Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.509
Filtrar
Más filtros

Intervalo de año de publicación
1.
Small ; 20(12): e2306942, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939315

RESUMEN

Cellulose foams are in high demand in an era of prioritizing environmental consciousness. Yet, transferring the exceptional mechanical properties of cellulose fibers into a cellulose network remains a significant challenge. To address this challenge, an innovative multiscale design is developed for producing cellulose foam with exceptional network integrity. Specifically, this design relies on a combination of physical cross-linking of the microfibrillated cellulose (MFC) networks by cellulose nanofibril (CNF) and aluminum ion (Al3+), as well as self-densification of the cellulose induced by ice-crystal templating, physical cross-linking, solvent exchange, and evaporation. The resultant cellulose foam demonstrates a low density of 40.7 mg cm-3, a high porosity of 97.3%, and a robust network with high compressive modulus of 1211.5 ± 60.6 kPa and energy absorption of 77.8 ± 1.9 kJ m-3. The introduction of CNF network and Al3+ cross-linking into foam also confers excellent wet stability and flame self-extinguish ability. Furthermore, the foam can be easily biodegraded in natural environments , re-entering the ecosystem's carbon cycle. This strategy yields a cellulose foam with a robust network and outstanding environmental durability, opening new possibilities for the advancement of high-performance foam materials.

2.
Small ; : e2402819, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837885

RESUMEN

Janus-micromotors, as efficient self-propelled materials, have garnered considerable attention for their potential applications in non-agitated liquids. However, the design of micromotors is still challenging and with limited approaches, especially concerning speed and mobility in complex environments. Herein, a two-step spray-drying approach encompassing symmetrical assembly and asymmetrical assembly is introduced to fabricate the metal-organic framework (MOF) Janus-micromotors with hierarchical pores. Using a spray-dryer, a symmetrical assembly is first employed to prepare macro-meso-microporous UiO-66 with intrinsic micropores (<0.5 nm) alongside mesopores (≈24 nm) and macropores (≈400 nm). Subsequent asymmetrical assembly yielded the UiO-66-Janus loaded with the reducible nanoparticles, which underwent oxidation by KMnO4 to form MnO2 micromotors. The micromotors efficiently generated O2 for self-propulsion in H2O2, exhibiting ultrahigh speeds (1135 µm s-1, in a 5% H2O2 solution) and unique anti-gravity diffusion effects. In a specially designed simulated sand-water system, the micromotors traversed from the lower water to the upper water through the sand layer. In particular, the as-prepared micromotors demonstrated optimal efficiency in pollutant removal, with an adsorption kinetic coefficient exceeding five times that of the micromotors only possessing micropores and mesopores. This novel strategy fabricating Janus-micromotors shows great potential for efficient treatment in complex environments.

3.
Small ; : e2309645, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716922

RESUMEN

Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, ß-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.

4.
Small ; : e2310813, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700050

RESUMEN

The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.

5.
Small ; 20(11): e2307959, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888793

RESUMEN

The presence of numerous inhibitors in blood makes their use in nucleic acid amplification techniques difficult. Current methods for extracting and purifying pathogenic DNA from blood involve removal of inhibitors, resulting in low and inconsistent DNA recovery rates. To address this issue, a biphasic method is developed that simultaneously achieves inhibitor inactivation and DNA amplification without the need for a purification step. Inhibitors are physically trapped in the solid-phase dried blood matrix by blood drying, while amplification reagents can move into the solid nano-porous dried blood and initiate the amplification. It is demonstrated that the biphasic method has significant improvement in detection limits for bacteria such as Escherichia coli, Methicillin-resistant Staphylococcus aureus, Methicillin-Sensitive Staphylococcus aureus using loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA). Several factors, such as drying time, sample volume, and material properties are characterized to increase sensitivity and expand the application of the biphasic assay to blood diagnostics. With further automation, this biphasic technique has the potential to be used as a diagnostic platform for the detection of pathogens eliminating lengthy culture steps.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/genética , Reacción en Cadena de la Polimerasa , Técnicas de Amplificación de Ácido Nucleico/métodos , Staphylococcus aureus/genética , Escherichia coli/genética , Sensibilidad y Especificidad
6.
Small ; : e2400369, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558327

