Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446777

RESUMEN

The effective control over the vesicle formation pathways is vital for tuning its function. Recently, a liquid-liquid phase-separated intermediate (LLPS) is observed before a vesicular structure during the solvent exchange self-assembly of block copolymers. Though the understanding of polymer structures and chemical compositions on the competition between LLPS and micellization has made some progress, little is known about the role of cosolvent on it. In this study, the influence of cosolvent on the vesicle formation pathways is investigated by using dissipative particle dynamics. The results show that the range of water fraction within which the LLPS is favored will be highly dependent on the affinity difference of cosolvent to water and to polymer repeat units. The change of the cosolvent-water interaction and the water fraction impact the distribution of cosolvent in the polymer domain, the miscibility between the components in the system as well as the chain conformations, which finally induce different self-assembly behaviors. Our findings would be helpful for understanding the LLPS and controlling the morphologies of diblock polymers in solutions for further applications.


Asunto(s)
Polímeros , Agua , Solventes/química , Polímeros/química , Agua/química
2.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209153

RESUMEN

The dissipative particle dynamics simulation method is adopted to investigate the microemulsion systems prepared with surfactant (H1T1), oil (O) and water (W), which are expressed by coarse-grained models. Two topologies of O/W and W/O microemulsions are simulated with various oil and water ratios. Inverse W/O microemulsion transform to O/W microemulsion by decreasing the ratio of oil-water from 3:1 to 1:3. The stability of O/W and W/O microemulsion is controlled by shear rate, inorganic salt and the temperature, and the corresponding results are analyzed by the translucent three-dimensional structure, the mean interfacial tension and end-to-end distance of H1T1. The results show that W/O microemulsion is more stable than O/W microemulsion to resist higher inorganic salt concentration, shear rate and temperature. This investigation provides a powerful tool to predict the structure and the stability of various microemulsion systems, which is of great importance to developing new multifunctional microemulsions for multiple applications.

3.
J R Soc Interface ; 18(175): 20200834, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33530862

RESUMEN

Normal haemostasis is an important physiological mechanism that prevents excessive bleeding during trauma, whereas the pathological thrombosis especially in diabetics leads to increased incidence of heart attacks and strokes as well as peripheral vascular events. In this work, we propose a new multiscale framework that integrates seamlessly four key components of blood clotting, namely transport of coagulation factors, coagulation kinetics, blood cell mechanics and platelet adhesive dynamics, to model the development of thrombi under physiological and pathological conditions. We implement this framework to simulate platelet adhesion due to the exposure of tissue factor in a three-dimensional microchannel. Our results show that our model can simulate thrombin-mediated platelet activation in the flowing blood, resulting in platelet adhesion to the injury site of the channel wall. Furthermore, we simulate platelet adhesion in diabetic blood, and our results show that both the pathological alterations in the biomechanics of blood cells and changes in the amount of coagulation factors contribute to the excessive platelet adhesion and aggregation in diabetic blood. Taken together, this new framework can be used to probe synergistic mechanisms of thrombus formation under physiological and pathological conditions, and open new directions in modelling complex biological problems that involve several multiscale processes.


Asunto(s)
Diabetes Mellitus , Trombosis , Adhesivos , Coagulación Sanguínea , Plaquetas , Humanos
4.
Adv Colloid Interface Sci ; 294: 102455, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34102389

RESUMEN

Water is co-produced with crude oils, generally in the form of water-in-crude oil emulsions. The oil and water phases need to be separated before export. Separation is performed in gravity separators with the addition of chemical demulsifiers and, sometimes, with the application of an electric field by using an electrocoalescer. The present article reviews several aspects of electrocoalescence by considering the effect of the electric field from the molecular to a macroscopic scale: the oil-water interface, single drop effects, two drop interactions, and finally emulsions at laboratory scales. Experimental results together with Dissipative Particle Dynamics (DPD) simulation results are presented. The review begins with water-oil interface under an electric field and followed by single drop electrohydrodynamics. The electric field is shown to influence the adsorption of crude oil indigenous surface-active components (asphaltenes) due to the electrohydrodynamic (EHD) flows. The interactions between two droplets in the presence of electric field and the factors governing the drop-drop coalescence are discussed in detail. DPD simulations help to elucidate thin film breakup during (electro)-coalescence of two water droplets, where the oil film has drained out to nanometer thickness. The film is comprised of surfactant and demulsifier molecules, and the simulations capture the pores formation in the film when a DC field is applied. The results demonstrate influence of the molecular structure of the surfactant and demulsifier, and their interactions. The subsequent section describes experimental techniques to assess the resolution of crude oil emulsions at the laboratory scale. The focus is on low-field Nuclear Magnetic Resonance (LF-NMR) which allows a determination of various emulsion features such as the droplet size distribution (DSD) and the brine profile (variation of the concentration of water with the height of the emulsion sample) and their evolution with time. Application of the technique in emulsion treatment involving chemical demulsifiers and electric field is presented. The review concludes with description of commercial industrial electrocoalecers such as the Vessel Internal Electrostatic Coalescer (VIEC) and the Compact Electrostatic Coalescer (CEC).

5.
Polymers (Basel) ; 12(4)2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295222

RESUMEN

Previous experiments of water vapor penetration into polyelectrolyte membrane (PEM) thin films have indicated the influence of the water concentration gradient and polymer chemistry on the interface evolution, which will eventually affect the efficiency of the fuel cell operation. Moreover, PEMs of different side chains have shown differences in water cluster structure and diffusion. The evolution of the interface between water and polyelectrolyte membranes (PEMs), which are used in fuel cells and flow batteries, of three different side-chain lengths has been studied using dissipative particle dynamics (DPD) simulations. Higher and faster water uptake is usually beneficial in the operation of fuel cells and flow batteries. The simulated water uptake increased with the increasing side chain length. In addition, the water uptake was rapid initially and slowed down afterwards, which is in agreement with the experimental observations. The water cluster formation rate was also found to increase with the increasing side-chain length, whereas the water cluster shapes were unaffected. Water diffusion in the membranes, which affects proton mobility in the PEMs, increased with the side-chain length at all distances from the interface. In conclusion, side-chain length was found to have a strong influence on the interface water structure and water penetration rates, which can be harnessed for the better design of PEMs. Since the PEM can undergo cycles of dehydration and rehydration, faster water uptake increases the efficiency of these devices. We show that the longer side chains with backbone structure similar to Nafion should be more suitable for fuel cell/flow battery usage.

6.
J Colloid Interface Sci ; 559: 76-87, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31610307

RESUMEN

Exploring and controlling chemical reactions in compartments opens new platforms for designing bioinspired catalysts and energy-autonomous systems. Aqueous polymer networks or hydrogels serve as a perfect model for biological tissues, allowing systematic investigations of chemical transformations in compartments. Herein, we report the synthesis of a versatile, colloidal microgel catalyst containing covalently bound l-proline as an organocatalyst. The key finding of our work is that the catalytic activity can be tuned by adjusting the distribution of the organocatalyst in the microgel network as well as the properties of the solvent. We demonstrate that l-proline groups integrated into microgels enable the reaction of 4-nitrobenzaldehyde and cyclohexanone in a heterogeneous reaction mixture in which free l-proline is not active. By controlling the localization of the l-proline groups within the microgel network (core or corona), the rate of the aldol reaction in homogenous and heterogeneous reaction mixtures can be modulated. Furthermore, microgels with covalently attached catalysts can be recycled and reused in sequential catalytic runs without deterioration of the catalyst performance in terms of activity and selectivity. The internal structure of the microgel in heterogeneous reaction mixtures was studied by computer simulations.


Asunto(s)
Materiales Biomiméticos/química , Coloides/química , Hidrogeles/química , Prolina/química , Aldehídos/química , Benzaldehídos/química , Catálisis , Simulación por Computador , Reactivos de Enlaces Cruzados/química , Ciclohexanonas/química , Cinética , Polimerizacion , Solventes/química , Agua
7.
Colloids Surf B Biointerfaces ; 163: 29-40, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29278801

RESUMEN

An amphiphilic copolymer poly(ε-caprolactone)-ss-poly(2-(dimethylamino) ethyl methacrylate), PCL-SS-PDMAEMA, was designed and synthesized using ROP and ARGET ATRP methods. Dual stimulus responsive micelles were prepared by the self-assembly of PCL-SS-PDMAEMA. PDMAEMA could respond to acid conditions with protonation, followed by enhanced hydrophilicity and swelling of the micellar shell. In addition, the cleavable joint disulfide bond between the core and shell was disrupted when exposed to an abundance of the reductant reductive glutathione GSH, leading to the disassembly of the micellar structure. The smart response behavior can be used for intracellular controlled drug release in tumor cells. In terms of "theranostics" with higher therapy effect, the tool for tumor imaging and diagnose through computed tomography (CT) was considered with the loading of gold nanoparticles (GNPs). GNPs with good distribution were prepared by means of in situ reduction by PDMAEMA block and stabilized by the micelles. Polymeric micelles were used to load the anticancer drug doxorubicin (DOX) in the hydrophobic core and GNPs in the hydrophilic PDMAEMA shell. Subsequently, the micellar theranostics platform combining chemotherapy and CT diagnose was obtained. The pH- or redox-triggered drug release profiles suggesting that the DOX/GNPs-loaded micelles facilitated controlled release in response to different simulated microenvironments. Cellular uptake study was carried out, indicating that the micelles could be fast internalized within several hours. MTT assay showing significant inhibition against HepG2 and MCF-7 cells for the DOX/GNPs-loaded micelles. Finally, the in vitro CT imaging assay indicated the good CT diagnosis potential of DOX/GNPs-loaded micelles. The micelle simultaneously loaded with DOX and GNPs represent a promising theranostics platform for efficient cancer chemotherapy and diagnosis.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Preparaciones de Acción Retardada/síntesis química , Doxorrubicina/farmacología , Portadores de Fármacos/síntesis química , Nanopartículas del Metal/química , Tomografía Computarizada por Rayos X/métodos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Composición de Medicamentos/métodos , Liberación de Fármacos , Glutatión/química , Glutatión/metabolismo , Oro/química , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Cinética , Células MCF-7 , Nanopartículas del Metal/ultraestructura , Metacrilatos/química , Micelas , Nylons/química , Poliésteres/química , Nanomedicina Teranóstica/métodos
8.
Polymers (Basel) ; 10(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30961149

RESUMEN

Modifications to improve thinning approximation (TA) were considered in order to calculate two-dimensional scattering patterns (2DSPs) for dissipative particle dynamics (DPD) simulations of polymer melts under a shear flow. We proposed multipoint TA and adaptive TA because the bond lengths in DPD chains vary widely when compared to those in Kremer⁻Grest (KG) chains, and the effectiveness of these two types of TA for the two major DPD parameter sets were investigated. In this paper, we report our findings on the original DPD model with soft bonds and that with rigid bonds. Based on the behavior of the 2DSPs and the distribution of orientations of the bond vectors, two spot patterns originating from the oriented chain correlations were observed when distinct distributions of the highly oriented bond vectors in the shear direction were obtained. For multipoint TA, we concluded that at least two additional midpoints ( n mid ≥ 2 ) are required to clearly observe the two spot patterns. For adaptive TA, a dividing distance of l ATA ≤ 0.4 is sufficient for clear observation, which is consistent with the requirement of n mid ≥ 2 for multipoint TA.

9.
Food Chem ; 256: 311-318, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606454

RESUMEN

α-Linolenic acid (ALA)-loaded microemulsion (ME) was prepared from isoamyl acetate, polyoxyethylene ether 35 (EL-35), ethanol and water. The dynamic phase behaviour was simulated using dissipative particle dynamics (DPD), which showed that spherical ME was formed at water/oil ratios of 1:9 and 9:1, while a lamellar structure with distinctive water-course and oil layer appeared at ratios of 3:7, 5:5, and 7:3. Phase stabilizing and anti-oxidation effect of environmental stresses on ALA-loaded microemulsion were investigated. Results showed that the ME region was large and had good environmental tolerance. Subsequently, the investigation of anti-oxidation stability revealed that more than 60% ALA of ALA-loaded ME could be protected from oxidation under environmental stresses. Furthermore, ALA-loaded ME was applied in aqueous-based foods. The transparency, precipitate, stratification and phase separation were used to evaluate influence of ME on product properties, confirming great feasibility and stability of ALA-loaded ME for practical applications.


Asunto(s)
Ambiente , Modelos Teóricos , Aceites/química , Estrés Fisiológico , Agua/química , Ácido alfa-Linolénico/química , Emulsiones , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA