn) and in combine DG+ED [(DG+ED)n] in respirable silica dust (RSD)-induced pulmonary fibrosis silicosis rat model. Our study found that individual and combined NPs revealed physiochemical characteristics appropriate for IV administration with sustained-drug release purposes. Physiological evaluations of RSD-induced silicosis rats suggested that no treatment could improve the body weight. Still, they reduced the lung coefficient by maintaining lung moisture. Only (DG+ED)n significantly cleared free lung silica. All interventions were found to attribute the increased per cent cell viability in BALF, reduce cytotoxicity via minimizing LDH levels, and balance the oxidant-antioxidant status in silicotic rats. The expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, MCP-1, and TGF-ß1) were efficiently down-regulated with NPs interventions compared to pure (DG+ED) treatment. All drug treatments significantly declined, the 8-HdG and HYP productions indicate that RSD-induced oxidative DNA damage and collagen deposition were successfully repaired. Moreover, histopathological investigations proposed that individual or combined drugs NPs interventions could decrease the fibrosis and alveolitis grades in RSD-induced silicosis rats. However, (DG+ED)n intervention significantly inhibited pulmonary fibrosis and alveolitis compared to pure (DG+ED) treatment. In conclusion, the RSD can induce oxidative stress and inflammation in rats, producing reactive oxygen species (ROS)-mediated cytotoxicity to pulmonary cells and leading to silicosis development. The IV administration of combined NP suppressed lung inflammation and collagen formation by maintaining oxidant-antioxidant status and effectively interrupting the fibrosis-silicosis progression. These results may be attributed to the improved bioavailability of DG and ED through their combined nano-encapsulation-mediated targeted drug delivery.
Asunto(s)
Diosgenina , Emodina , Nanopartículas , Fibrosis Pulmonar , Dióxido de Silicio , Silicosis , Animales , Diosgenina/farmacología , Silicosis/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/prevención & control , Ratas , Emodina/farmacología , Masculino , Polvo , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios , Ratas Wistar , Pulmón/efectos de los fármacos , Pulmón/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/químicaRESUMEN
Obesity is a global medical issue that can be effectively treated by relieving adipose inflammation and subsequent insulin resistance. Diosgenin (DIOS) has various effects as a steroidal saponin in inflammatory disorders. This study explored the effects and mechanism of DIOS on adipose inflammation and insulin sensitivity, both in silico and in vivo. The high-fat diet-induced obesity model in C57BL/6 mice was divided into five groups: normal chow (NC), high-fat diet (HFD), HFD with atorvastatin 10 mg/kg (AT), HFD with DIOS 100 mg/kg (DIOS 100), and HFD with DIOS 200 mg/kg (DIOS 200). Each group underwent an oral intervention for seven weeks. DIOS significantly suppressed weight gain in the body, liver, and epididymal fat pads. Additionally, it significantly improved fasting glucose and insulin levels, homeostatic model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance test results, and reduced the proportion of total and M1 adipose tissue macrophages. Significant changes were shown in mRNA expression of janus kinase 2 (JAK2), insulin receptor (INRS), insulin receptor substrate 1 (IRS-1), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt), all of which exhibited high binding affinity in the in silico. Safety indices, including aspartate aminotransferase (AST), alanine transaminase (ALT), and creatinine level indicated the preventive effects of DIOS. In conclusion, DIOS improves insulin resistance and obesity-associated inflammation via the PI3K/Akt signaling pathway.
Asunto(s)
Dieta Alta en Grasa , Diosgenina , Resistencia a la Insulina , Ratones Endogámicos C57BL , Obesidad , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Diosgenina/farmacología , Diosgenina/química , Diosgenina/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , MasculinoRESUMEN
Improving liver regeneration (LR) remains a medical issue, and there is currently a lack of safe and effective drugs for LR. Rhizoma Dioscoreae (SanYak, SY) is a traditional Chinese medicine. However, the underlying action mechanism of SY treatment for LR is yet to be fully elucidated. To explore the mechanism by which SY affects LR, we have conducted a series of methods for network pharmacological analysis, molecular docking, and in vivo experimental validation in mice. Overall, 9 compounds and 30 predicted target genes of SY were found to be associated with the therapeutic effects of LR. Compared with the model group, hematoxylin and eosin staining revealed that the mice with preoperative drug intervention possessed fewer postoperative hepatocyte bubbles and relatively regular morphology. Furthermore, the serum alanine transaminase and aspartate aminotransferase levels were reduced, immunohistochemistry revealed elevated proliferating cell nuclear antigen positivity rate, and Western blotting demonstrated that the phospho-protein kinase B (AKT)/AKT ratio was downregulated and that vascular endothelial growth factor A (VEGFA) expression levels were upregulated. This study explored dioscin, the main active ingredient of SY, and its potential therapeutic effects on LR. It repairs damaged liver following surgery and promotes liver cell proliferation. The action mechanism comprises reducing AKT phosphorylation levels and upregulating VEGFA expression levels. Thus, this study provides a new direction for further research on the mechanism of SY promoting LR.
RESUMEN
Diosgenin is an important compound in the pharmaceutical industry and it is biosynthesized in several eudicot and monocot species, herein represented by fenugreek (a eudicot), and Dioscorea zingiberensis (a monocot). Formation of diosgenin can be achieved by the early C22,16-oxidations of cholesterol followed by a late C26-oxidation. This study reveals that, in both fenugreek and D. zingiberensis, the early C22,16-oxygenase(s) shows strict 22R-stereospecificity for hydroxylation of the substrates. Evidence against the recently proposed intermediacy of 16S,22S-dihydroxycholesterol in diosgenin biosynthesis was also found. Moreover, in contrast to the eudicot fenugreek, which utilizes a single multifunctional cytochrome P450 (TfCYP90B50) to perform the early C22,16-oxidations, the monocot D. zingiberensis has evolved two separate cytochrome P450 enzymes, with DzCYP90B71 being specific for the 22R-oxidation and DzCYP90G6 for the C16-oxidation. We suggest that the DzCYP90B71/DzCYP90G6 pair represent more broadly conserved catalysts for diosgenin biosynthesis in monocots.
Asunto(s)
Dioscorea/metabolismo , Diosgenina/metabolismo , Hidroxicolesteroles/metabolismo , Trigonella/metabolismo , Vías Biosintéticas , Colesterol , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Oxigenasas/metabolismo , Extractos VegetalesRESUMEN
Diosgenin, a natural steroid saponin, holds promise as a multitarget therapeutic for various diseases, including neurodegenerative conditions. Its efficacy in slowing Alzheimer's disease, Parkinson's disease, multiple sclerosis, and stroke progression has been demonstrated. However, the role of diosgenin in anti-epilepsy and its potential connection to the modulation of the intestinal microbiota remain poorly understood. In this study, exogenous diosgenin significantly mitigated pentylenetetrazole (PTZ)-induced seizures, learning and memory deficits, and hippocampal neuronal injury. 16S ribosomal RNA (16S rRNA) sequencing revealed a reversal in the decrease of Bacteroides and Parabacteroides genera in the PTZ-induced mouse epileptic model following diosgenin treatment. Fecal microbiota transplantation (FMT) experiments illustrated the involvement of diosgenin in modulating gut microbiota and providing neuroprotection against epilepsy. Our results further indicated the repression of enteric glial cells (EGCs) activation and the TLR4-MyD88 pathway, coupled with reduced production of inflammatory cytokines in the colonic lumen, and improved intestinal barrier function in epilepsy mice treated with diosgenin or FMT. This study suggests that diosgenin plays a role in modifying gut microbiota, contributing to the alleviation of intestinal inflammation and neuroinflammation, ultimately inhibiting epilepsy progression in a PTZ-induced mouse model. Diosgenin emerges as a potential therapeutic option for managing epilepsy and its associated comorbidities.
RESUMEN
Cholesterol serves as a key precursor for many high-value chemicals such as plant-derived steroidal saponins and steroidal alkaloids, but a plant chassis for effective biosynthesis of high levels of cholesterol has not been established. Plant chassis have significant advantages over microbial chassis in terms of membrane protein expression, precursor supply, product tolerance, and regionalization synthesis. Here, using Agrobacterium tumefaciens-mediated transient expression technology, Nicotiana benthamiana, and a step-by-step screening approach, we identified nine enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, C14-R-2, 8,7SI-4, C5-SD1, and 7-DR1-1) from the medicinal plant Paris polyphylla and established detailed biosynthetic routes from cycloartenol to cholesterol. Specfically, we optimized HMGR, a key gene of the mevalonate pathway, and co-expressed it with the PpOSC1 gene to achieve a high level of cycloartenol (28.79 mg/g dry weight, which is a sufficient amount of precursor for cholesterol biosynthesis) synthesis in the leaves of N. benthamiana. Subsequently, using a one-by-one elimination method we found that six of these enzymes (SSR1-3, SMO1-3, CPI-5, CYP51G, SMO2-2, and C5-SD1) were crucial for cholesterol production in N. benthamiana, and we establihed a high-efficiency cholesterol synthesis system with a yield of 5.63 mg/g dry weight. Using this strategy, we also discovered the biosynthetic metabolic network responsible for the synthesis of a common aglycon of steroidal saponin, diosgenin, using cholesterol as a substrate, obtaining a yield of 2.12 mg/g dry weight in N. benthamiana. Our study provides an effective strategy to characterize the metabolic pathways of medicinal plants that lack a system for in vivo functional verification, and also lays a foundation for the synthesis of active steroid saponins in plant chassis.
Asunto(s)
Diosgenina , Liliaceae , Saponinas , Diosgenina/metabolismo , Liliaceae/química , Liliaceae/metabolismo , Colesterol/genética , Colesterol/metabolismo , Plantas/metabolismo , Saponinas/genética , Saponinas/químicaRESUMEN
Several pathophysiological abnormalities, including a sedentary lifestyle, chronic diseases, and oxidative stress, can contribute to muscle atrophy triggered by an imbalance in muscle protein synthesis and degradation. Resolving muscle atrophy is a critical issue as it can reduce the quality of life. Here, one of the promising functional food factors, diosgenin (a steroidal sapogenin) showed strong preventive activities against dexamethasone (Dex)-induced muscle atrophy, as determined by the expression levels and morphology of the myosin heavy chain in C2C12 myotubes. Diosgenin inhibited protein expressions of Dex-induced skeletal muscle-specific ubiquitin ligase, including muscle RING finger 1 (MuRF1) and casitas B-lineage lymphoma protooncogene b (Cbl-b) but not atrogin-1. Diosgenin ameliorated Dex-induced declines of Akt phosphorylation at Ser473 and FoxO3a phosphorylation at Ser253, which probably at least partially contributed to the suppression of MuRF1, Cbl-b, and atrogin-1 gene expression. Additionally, diosgenin inhibited Dex-induced nuclear translocation of the glucocorticoid receptor (GR), diosgenin therefore may competitively inhibit the interaction between Dex and GR. These findings suggest that diosgenin is an effective functional food for preventing glucocorticoid-induced skeletal muscle atrophy.
RESUMEN
BACKGROUND: Cholesterol gallstone disease is a common disease. Reducing cholesterol burden is important to prevent/treat gallstone. In this study, we investigated the application of diosgenin (DG) to prevent the formation of gallstone in mice. METHODS: Adult male C57BL/6J mice were fed with the lithogenic diet (LD) only or LD supplemented with DG or ezetimibe for 8 weeks. Incidences of gallstone formation were documented. Intestine and liver tissues were collected to measure the lipid contents and expression of genes in cholesterol metabolism. Caco2 cells were treated with DG to monitor the regulation on cholesterol absorption and the transcriptional regulation of Npc1l1 gene. Changes of gut microbiota by DG was analyzed. Intraperitoneal injection of LPS on mice was performed to verify its effects on STAT3 activation and Npc1l1 expression in the small intestine. RESULTS: LD led to 100% formation of gallstones in mice. In comparison, dietary DG or ezetimibe supplementary completely prevents gallstones formation. DG inhibited intestinal cholesterol absorption in mice as well as in Caco2 cells by down-regulation of Npc1l1 expression. DG could directly inhibit phosphorylation of STAT3 and its transcriptional regulation of Npc1l1 expression. Furthermore, DG could modulate gut microbiota profiles and LPS mediated STAT3 activation and Npc1l1 expression. CONCLUSION: Our results demonstrated that dietary DG could inhibit intestinal cholesterol absorption through decreasing NPC1L1 expression to prevent cholesterol gallstone formation.
Asunto(s)
Diosgenina , Cálculos Biliares , Humanos , Ratones , Masculino , Animales , Cálculos Biliares/prevención & control , Cálculos Biliares/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Diosgenina/farmacología , Diosgenina/metabolismo , Células CACO-2 , Lipopolisacáridos , Ratones Endogámicos C57BL , Intestinos , Colesterol , Dieta , Ezetimiba/farmacología , Ezetimiba/metabolismo , Hígado/metabolismoRESUMEN
Nonalcoholic steatohepatitis (NASH), as the aggressive form of nonalcoholic fatty liver disease (NAFLD), rapidly becomes the leading cause of end-stage liver disease or liver transplantation. Nowadays, there has no approved drug for NASH treatment. Diosgenin possesses multiple beneficial effects towards inhibition of lipid accumulation, cholesterol metabolism, fibrotic progression and inflammatory response. However, there has been no report concerning its effects on NASH so far. Using methionine and choline-deficient (MCD) feeding mice, we evaluated the anti-NASH effects of diosgenin. 16 S rDNA was used to investigate gut microbiota composition. Transcriptome sequencing, LC/MS and GC/MS analysis were used to evaluate bile acids (BAs) metabolism and their related pathway. Compared with the MCD group, diosgenin treatment improved the hepatic dysfunction, especially decreased the serum and hepatic TC, TG, ALT, AST and TBA to nearly 50%. Content of BAs, especially CA and TCA, were decreased from 59.30 and 26.00-39.71 and 11.48 ng/mg in liver and from 0.96 and 2.1-0.47 and 1.13 µg/mL in serum, and increased from 7.01 and 11.08-3.278 and 5.11 ng/mg in feces, respectively. Antibiotic and fecal microbiota transplantation (FMT) treatment further confirmed the therapeutic effect of diosgenin on gut microbiota, especially Clostridia (LDA score of 4.94), which regulated BAs metabolism through the hepatic FXR-SHP and intestinal FXR-FGF15 pathways. These data indicate that diosgenin prevents NASH by altering Clostridia and BAs metabolism. Our results shed light on the mechanisms of diosgenin in treating NASH, which pave way for the design of novel clinical therapeutic strategies.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colina/farmacología , Modelos Animales de Enfermedad , Hígado , Metionina/metabolismo , Metionina/farmacología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Intestinos/metabolismoRESUMEN
Kidney disease can be caused by various internal and external factors that have led to a continual increase in global deaths. Current treatment methods can alleviate but do not markedly prevent disease development. Further research on kidney disease has revealed the crucial function of epigenetics, especially acetylation, in the pathology and physiology of the kidney. Histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyllysine readers jointly regulate acetylation, thus affecting kidney physiological homoeostasis. Recent studies have shown that acetylation improves mechanisms and pathways involved in various types of nephropathy. The discovery and application of novel inhibitors and activators have further confirmed the important role of acetylation. In this review, we provide insights into the physiological process of acetylation and summarise its specific mechanisms and potential therapeutic effects on renal pathology.
Asunto(s)
Enfermedades Renales , Humanos , Acetilación , Enfermedades Renales/tratamiento farmacológico , Riñón , Epigénesis Genética , EpigenómicaRESUMEN
Diosgenin, an essential dietary steroidal sapogenin, possess multiple pharmacological activities. This study aimed to assess the effects of diosgenin on periodontitis and elucidate the mechanisms. Lipopolysaccharide (LPS)-stimulated human periodontal ligament stem cells (hPDLCs) and a Porphyromonas gingivalis (P.g) plus ligation-induced animal model were used for in vitro and in vivo studies, respectively. Inflammatory responses, nuclear factor κ-B (NF-κB) signaling and osteogenesis-related markers were measured both in LPS-stimulated hPDLSCs and in gingival tissue of periodontitis rats. Treatment with diosgenin significantly inhibited the production of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß, and interleukin (IL)-6 and the activation of NF-κB pathway in LPS-stimulated hPDLSCs. Further, treatment with diosgenin enhanced the expression of osteoblast-related genes and increased the osteogenic differentiation capacity. Further, activation NF-κB pathway largely abolished the protective effects of diosgenin. Consistent with the in vitro studies, in vivo studies showed that administering diosgenin to periodontitis rats significantly lowered the levels of the TNF-α, IL-1ß, and IL-6 and the inflammatory transcription factor NF-κB in gingival tissue. In addition, osteoblast-related genes were promoted. Diosgenin attenuates periodontitis by adjusting NF-κB signaling to inhibit inflammatory effects and promoting osteogenesis, suggesting diosgenin might be developed as a therapeutic strategy for treating periodontitis in the future.
RESUMEN
OBJECTIVES: Some plants, such as Dioscorea Villosa (DV), Vitex Agnus Castus (VAC) and Turnera diffusa (D) have some 'progesterone-like' properties. We have investigated their simultaneous administration in breast cancer (BC) survivors or carriers of specific genetic mutations that can increase the risk of developing BC suffering from abnormal uterine bleeding without organic cause. METHODS: Women with irregular cycles in terms of length (interval between ≤ 24 or ≥ 38 days) without a uterine organic disease (polyps, adenomyosis, fibroids, hyperplasia/malignancy) were included. A daily diary of bleeding, questionnaires about health-related quality of life (Short Form 36) and menstrual psychophysical well-being (PGWB-1) and the Greene Climacteric Scale (GCS) (in women older than 40 years old) questionnaire were used. The presence of some premenstrual syndrome (PMS) symptoms was also evaluated. RESULTS: In the analyzed group of women (n = 15), all experienced a regularization of the menstrual cycles, with a mean duration in the three months of use of 27.1 ± 3.2 days, with a significant reduction of menstrual pain (p = 0.02) and flow (p = 0.02) intensity. Women with PMS (7/15) reported an impovement in depression, headache and abdominal pain scores (p < 0.05). No specific deterioration of different questionnaires evaluated during treatment were observed. General satisfaction with the treatment was 6.8 ± 0.3/10 on a 10 point. CONCLUSIONS: A combination of DV, VAC and D could be a promising candidate to treat menstrual irregularities without an organic cause, with a significant reduction of menstrual pain and flow intensity and possible additional benefits in PMS symptoms treatment in women at genetic risk for BC and BC survivors.
Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Síndrome Premenstrual , Enfermedades Uterinas , Vitex , Femenino , Humanos , Adulto , Progestinas , Proyectos Piloto , Neoplasias de la Mama/complicaciones , Estudios Prospectivos , Dismenorrea , Calidad de Vida , Síndrome Premenstrual/tratamiento farmacológico , Hemorragia UterinaRESUMEN
INTRODUCTION: As a folk herbal medicine, Trillium tschonoskii has been used for thousands of years. However, due to the complexity of the chemical constituents of this herb, few investigations have acquired a comprehensive understanding of its quality markers. OBJECTIVE: This study was conducted to characterise the chemical composition of T. tschonoskii and identify its potential quality markers. MATERIAL AND METHODS: A systematic analytical method based on ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to characterise the constituents of T. tschonoskii. Multivariate statistical analysis was performed to investigate the chemical differences between different tissues, as well as the relationship between chemical compositions and habitats. The potential quality markers were predicted via network pharmacology and molecular docking, then confirmed by cellular assays. RESULTS: A total of 77 compounds were co-isolated and identified, and among them, 26 were discovered from the genus Trillium for the first time. Ten batches of roots/rhizomes were explicitly clustered into five groups according to the climate types of the habitats, and the clusters of the fruits and roots/rhizomes from the same plants were independent due to the significant difference in chemical composition. Diosgenin had a good docking affinity with the relevant targets within the IL-17 pathway and cytokine pathway and could significantly inhibit TNF-α expression in hypoxic brain microvascular endothelial cells (BMECs). CONCLUSION: This is the first study to establish the chemical composition profile of T. tschonoskii by UHPLC-MS systematically, and diosgenin was confirmed to be a potential quality marker of T. tschonoskii for the treatment of headaches.
Asunto(s)
Diosgenina , Medicamentos Herbarios Chinos , Trillium , Trillium/química , Cromatografía Líquida de Alta Presión , Farmacología en Red , Células Endoteliales , Simulación del Acoplamiento Molecular , Espectrometría de MasasRESUMEN
The difficult-to-heal wounds continue to be a problem for modern medicine. Chitosan and diosgenin possess anti-inflammatory and antioxidant effects making them relevant substances for wound treatment. That is why this work aimed to study the effect of the combined application of chitosan and diosgenin on a mouse skin wound model. For the purpose, wounds (6 mm diameter) were made on mice's backs and were treated for 9 days with one of the following: 50% ethanol (control), polyethylene glycol (PEG) in 50% ethanol, chitosan and PEG in 50% ethanol (Chs), diosgenin and PEG in 50% ethanol (Dg) and chitosan, diosgenin and PEG in 50% ethanol (ChsDg). Before the first treatment and on the 3rd, 6th and 9th days, the wounds were photographed and their area was determined. On the 9th day, animals were euthanized and wounds' tissues were excised for histological analysis. In addition, the lipid peroxidation (LPO), protein oxidation (POx) and total glutathione (tGSH) levels were measured. The results showed that ChsDg had the most pronounced overall effect on wound area reduction, followed by Chs and PEG. Moreover, the application of ChsDg maintained high levels of tGSH in wound tissues, compared to other substances. It was shown that all tested substances, except ethanol, reduced POx comparable to intact skin levels. Therefore, the combined application of chitosan and diosgenin is a very promising and effective medication for wound healing.
Asunto(s)
Quitosano , Diosgenina , Ratones , Animales , Quitosano/farmacología , Diosgenina/farmacología , Cicatrización de Heridas , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Glutatión/metabolismo , Etanol/farmacologíaRESUMEN
Dioscorea zingiberensis is a perennial herb famous for the production of diosgenin, which is a valuable initial material for the industrial synthesis of steroid drugs. Sterol C26-hydroxylases, such as TfCYP72A616 and PpCYP72A613, play an important role in the diosgenin biosynthesis pathway. In the present study, a novel gene, DzCYP72A12-4, was identified as C26-hydroxylase and was found to be involved in diosgenin biosynthesis, for the first time in D. zingiberensis, using comprehensive methods. Then, the diosgenin heterogenous biosynthesis pathway starting from cholesterol was created in stable transgenic tobacco (Nicotiana tabacum L.) harboring DzCYP90B71(QPZ88854), DzCYP90G6(QPZ88855) and DzCYP72A12-4. Meanwhile, diosgenin was detected in the transgenic tobacco using an ultra-performance liquid chromatography system (Vanquish UPLC 689, Thermo Fisher Scientific, Bremen, Germany) tandem MS (Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Fisher Scientific, Bremen, Germany). Further RT-qPCR analysis showed that DzCYP72A12-4 was highly expressed in both rhizomes and leaves and was upregulated under 15% polyethylene glycol (PEG) treatment, indicating that DzCYP72A12-4 may be related to drought resistance. In addition, the germination rate of the diosgenin-producing tobacco seeds was higher than that of the negative controls under 15% PEG pressure. In addition, the concentration of malonaldehyde (MDA) was lower in the diosgenin-producing tobacco seedlings than those of the control, indicating higher drought adaptability. The results of this study provide valuable information for further research on diosgenin biosynthesis in D. zingiberensis and its functions related to drought adaptability.
Asunto(s)
Dioscorea , Diosgenina , Animales , Diosgenina/química , Dioscorea/química , Sequías , Espectrometría de Masas , Cromatografía Líquida de Alta Presión , Animales Modificados Genéticamente , Oxigenasas de Función Mixta/metabolismoRESUMEN
Diosgenin (DSG), a steroidal sapogenin derived from the tuberous roots of yam, possesses multiple biological properties. DSG has been widely used as a starting material for the industrial production of steroid drugs. Despite its significant pharmacological activities, moderate potency and low solubility hinder the medicinal application of DSG. Biotransformation is an efficient method to produce valuable derivatives of natural products. In this work, we performed the biotransformation of DSG using five Rhodococcus strains. Compounds 1-4 were isolated and identified from Rhodococcus erythropolis. Compounds 1 and 2 showed potent cytotoxicity against the A549, MCF-7, and HepG2 cell lines. Compounds 3 and 4 are novel entities, and each possesses a terminal carboxyl group attached to the spiroacetal ring. Remarkably, 4 exhibited significant cell protective effects for kidney, liver, and vascular endothelial cells, suggesting the therapeutic potential of this compound in chronic renal diseases, atherosclerosis, and hypertension. We further optimized the fermentation conditions aiming to increase the titer of compound 4. Finally, the yield of compound 4 was improved by 2.9-fold and reached 32.4 mg/L in the optimized conditions. Our study lays the foundation for further developing compound 4 as a cell protective agent.