RESUMEN

Hydrogel electrolyte can endow supercapacitors with excellent flexibility, which has developed rapidly in recent years. However, the water-rich structures of hydrogel electrolyte are easy to freeze at subfreezing and dry at high temperatures, which will affect its energy storage characteristics. The low energy density of micro supercapacitors also hinders their development. Herein, a strategy is proposed to reduce the free water activity in the hydrogel to improve the operating voltage and the energy density of the device, which is achieved through the synergistic effect of the hydrogel skeleton, N, N'-dimethylformamide (DMF), NaClO4 and water. High concentrations of DMF and NaClO4 are introduced into sodium alginate/polyacrylamide (SA/PAAM) hydrogel through solvent exchange to obtain SA/PAAM/DMF/NaClO4 hydrogel electrolyte, which exhibited a high ionic conductivity of 82.1 mS cm-1, a high breaking strength of 563.2 kPa, and a wide voltage stability window of 3.5 V. The supercapacitor devices are assembled by the process of direct adhesion of the hydrogel electrolyte and  laser induced graphene (LIG). The micro-supercapacitor exhibited an operating voltage of 2.0 V, with a specific capacitance of 2.41 mF cm-2 and a high energy density of 1.34 µWh cm-2, and it also exhibit a high cycle stability, good flexibility, and integration performance.

7.
Small ; 20(5): e2306595, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37732373

RESUMEN

Iron-based sulfate cathodes of alluaudite Na2+2 δ Fe2- δ (SO4 )3 (NFS) in sodium-ion batteries with low cost, steady cycling performance, and high voltage are promising for grid-scale energy storage systems. However, the poor electronic conductivity and the limited understanding of the phase-evolution of precursors hinder obtaining high-rate capacity and the pure phase. Distinctive NFS@C@n%CNTs (n = 1, 2, 5, 10) sphere-shell conductive networks composite cathode materials are constructed creatively, which exhibit superior reversible capacity and rate performance. In detail, the designed NFS@C@2%CNTs cathode delivers an initial discharge capacity of 95.9 mAh g-1 at 0.05 C and up to 60 mAh g-1 at a high rate of 10 C. The full NFS@C@2%CNTs//HC cell delivers a practical operating voltage of 3.5 V and mass-energy density of 140 Wh kg-1 at 0.1 C, and it can also retain 67.37 mAh g-1 with a capacity retention rate of 96.4% after 200 cycles at 2 C. On the other hand, a novel combination reaction mechanism is first revealed for forming NFS from the mixtures of Na2 Fe(SO4 )2 ·nH2 O (n = 2, 4) and FeSO4 ·H2 O during the sintering process. The inspiring results would provide a novel perspective to synthesize high-performance alluaudite sulfate and analogs by aqueous methods.

8.
Appl Environ Microbiol ; 90(6): e0078924, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38780259

RESUMEN

Desiccation tolerance of pathogenic bacteria is one strategy for survival in harsh environments, which has been studied extensively. However, the subsequent survival behavior of desiccation-stressed bacterial pathogens has not been clarified in detail. Herein, we demonstrated that the effect of desiccation stress on the thermotolerance of Escherichia coli O157:H7 in ground beef was limited, and its thermotolerance did not increase. E. coli O157:H7 was inoculated into a ground beef hamburger after exposure to desiccation stress. We combined a bacterial inactivation model with a heat transfer model to predict the survival kinetics of desiccation-stressed E. coli O157:H7 in a hamburger. The survival models were developed using the Weibull model for two-dimensional pouched thin beef patties (ca. 1 mm), ignoring the temperature gradient in the sample, and a three-dimensional thick beef patty (ca. 10 mm), considering the temperature gradient in the sample. The two-dimensional (2-D) and three-dimensional (3-D) models were subjected to stochastic variations of the estimated Weibull parameters obtained from 1,000 replicated bootstrapping based on isothermal experimental observations as uncertainties. Furthermore, the 3-D model incorporated temperature gradients in the sample calculated using the finite element method. The accuracies of both models were validated via experimental observations under non-isothermal conditions using 100 predictive simulations. The root mean squared errors in the log survival ratio of the 2-D and 3-D models for 100 simulations were 0.25-0.53 and 0.32-2.08, respectively, regardless of the desiccation stress duration (24 or 72 h). The developed approach will be useful for setting appropriate process control measures and quantitatively assessing food safety levels.IMPORTANCEAcquisition of desiccation stress tolerance in bacterial pathogens might increase thermotolerance as well and increase the risk of foodborne illnesses. If a desiccation-stressed pathogen enters a kneaded food product via cross-contamination from a food-contact surface and/or utensils, proper estimation of the internal temperature changes in the kneaded food during thermal processing is indispensable for predicting the survival kinetics of desiccation-stressed bacterial cells. Various survival kinetics prediction models that consider the uncertainty or variability of pathogenic bacteria during thermal processing have been developed. Furthermore, heat transfer processes in solid food can be estimated using finite element method software. The present study demonstrated that combining a heat transfer model with a bacterial inactivation model can predict the survival kinetics of desiccation-stressed bacteria in a ground meat sample, corresponding to the temperature gradient in a solid sample during thermal processing. Combining both modeling procedures would enable the estimation of appropriate bacterial survival kinetics in solid food.


Asunto(s)
Desecación , Escherichia coli O157 , Viabilidad Microbiana , Escherichia coli O157/fisiología , Escherichia coli O157/crecimiento & desarrollo , Bovinos , Cinética , Calor , Animales , Procesos Estocásticos , Microbiología de Alimentos , Modelos Biológicos , Termotolerancia , Productos de la Carne/microbiología
9.
J Exp Bot ; 75(5): 1580-1600, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38035729

RESUMEN

Spikelet degeneration in rice (Oryza sativa L.) is a serious physiological defect, and can be regulated by soil moisture status and phytohormones. This study investigated the possibility that brassinosteroids (BRs) in collaboration with abscisic acid (ABA) are involved in mediating the effect of soil drying during meiosis on spikelet degeneration in rice. Three rice cultivars were field grown and three irrigation regimes including well watered (WW), moderate soil drying (MD), and severe soil drying (SD) were imposed during meiosis. MD significantly decreased spikelet degeneration in comparison with WW, due mainly to the alleviation in oxidative damage via enhancing ascorbate-glutathione (AsA-GSH) cycle activity in young panicles, and SD exhibited the opposite effects. Enhanced AsA-GSH cycle strength, decreased oxidative stress, and spikelet degeneration rate were closely associated with the synergistically elevated BR and ABA levels in young panicles in MD. In contrast, low BR and excessive ABA levels led to an increase in spikelet degeneration in SD. The three cultivars exhibited the same tendencies. The intrinsic link among AsA-GSH cycle, oxidative stress, spikelet degeneration rate, and BR and ABA levels was further verified by using transgenic rice lines and chemical regulators. BRs or ABA play a unique role in regulating spikelet degeneration. Synergistically increased BR and ABA levels in MD could work together to strengthen AsA-GSH cycle activity, leading to a reduction in oxidative damage and spikelet degeneration. On the other hand, a severe imbalance between low BR and excessive ABA levels may have contributed to the opposite effects in SD.


Asunto(s)
Ácido Abscísico , Oryza , Brasinoesteroides , Oryza/fisiología , Suelo , Meiosis , Agua
10.
Mol Pharm ; 21(6): 2838-2853, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38662637

RESUMEN

Levofloxacin hemihydrate (LVXh) is a complex fluoroquinolone drug that exists in both hydrated and anhydrous/dehydrated forms. Due to the complexity of such a compound, the primary aim of this study was to investigate the amorphization capabilities and solid-state transformations of LVXh when exposed to mechanical treatment using ball milling. Spray drying was utilized as a comparative method for investigating the capabilities of complete LVX amorphous (LVXam) formation. The solid states of the samples produced were comprehensively characterized by powder X-ray diffraction, thermal analysis, infrared spectroscopy, Rietveld method, and dynamic vapor sorption. The kinetics of the process and the quantification of phases at different time points were conducted by Rietveld refinement. The impact of the different mills, milling conditions, and parameters on the composition of the resulting powders was examined. A kinetic investigation of samples produced using both mills disclosed that it was in fact possible to partially amorphize LVXh upon mechanical treatment. It was discovered that LVXh first transformed to the anhydrous/dehydrated form γ (LVXγ), as an intermediate phase, before converting to LVXam. The mechanism of LVXam formation by ball milling was successfully revealed, and a new method of forming LVXγ and LVXam by mechanical forces was developed. Spray drying from water depicted that complete amorphization of LVXh was possible. The amorphous form of LVX had a glass transition temperature of 80 °C. The comparison of methods highlighted that the formation of LVXam is thus both mechanism- and process-dependent. Dynamic vapor sorption studies of both LVXam samples showed comparable stability properties and crystallized to the most stable hemihydrate form upon analysis. In summary, this work contributed to the detailed understanding of solid-state transformations of essential fluoroquinolones while employing greener and more sustainable manufacturing methods.


Asunto(s)
Levofloxacino , Difracción de Rayos X , Levofloxacino/química , Difracción de Rayos X/métodos , Polvos/química , Cinética , Composición de Medicamentos/métodos , Antibacterianos/química , Rastreo Diferencial de Calorimetría/métodos , Cristalización , Química Farmacéutica/métodos
11.
Mol Pharm ; 21(4): 1691-1704, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38430187

RESUMEN

In the clinical application of freeze-dried highly concentrated omalizumab formulations, extensive visible bubbles (VBs) can be generated and remain for a long period of time in the reconstitution process, which greatly reduces the clinical use efficiency. It is necessary to understand the forming and breaking mechanism of VBs in the reconstitution process, which is a key factor for efficient and safe administration of biopharmaceutical injection. The effects of different thermal treatments on the volume of VBs and stability of omalizumab, mAb-1, and mAb-2 were investigated. The internal microvoids of the cake were characterized by scanning electron microscopy and mercury intrusion porosimetry. Electron paramagnetic resonance was applied to obtain the molecular mobility of the protein during annealing. A large number of VBs were generated in the reconstitution process of unannealed omalizumab and remained for a long period of time. When annealing steps were added, the volume of VBs was dramatically reduced. When annealed at an aggressive temperature (i.e., -6 °C), although the volume of VBs decreased, the aggregation and acidic species increased significantly. Thus, our observations highlight the importance of setting an additional annealing step with a suitable temperature, which contributes to reducing the VBs while maintaining the stability of the high concentration freeze-dried protein formulation.


Asunto(s)
Omalizumab , Proteínas , Temperatura , Liofilización , Estabilidad de Medicamentos
12.
Mol Pharm ; 21(3): 1309-1320, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38345459

RESUMEN

Producing amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is favorable from an economic and ecological perspective but also limited to thermostable active pharmaceutical ingredients (APIs). A potential technology shift from spray-drying to hot-melt extrusion at later stages of drug product development is a desirable goal, however bearing the risk of insufficient comparability of the in vitro and in vivo performance of the final dosage form. Hot-melt extrusion was performed using API/polymer/surfactant mixtures with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as the polymer and evaluated regarding the extrudability of binary and ternary amorphous solid dispersions (ASDs). Additionally, spray-dried ASDs were produced, and solid-state properties were compared to the melt-extruded ASDs. Tablets were manufactured of a ternary ASD lead candidate comparing their in vitro dissolution and in vivo performance. The extrudability of HPMCAS was improved by adding a surfactant as plasticizer, thereby lowering the high melt-viscosity. d-α-Tocopheryl polyethylene glycol succinate (TPGS) as surfactant showed the most similar solid-state properties between spray-dried and extruded ASDs compared to those of poloxamer 188 and sodium dodecyl sulfate. The addition of TPGS, however, barely affected API/polymer interactions. The in vitro dissolution experiment and in vivo dog study revealed a higher drug release of tablets manufactured from the spray-dried ASD compared to the melt-extruded ASD; this was attributed to the different particle size. We could further demonstrate that the drug release can be controlled by adjusting the particle size of melt-extruded ASDs leading to a similar release profile compared to tablets containing the spray-dried dispersion, which confirmed the feasibility of a technology shift from spray-drying to HME upon drug product development.


Asunto(s)
Polietilenglicoles , Polímeros , Animales , Perros , Composición de Medicamentos , Solubilidad , Tensoactivos
13.
Mol Pharm ; 21(5): 2555-2564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38551918

RESUMEN

Poloxamer 188 (P188) was hypothesized to be a dual functional excipient, (i) a stabilizer in frozen solution to prevent ice-surface-induced protein destabilization and (ii) a bulking agent to provide elegant lyophiles. Based on X-ray diffractometry and differential scanning calorimetry, sucrose, in a concentration-dependent manner, inhibited P188 crystallization during freeze-drying, while trehalose had no such effect. The recovery of lactate dehydrogenase (LDH), the model protein, was evaluated after reconstitution. While low LDH recovery (∼60%) was observed in the lyophiles prepared with P188, the addition of sugar improved the activity recovery to >85%. The secondary structure of LDH in the freeze-dried samples was assessed using infrared spectroscopy, and only moderate structural changes were observed in the lyophiles formulated with P188 and sugar. Thus, P188 can be a promising dual functional excipient in freeze-dried protein formulations. However, P188 alone does not function as a lyoprotectant and needs to be used in combination with a sugar.


Asunto(s)
Rastreo Diferencial de Calorimetría , Excipientes , Liofilización , Poloxámero , Trehalosa , Liofilización/métodos , Poloxámero/química , Excipientes/química , Trehalosa/química , Rastreo Diferencial de Calorimetría/métodos , Sacarosa/química , Difracción de Rayos X , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Cristalización/métodos , Química Farmacéutica/métodos , Proteínas/química , Composición de Medicamentos/métodos , Congelación
14.
Arch Microbiol ; 206(7): 320, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907882

RESUMEN

The mining and metallurgical industry represents one of the leading causes of environmental pollution. In this context, the optimization of mineral waste management and the efficient extraction of metals of interest becomes an imperative priority for a sustainable future. Microorganisms such as Acidithiobacillus thiooxidans have represented a sustainable and economical alternative in recent years due to their capacity for environmental remediation in bioleaching processes because of their sulfur-oxidizing capacity and sulfuric acid generation. However, its use has been limited due to the reluctance of mine operators because of the constant reproduction of the bacterial culture in suitable media and the care that this entails. In this work, the central objective was to evaluate the functional characteristics of A. thiooxidans, microencapsulated and stored at room temperature for three years in vacuum bags, using a spray drying process with gum arabic as a wall vector. Growth kinetics showed a survival of 80 ± 0.52% after this long period of storage. Also, a qualitative fluorescence technique with a 5-cyano-2-3 ditolyl tetrazolium (CTC) marker was used to determine the respiratory activity of the microorganisms as soon as it was resuspended. On the other hand, the consumption of resuspended sulfur was evaluated to corroborate the correct metabolic functioning of the bacteria, with results of up to 50% sulfur reduction in 16 days and sulfate generation of 513.85 ± 0.4387 ppm and 524.15 ± 0.567 ppm for microencapsulated and non-microencapsulated cultures, respectively. These results demonstrate the success after three years of the microencapsulation process and give guidelines for its possible application in the mining-metallurgical industry.


Asunto(s)
Acidithiobacillus thiooxidans , Goma Arábiga , Minería , Acidithiobacillus thiooxidans/metabolismo , Acidithiobacillus thiooxidans/crecimiento & desarrollo , Goma Arábiga/química , Secado por Pulverización , Biotecnología/métodos , Azufre/metabolismo
15.
Int Microbiol ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38196020

RESUMEN

Sun-drying is a traditional process for preparing dried shrimp in coastal area of South China, but its impacts on nutrition and the formation of flavor-contributory substances in dried shrimp remain largely unknown. This study aimed to examine the effects of the production process on the microbiota and metabolites in dried shrimp. 16S rDNA amplicon sequencing was employed to identify 170 operational taxonomic units (OTUs), with Vibrio, Photobacterium, and Shewanella emerging as the primary pathogenic bacteria in shrimp samples. Lactococcus lactis was identified as the principal potential beneficial microorganism to accrue during the dried shrimp production process and found to contribute significantly to the development of desirable shrimp flavors. LC-MS-based analyses of dried shrimp sample metabolomes revealed a notable increase in compounds associated with unsaturated fatty acid biosynthesis, arachidonic acid metabolism, amino acid biosynthesis, and flavonoid and flavanol biosynthesis throughout the drying process. Subsequent exploration of the relationship between metabolites and bacterial communities highlighted the predominant coexistence of Bifidobacterium, Clostridium, and Photobacterium contributing heterocyclic compounds and metabolites of organic acids and their derivatives. Conversely, Arthrobacter and Staphylococcus were found to inhibit each other, primarily in the presence of heterocyclic compounds. This comprehensive investigation provides valuable insights into the dynamic changes in the microbiota and metabolites of dried shrimps spanning different drying periods, which we expect to contribute to enhancing production techniques and safety measures for dried shrimp processing.

16.
Pharm Res ; 41(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040879

RESUMEN

BACKGROUND & PURPOSE: Different methods have been exploited to generate amorphous solid dispersions (ASDs) of poorly water-soluble drugs. However, the impact of processing methods on drug stability and dissolution hasn't been studied extensively. The purpose of the current study is to investigate the impact of the two common ASD processing methods, hot-melt extrusion (HME) and spray drying, on the chemical/physical stability and supersaturation of Posaconazole (Posa) based ASDs. METHODS & RESULTS: ASDs with 25% drug loading in hydroxypropylmethylcellulose acetate succinate were prepared using HME, and two types of spray dryers, a Procept Sprayer (ASD-Procept) and a Nano Sprayer (ASD-Nano). The relative physical stability of these ASDs upon exposure to heat and crystalline API seeding followed the order: ASD-Nano > ASD-Procept ≈HME. ASD-Procept and ASD-Nano showed similar chemical stability, slightly less stable than HME under 40°C/75%RH. All three ASDs demonstrated similar supersaturation induction times, and de-supersaturation kinetics with or without crystalline seeds. CONCLUSIONS: Posa ASDs prepared via spray drying were chemically less stable compared with HME, which can be attributed to their smaller particle size and hollow structure allowing oxygen penetration. For ASD-Procept and HME, the detailed phase changes involving recrystallization of amorphous Posa and a solid-solid phase transition from Posa Form I to Form Ia during the seed-induced studies were proposed. Similar dissolution and supersaturation-precipitation kinetics of three Posa ASDs indicated that any residual nanocrystals in the bulk ASDs were not enough to induce crystallization to differentiate ASDs made by three processing methods.


Asunto(s)
Triazoles , Solubilidad , Cristalización , Transición de Fase , Composición de Medicamentos/métodos
17.
Pharm Res ; 41(2): 321-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38291165

RESUMEN

PURPOSES: We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation. METHODS: The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet - visible (UV-Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X. RESULTS: Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%). CONCLUSIONS: Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.


Asunto(s)
Anticuerpos Monoclonales , Química Farmacéutica , Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Excipientes/química , Liofilización/métodos , Manitol , Agua , Estabilidad de Medicamentos
18.
Pharm Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39078576

RESUMEN

OBJECTIVE: This paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (µCT), the material thickness is then correlated to the storage stability of the encapsulated cells. METHODS: A formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and µCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure. RESULTS: The varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process. CONCLUSIONS: Extensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.

19.
Nanotechnology ; 35(12)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38100838

RESUMEN

The assembly of MXene materials into microcapsules has drawn great attentions due to their unique properties. However, rational design and synthesis of MXene-based microcapsules with specific nanostructures at the molecular scale remains challenging. Herein, we report a strategy to synthesize N/P co-doped MXene hollow flower-like microcapsules with adjustable permeability via dual surfactants assisted hydrothermal-freeze drying method. In contrast to anionic surfactants, cationic surfactants exhibited effective electrostatic interactions with MXene nanosheets during the hydrothermal process. Manipulation of dual surfactants in hydrothermal process realized N and P co-doping of MXene to improve flexibility and promoted the generation of abundant internal cavities in flower-like microcapsules. Based on the unique microstructure, the prepared hollow flower-like microcapsules showed excellent performance, stability and reusability in size-selective release of small organic molecules. Moreover, the release rate can be controlled by turning the oxidation state and type of MXene. The strategy delineates promising prospects for the design of MXene-based microcapsules with specific structures.

20.
Microbiol Immunol ; 68(4): 130-147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38294180

RESUMEN

Vaccination is an important factor in public health. The recombinant bacillus Calmette Guérin (rBCG) vaccine, which expresses foreign antigens, is expected to be a superior vaccine against infectious diseases. Here, we report a new recombination platform in which the BCG Tokyo strain is transformed with nucleotide sequences encoding foreign protein fused with the MPB70 immunogenic protein precursor. By RNA-sequencing, mpb70 was found to be the most transcribed among all known genes of BCG Tokyo. Small oligopeptide, namely, polyhistidine tag, was able to be expressed in and secreted from rBCG through a process in which polyhistidine tag fused with intact MPB70 were transcribed by an mpb70 promoter. This methodology was applied to develop an rBCG expressing the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2. Immunoblotting images and mass spectrometry data showed that RBD was also secreted from rBCG. Sera from mice vaccinated with the rBCG showed a tendency of weak neutralizing capacity. The secretion was retained even after a freeze-drying process. The freeze-dried rBCG was administered to and recovered from mice. Recovered rBCG kept secreting RBD. Collectively, our recombination platform offers stable secretion of foreign antigens and can be applied to the development of practical rBCGs.


Asunto(s)
Vacuna BCG , Mycobacterium bovis , Animales , Ratones , Vacuna BCG/genética , Tokio , Mycobacterium bovis/genética , Activación de Linfocitos , Ingeniería Genética , Vacunas Sintéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA