Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.355
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(10): 1694-1708.e19, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35447074

RESUMEN

Immunotherapy is a promising treatment for triple-negative breast cancer (TNBC), but patients relapse, highlighting the need to understand the mechanisms of resistance. We discovered that in primary breast cancer, tumor cells that resist T cell attack are quiescent. Quiescent cancer cells (QCCs) form clusters with reduced immune infiltration. They also display superior tumorigenic capacity and higher expression of chemotherapy resistance and stemness genes. We adapted single-cell RNA-sequencing with precise spatial resolution to profile infiltrating cells inside and outside the QCC niche. This transcriptomic analysis revealed hypoxia-induced programs and identified more exhausted T cells, tumor-protective fibroblasts, and dysfunctional dendritic cells inside clusters of QCCs. This uncovered differential phenotypes in infiltrating cells based on their intra-tumor location. Thus, QCCs constitute immunotherapy-resistant reservoirs by orchestrating a local hypoxic immune-suppressive milieu that blocks T cell function. Eliminating QCCs holds the promise to counteract immunotherapy resistance and prevent disease recurrence in TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Inmunosupresores/uso terapéutico , Inmunoterapia , Recurrencia Local de Neoplasia , Linfocitos T/patología , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral
2.
Cell ; 177(2): 399-413.e12, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30853215

RESUMEN

Host defenses against pathogens are energetically expensive, leading ecological immunologists to postulate that they might participate in energetic trade-offs with other maintenance programs. However, the metabolic costs of immunity and the nature of physiologic trade-offs it engages are largely unknown. We report here that activation of immunity causes an energetic trade-off with the homeothermy (the stable maintenance of core temperature), resulting in hypometabolism and hypothermia. This immunity-induced physiologic trade-off was independent of sickness behaviors but required hematopoietic sensing of lipopolysaccharide (LPS) via the toll-like receptor 4 (TLR4). Metabolomics and genome-wide expression profiling revealed that distinct metabolic programs supported entry and recovery from the energy-conserving hypometabolic state. During bacterial infections, hypometabolic states, which could be elicited by competition for energy between maintenance programs or energy restriction, promoted disease tolerance. Together, our findings suggest that energy-conserving hypometabolic states, such as dormancy, might have evolved as a mechanism of tissue tolerance.


Asunto(s)
Regulación de la Temperatura Corporal/inmunología , Inmunidad Innata/fisiología , Inmunidad/fisiología , Animales , Regulación de la Temperatura Corporal/fisiología , Metabolismo Energético/inmunología , Metabolismo Energético/fisiología , Femenino , Tolerancia Inmunológica/inmunología , Tolerancia Inmunológica/fisiología , Masculino , Metabolismo/inmunología , Ratones , Ratones Endogámicos C57BL
3.
Cell ; 179(2): 448-458.e11, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31564454

RESUMEN

Bacteria and archaea possess a striking diversity of CRISPR-Cas systems divided into six types, posing a significant barrier to viral infection. As part of the virus-host arms race, viruses encode protein inhibitors of type I, II, and V CRISPR-Cas systems, but whether there are natural inhibitors of the other, mechanistically distinct CRISPR-Cas types is unknown. Here, we present the discovery of a type III CRISPR-Cas inhibitor, AcrIIIB1, encoded by the Sulfolobus virus SIRV2. AcrIIIB1 exclusively inhibits CRISPR-Cas subtype III-B immunity mediated by the RNase activity of the accessory protein Csx1. AcrIIIB1 does not appear to bind Csx1 but, rather, interacts with two distinct subtype III-B effector complexes-Cmr-α and Cmr-γ-which, in response to protospacer transcript binding, are known to synthesize cyclic oligoadenylates (cOAs) that activate the Csx1 "collateral" RNase. Taken together, we infer that AcrIIIB1 inhibits type III-B CRISPR-Cas immunity by interfering with a Csx1 RNase-related process.


Asunto(s)
Proteínas Asociadas a CRISPR/fisiología , Sistemas CRISPR-Cas , Interacciones Huésped-Patógeno , Rudiviridae/metabolismo , Sulfolobus/virología , Ribonucleasas/metabolismo
4.
Cell ; 169(5): 807-823.e19, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28479188

RESUMEN

Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.


Asunto(s)
Células Madre Hematopoyéticas/citología , Transducción de Señal , Tretinoina/farmacología , Vitamina A/administración & dosificación , Animales , Vías Biosintéticas , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Supervivencia Celular , Dieta , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Poli I-C/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análisis de la Célula Individual , Estrés Fisiológico , Vitamina A/farmacología , Vitaminas/administración & dosificación , Vitaminas/farmacología
5.
Genes Dev ; 38(1-2): 31-45, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38242633

RESUMEN

Bacterial spores can remain dormant for decades yet rapidly germinate and resume growth in response to nutrients. GerA family receptors that sense and respond to these signals have recently been shown to oligomerize into nutrient-gated ion channels. Ion release initiates exit from dormancy. Here, we report that a distinct ion channel, composed of SpoVAF (5AF) and its newly discovered partner protein, YqhR (FigP), amplifies the response. At high germinant concentrations, 5AF/FigP accelerate germination; at low concentrations, this complex becomes critical for exit from dormancy. 5AF is homologous to the channel-forming subunit of GerA family receptors and is predicted to oligomerize around a central pore. 5AF mutations predicted to widen the channel cause constitutive germination during spore formation and membrane depolarization in vegetative cells. Narrow-channel mutants are impaired in germination. A screen for suppressors of a constitutively germinating 5AF mutant identified FigP as an essential cofactor of 5AF activity. We demonstrate that 5AF and FigP interact and colocalize with GerA family receptors in spores. Finally, we show that 5AF/FigP accelerate germination in B. subtilis spores that have nutrient receptors from another species. Our data support a model in which nutrient-triggered ion release by GerA family receptors activates 5AF/FigP ion release, amplifying the response to germinant signals.


Asunto(s)
Bacillus subtilis , Proteínas de la Membrana , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de la Membrana/genética , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo
6.
Genes Dev ; 38(1-2): 1-3, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316519

RESUMEN

Germination is the process by which spores emerge from dormancy. Although spores can remain dormant for decades, the study of germination is an active field of research. In this issue of Genes & Development, Gao and colleagues (pp. 31-45) address a perplexing question: How can a dormant spore initiate germination in response to environmental cues? Three distinct complexes are involved: GerA, a germinant-gated ion channel; 5AF/FigP, a second ion channel required for amplification; and SpoVA, a channel for dipicolinic acid (DPA). DPA release is followed by rehydration of the spore core, thus allowing the resumption of metabolic activity.


Asunto(s)
Proteínas Bacterianas , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Esporas/metabolismo , Canales Iónicos/metabolismo , Bacillus subtilis/metabolismo
7.
Cell ; 167(5): 1296-1309.e10, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27839867

RESUMEN

The ability of cells to count and remember their divisions could underlie many alterations that occur during development, aging, and disease. We tracked the cumulative divisional history of slow-cycling hematopoietic stem cells (HSCs) throughout adult life. This revealed a fraction of rarely dividing HSCs that contained all the long-term HSC (LT-HSC) activity within the aging HSC compartment. During adult life, this population asynchronously completes four traceable symmetric self-renewal divisions to expand its size before entering a state of dormancy. We show that the mechanism of expansion involves progressively lengthening periods between cell divisions, with long-term regenerative potential lost upon a fifth division. Our data also show that age-related phenotypic changes within the HSC compartment are divisional history dependent. These results suggest that HSCs accumulate discrete memory stages over their divisional history and provide evidence for the role of cellular memory in HSC aging.


Asunto(s)
Envejecimiento/patología , Células de la Médula Ósea/citología , Células Madre Hematopoyéticas/citología , Animales , Trasplante de Médula Ósea , Ciclo Celular , División Celular , Ratones , Ratones Endogámicos C57BL , Glicoproteína IIb de Membrana Plaquetaria/metabolismo
8.
Mol Cell ; 83(22): 4158-4173.e7, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37949068

RESUMEN

Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo
9.
Genes Dev ; 36(9-10): 634-646, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654455

RESUMEN

In response to starvation, endospore-forming bacteria differentiate into stress-resistant spores that can remain dormant for years yet rapidly germinate and resume growth in response to nutrients. The small molecule dipicolinic acid (DPA) plays a central role in both the stress resistance of the dormant spore and its exit from dormancy during germination. The spoVA locus is required for DPA import during sporulation and has been implicated in its export during germination, but the molecular bases are unclear. Here, we define the minimal set of proteins encoded in the Bacillus subtilis spoVA operon required for DPA import and demonstrate that these proteins form a membrane complex. Structural modeling of these components combined with mutagenesis and in vivo analysis reveal that the C and Eb subunits form a membrane channel, while the D subunit functions as a cytoplasmic plug. We show that point mutations that impair the interactions between D and the C-Eb membrane complex reduce the efficiency of DPA import during sporulation and reciprocally accelerate DPA release during germination. Our data support a model in which DPA transport into spores involves cycles of unplugging and then replugging the C-Eb membrane channel, while nutrient detection during germination triggers DPA release by unplugging it.


Asunto(s)
Proteínas Bacterianas , Esporas Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Ácidos Picolínicos/metabolismo , Esporas Bacterianas/genética
10.
Physiol Rev ; 101(3): 797-855, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356915

RESUMEN

Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.


Asunto(s)
Neoplasias Óseas/secundario , Huesos/patología , Animales , Biomarcadores/metabolismo , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Huesos/metabolismo , Denosumab/uso terapéutico , Humanos
11.
Genes Dev ; 34(9-10): 637-649, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32241802

RESUMEN

The emergence of drug resistance is a major obstacle for the success of targeted therapy in melanoma. Additionally, conventional chemotherapy has not been effective as drug-resistant cells escape lethal DNA damage effects by inducing growth arrest commonly referred to as cellular dormancy. We present a therapeutic strategy termed "targeted chemotherapy" by depleting protein phosphatase 2A (PP2A) or its inhibition using a small molecule inhibitor (1,10-phenanthroline-5,6-dione [phendione]) in drug-resistant melanoma. Targeted chemotherapy induces the DNA damage response without causing DNA breaks or allowing cellular dormancy. Phendione treatment reduces tumor growth of BRAFV600E-driven melanoma patient-derived xenografts (PDX) and diminishes growth of NRASQ61R-driven melanoma, a cancer with no effective therapy. Remarkably, phendione treatment inhibits the acquisition of resistance to BRAF inhibition in BRAFV600E PDX highlighting its effectiveness in combating the advent of drug resistance.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Pirazoles/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Melanoma/enzimología , Melanoma/fisiopatología , Proteína Fosfatasa 2/antagonistas & inhibidores
12.
Mol Cell ; 73(1): 143-156.e4, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472191

RESUMEN

Cell dormancy is a widespread mechanism used by bacteria to evade environmental threats, including antibiotics. Here we monitored bacterial antibiotic tolerance and regrowth at the single-cell level and found that each individual survival cell shows different "dormancy depth," which in return regulates the lag time for cell resuscitation after removal of antibiotic. We further established that protein aggresome-a collection of endogenous protein aggregates-is an important indicator of bacterial dormancy depth, whose formation is promoted by decreased cellular ATP level. For cells to leave the dormant state and resuscitate, clearance of protein aggresome and recovery of proteostasis are required. We revealed that the ability to recruit functional DnaK-ClpB machineries, which facilitate protein disaggregation in an ATP-dependent manner, determines the lag time for bacterial regrowth. Better understanding of the key factors regulating bacterial regrowth after surviving antibiotic attack could lead to new therapeutic strategies for combating bacterial antibiotic tolerance.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Metabolismo Energético/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Agregado de Proteínas , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Análisis de la Célula Individual , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968100

RESUMEN

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Transducción de Señal , Temperatura
14.
Proc Natl Acad Sci U S A ; 121(29): e2406194121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990942

RESUMEN

Animals can alter their body compositions in anticipation of dormancy to endure seasons with limited food availability. Accumulation of lipid reserves, mostly in the form of triglycerides (TAGs), is observed during the preparation for dormancy in diverse animals, including insects (diapause) and mammals (hibernation). However, the mechanisms involved in the regulation of lipid accumulation and the ecological consequences of failure to accumulate adequate lipid stores in preparation for animal dormancy remain understudied. In the broadest sense, lipid reserves can be accumulated in two ways: the animal either receives lipids directly from the environment or converts the sugars and amino acids present in food to fatty acids through de novo lipogenesis and then to TAGs. Here, we show that preparation for diapause in the Colorado potato beetle (Leptinotarsa decemlineata) involves orchestrated upregulation of genes involved in lipid metabolism with a transcript peak in 8- and 10-d-old diapause-destined insects. Regulation at the transcript abundance level was associated with the accumulation of substantial fat stores. Furthermore, the knockdown of de novo lipogenesis enzymes (ACCase and FAS-1) prolonged the preparatory phase, while the knockdown of fatty acid transportation genes shortened the preparatory phase. Our findings suggest a model in which the insects dynamically decide when to transition from the preparation phase into diapause, depending on the progress in lipid accumulation through de novo lipogenesis.


Asunto(s)
Escarabajos , Lipogénesis , Estaciones del Año , Animales , Lipogénesis/fisiología , Escarabajos/metabolismo , Escarabajos/genética , Escarabajos/fisiología , Triglicéridos/metabolismo , Metabolismo de los Lípidos , Diapausa de Insecto , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
15.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37218457

RESUMEN

Female insects can enter reproductive diapause, a state of suspended egg development, to conserve energy under adverse environments. In many insects, including the fruit fly, Drosophila melanogaster, reproductive diapause, also frequently called reproductive dormancy, is induced under low-temperature and short-day conditions by the downregulation of juvenile hormone (JH) biosynthesis in the corpus allatum (CA). In this study, we demonstrate that neuropeptide Diuretic hormone 31 (DH31) produced by brain neurons that project into the CA plays an essential role in regulating reproductive dormancy by suppressing JH biosynthesis in adult D. melanogaster. The CA expresses the gene encoding the DH31 receptor, which is required for DH31-triggered elevation of intracellular cAMP in the CA. Knocking down Dh31 in these CA-projecting neurons or DH31 receptor in the CA suppresses the decrease of JH titer, normally observed under dormancy-inducing conditions, leading to abnormal yolk accumulation in the ovaries. Our findings provide the first molecular genetic evidence demonstrating that CA-projecting peptidergic neurons play an essential role in regulating reproductive dormancy by suppressing JH biosynthesis.


Asunto(s)
Drosophila melanogaster , Hormonas de Insectos , Animales , Femenino , Corpora Allata , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Hormonas Juveniles , Neuronas , Hormonas de Insectos/genética , Hormonas de Insectos/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Reproducción
16.
Plant J ; 117(5): 1305-1316, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169533

RESUMEN

Seeds of the root parasitic plant Striga hermonthica undergo a conditioning process under humid and warm environments before germinating in response to host-released stimulants, particularly strigolactones (SLs). The plant hormone abscisic acid (ABA) regulates different growth and developmental processes, and stress response; however, its role during Striga seed germination and early interactions with host plants is under-investigated. Here, we show that ABA inhibited Striga seed germination and that hindering its biosynthesis induced conditioning and germination in unconditioned seeds, which was significantly enhanced by treatment with the SL analog rac-GR24. However, the inhibitory effect of ABA remarkably decreased during conditioning, confirming the loss of sensitivity towards ABA in later developmental stages. ABA measurement showed a substantial reduction of its content during the early conditioning stage and a significant increase upon rac-GR24-triggered germination. We observed this increase also in released seed exudates, which was further confirmed by using the Arabidopsis ABA-reporter GUS marker line. Seed exudates of germinated seeds, containing elevated levels of ABA, impaired the germination of surrounding Striga seeds in vitro and promoted root growth of a rice host towards germinated Striga seeds. Application of ABA as a positive control caused similar effects, indicating its function in Striga/Striga and Striga/host communications. In summary, we show that ABA is an essential player during seed dormancy and germination processes in Striga and acts as a rhizospheric signal likely to support host infestation.


Asunto(s)
Arabidopsis , Striga , Ácido Abscísico/farmacología , Germinación , Striga/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Semillas
17.
Plant J ; 117(3): 909-923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37953711

RESUMEN

DELAY OF GERMINATION 1 is a key regulator of dormancy in flowering plants before seed germination. Bryophytes develop haploid spores with an analogous function to seeds. Here, we investigate whether DOG1 function during germination is conserved between bryophytes and flowering plants and analyse the underlying mechanism of DOG1 action in the moss Physcomitrium patens. Phylogenetic and in silico expression analyses were performed to identify and characterise DOG1 domain-containing genes in P. patens. Germination assays were performed to characterise a Ppdog1-like1 mutant, and replacement with AtDOG1 was carried out. Yeast two-hybrid assays were used to test the interaction of the PpDOG1-like protein with DELLA proteins from P. patens and A. thaliana. P. patens possesses nine DOG1 domain-containing genes. The DOG1-like protein PpDOG1-L1 (Pp3c3_9650) interacts with PpDELLAa and PpDELLAb and the A. thaliana DELLA protein AtRGA in yeast. Protein truncations revealed the DOG1 domain as necessary and sufficient for interaction with PpDELLA proteins. Spores of Ppdog1-l1 mutant germinate faster than wild type, but replacement with AtDOG1 reverses this effect. Our data demonstrate a role for the PpDOG1-LIKE1 protein in moss spore germination, possibly alongside PpDELLAs. This suggests a conserved DOG1 domain function in germination, albeit with differential adaptation of regulatory networks in seed and spore germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Germinación/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Latencia en las Plantas/genética , Filogenia , Esporas Fúngicas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
Plant J ; 118(2): 584-600, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141174

RESUMEN

Phenotyping of model organisms grown on Petri plates is often carried out manually, despite the procedures being time-consuming and laborious. The main reason for this is the limited availability of automated phenotyping facilities, whereas constructing a custom automated solution can be a daunting task for biologists. Here, we describe SPIRO, the Smart Plate Imaging Robot, an automated platform that acquires time-lapse photographs of up to four vertically oriented Petri plates in a single experiment, corresponding to 192 seedlings for a typical root growth assay and up to 2500 seeds for a germination assay. SPIRO is catered specifically to biologists' needs, requiring no engineering or programming expertise for assembly and operation. Its small footprint is optimized for standard incubators, the inbuilt green LED enables imaging under dark conditions, and remote control provides access to the data without interfering with sample growth. SPIRO's excellent image quality is suitable for automated image processing, which we demonstrate on the example of seed germination and root growth assays. Furthermore, the robot can be easily customized for specific uses, as all information about SPIRO is released under open-source licenses. Importantly, uninterrupted imaging allows considerably more precise assessment of seed germination parameters and root growth rates compared with manual assays. Moreover, SPIRO enables previously technically challenging assays such as phenotyping in the dark. We illustrate the benefits of SPIRO in proof-of-concept experiments which yielded a novel insight on the interplay between autophagy, nitrogen sensing, and photoblastic response.


Asunto(s)
Germinación , Plantones , Fenotipo , Germinación/fisiología , Semillas , Procesamiento de Imagen Asistido por Computador
19.
Artículo en Inglés | MEDLINE | ID: mdl-38963567

RESUMEN

Much of the fatality of tumors is linked to the growth of metastases, which can emerge months to years after apparently successful treatment of primary tumors. Metastases arise from disseminated tumor cells (DTCs), which disperse through the body in a dormant state to seed distant sites. While some DTCs lodge in pre-metastatic niches (PMNs) and rapidly develop into metastases, other DTCs settle in distinct microenvironments that maintain them in a dormant state. Subsequent awakening, induced by changes in the microenvironment of the DTC, causes outgrowth of metastases. Hence, there has been extensive investigation of the factors causing survival and subsequent awakening of DTCs, with the goal of disrupting these processes to decrease cancer lethality. We here provide a detailed overview of recent developments in understanding of the factors controlling dormancy and awakening in the lung, a common site of metastasis for many solid tumors. These factors include dynamic interactions between DTCs and diverse epithelial, mesenchymal, and immune cell populations resident in the lung. Paradoxically, among key triggers for metastatic outgrowth, lung tissue remodeling arising from damage induced by the treatment of primary tumors play a significant role. In addition, growing evidence emphasizes roles for inflammation and aging in opposing the factors that maintain dormancy. Finally, we discuss strategies being developed or employed to reduce the risk of metastatic recurrence.

20.
Cancer Metastasis Rev ; 43(1): 481-499, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170347

RESUMEN

Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Plasticidad de la Célula , Transición Epitelial-Mesenquimal , Calidad de Vida , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA