Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(26): 4887-4903.e17, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563662

RESUMEN

Our bodies turn over billions of cells daily via apoptosis and are in turn cleared by phagocytes via the process of "efferocytosis." Defects in efferocytosis are now linked to various inflammatory diseases. Here, we designed a strategy to boost efferocytosis, denoted "chimeric receptor for efferocytosis" (CHEF). We fused a specific signaling domain within the cytoplasmic adapter protein ELMO1 to the extracellular phosphatidylserine recognition domains of the efferocytic receptors BAI1 or TIM4, generating BELMO and TELMO, respectively. CHEF-expressing phagocytes display a striking increase in efferocytosis. In mouse models of inflammation, BELMO expression attenuates colitis, hepatotoxicity, and nephrotoxicity. In mechanistic studies, BELMO increases ER-resident enzymes and chaperones to overcome protein-folding-associated toxicity, which was further validated in a model of ER-stress-induced renal ischemia-reperfusion injury. Finally, TELMO introduction after onset of kidney injury significantly reduced fibrosis. Collectively, these data advance a concept of chimeric efferocytic receptors to boost efferocytosis and dampen inflammation.


Asunto(s)
Macrófagos , Fagocitosis , Animales , Ratones , Macrófagos/metabolismo , Inflamación/metabolismo , Fagocitos/metabolismo , Proteínas Portadoras/metabolismo , Apoptosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo
2.
Exp Cell Res ; 439(1): 114068, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38750717

RESUMEN

Acetylation, a critical regulator of diverse cellular processes, holds significant implications in various cancer contexts. Further understanding of the acetylation patterns of key cancer-driven proteins is crucial for advancing therapeutic strategies in cancer treatment. This study aimed to unravel the acetylation patterns of Engulfment and Cell Motility Protein 1 (ELMO1) and its relevance to the pathogenesis of colorectal cancer (CRC). Immunoprecipitation and mass spectrometry precisely identified lysine residue 505 (K505) as a central acetylation site in ELMO1. P300 emerged as the acetyltransferase for ELMO1 K505 acetylation, while SIRT2 was recognized as the deacetylase. Although K505 acetylation minimally affected ELMO1's localization and stability, it played a crucial role in mediating ELMO1-Dock180 interaction, thereby influencing Rac1 activation. Functionally, ELMO1 K505 acetylation proved to be a pivotal factor in CRC progression, exerting its influence on key cellular processes. Clinical analysis of CRC samples unveiled elevated ELMO1 acetylation in primary tumors, indicating a potential association with CRC pathologies. This work provides insights into ELMO1 acetylation and its significance in advancing potentially therapeutic interventions in CRC treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias Colorrectales , Proteína de Unión al GTP rac1 , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Acetilación , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Sirtuina 2/metabolismo , Sirtuina 2/genética , Movimiento Celular , Células HCT116
3.
J Biol Chem ; 299(12): 105390, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890785

RESUMEN

Macrophages clear infections by engulfing and digesting pathogens within phagolysosomes. Pathogens escape this fate by engaging in a molecular arms race; they use WxxxE motif-containing "effector" proteins to subvert the host cells they invade and seek refuge within protective vacuoles. Here, we define the host component of the molecular arms race as an evolutionarily conserved polar "hot spot" on the PH domain of ELMO1 (Engulfment and Cell Motility protein 1), which is targeted by diverse WxxxE effectors. Using homology modeling and site-directed mutagenesis, we show that a lysine triad within the "patch" directly binds all WxxxE effectors tested: SifA (Salmonella), IpgB1 and IpgB2 (Shigella), and Map (enteropathogenic Escherichia coli). Using an integrated SifA-host protein-protein interaction network, in silico network perturbation, and functional studies, we show that the major consequences of preventing SifA-ELMO1 interaction are reduced Rac1 activity and microbial invasion. That multiple effectors of diverse structure, function, and sequence bind the same hot spot on ELMO1 suggests that the WxxxE effector(s)-ELMO1 interface is a convergence point of intrusion detection and/or host vulnerability. We conclude that the interface may represent the fault line in coevolved molecular adaptations between pathogens and the host, and its disruption may serve as a therapeutic strategy.


Asunto(s)
Proteínas Bacterianas , Enterobacteriaceae , Macrófagos , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Salmonella/metabolismo , Humanos , Animales , Interacciones Huésped-Patógeno , Enterobacteriaceae/clasificación , Enterobacteriaceae/fisiología , Infecciones por Enterobacteriaceae/microbiología , Macrófagos/microbiología
4.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34015094

RESUMEN

Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.


Asunto(s)
Arabidopsis/embriología , Adhesión Celular/genética , Adhesión Celular/fisiología , Aparato de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Aparato de Golgi/genética , Hipocótilo/citología , Hipocótilo/genética , Manosa/análisis , Proteínas de la Membrana/genética , Metiltransferasas/genética , Pectinas/metabolismo
5.
Biochem Genet ; 62(2): 1304-1324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37594641

RESUMEN

The kidney lost a lot of protein in the urine when you have nephrotic syndrome (NS). Clinical manifestations mostly common in NS include massive proteinuria, hypoalbuminemia, hyperlipidemia, and edema. Idiopathic nephrotic syndrome is currently classified into steroid-dependent (SDNS) and steroid-resistant (SRNS) based on the initial response to corticosteroid therapy at presentation. Several reports examined the association of the MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs741301 G > A) variant as risk factors for Nephrotic Syndrome. This study aimed to determine the potential effect of the MYH9 gene (rs3752462, C > T) and ELMO1 gene (rs741301) variant on the risk of (NS) among Egyptian Children. This study included two hundred participants involving 100 nephrotic syndrome (NS) cases and 100 healthy controls free from nephrotic syndrome (NS). The MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs G > A741301) variant were analyzed by ARMS-PCR technique. Nephrotic syndrome cases include 74% SRNS and 26% SDNS. Higher frequencies of the heterozygous carrier (CT) and homozygous variant (TT) genotypes of the MYH9 (rs3752462, C > T) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the MYH9 (rs3752462, C > T variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.85, p < 0.001), dominant (OR 3.97, p < 0.001) models, and the recessive model OR 5.94, p < 0.001). Higher frequencies of the heterozygous carrier (GA) and homozygous variant (AA) genotypes of ELMO1gene (rs G > A741301) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the ELMO1 (rs G > A741301) variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.15, p < 0.001), dominant models (OR 2.8, p < 0.001), and the recessive model (OR 4.17, p = 0.001). Both MYH9 and ELMO1 gene variants are significantly different in NS in comparison with the control group (p < 0.001). The MYH9 gene (rs3752462, C > T) and ELMO1gene (rs G > A741301) variants were considered independent risk factors for NS among Egyptian Children.

6.
Cancer Sci ; 114(2): 410-422, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36310143

RESUMEN

Functional reprogramming of tumor-associated macrophages (TAMs) is crucial to their potent tumor-supportive capacity. However, the molecular mechanism behind the reprogramming process remains poorly understood. Here, we identify engulfment and cell motility protein 1 (ELMO1) as a crucial player for TAM reprogramming in colorectal cancer (CRC). The expression of ELMO1 in stromal but not epithelial tumor cells was positively associated with advanced clinical stage and poor disease-free survival in CRC. An increase in ELMO1 expression was specifically found in TAMs, but not in other multiple nonmalignant stromal cells. Gain- and loss-of-function assays indicated ELMO1 reprogrammed macrophages to a TAM-like phenotype through Rac1 activation. In turn, ELMO1-reprogrammed macrophages were shown to not only facilitate the malignant behaviors of CRC cells but exhibited potent phagocytosis of tumor cells. Taken together, our work underscores the importance of ELMO1 in determining functional reprogramming of TAMs and could provide new insights on potential therapeutic strategies against CRC.


Asunto(s)
Neoplasias Colorrectales , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología
7.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175809

RESUMEN

Peritoneal inflammation remains a major cause of treatment failure in patients with kidney failure who receive peritoneal dialysis. Peritoneal inflammation is characterized by an increase in neutrophil infiltration. However, the molecular mechanisms that control neutrophil recruitment in peritonitis are not fully understood. ELMO and DOCK proteins form complexes which function as guanine nucleotide exchange factors to activate the small GTPase Rac to regulate F-actin dynamics during chemotaxis. In the current study, we found that deletion of the Elmo1 gene causes defects in chemotaxis and the adhesion of neutrophils. ELMO1 plays a role in the fMLP-induced activation of Rac1 in parallel with the PI3K and mTORC2 signaling pathways. Importantly, we also reveal that peritoneal inflammation is alleviated in Elmo1 knockout mice in the mouse model of thioglycollate-induced peritonitis. Our results suggest that ELMO1 functions as an evolutionarily conserved regulator for the activation of Rac to control the chemotaxis of neutrophils both in vitro and in vivo. Our results suggest that the targeted inhibition of ELMO1 may pave the way for the design of novel anti-inflammatory therapies for peritonitis.


Asunto(s)
Quimiotaxis , Peritonitis , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neutrófilos/metabolismo , Ratones Noqueados , Peritonitis/metabolismo , Inflamación/metabolismo
8.
Br J Haematol ; 193(3): 628-632, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33216373

RESUMEN

Sickle cell disease (SCD) and apolipoprotein L1 (APOL1) G1/G2 variants increase chronic kidney disease (CKD) risk in African Americans by poorly understood mechanisms. We applied bioinformatics to identify new candidate genes associated with SCD-related CKD. An interaction network demonstrated APOA1 connecting haemoglobin subunit ß (HBB) and APOL1 with 36 other candidate genes. Gene expression revealed upregulation of engulfment and cell motility 1 (ELMO1) and downregulation of APOA1 in the kidney cortex of SCD versus non-SCD mice. Analysis of candidate genes identified ELMO1 rs10951509 to be associated with albuminuria and APOA1 rs11216132 with haemoglobinuria in patients with SCD. A bioinformatic approach highlights ELMO1 and APOA1 as potentially associated with SCD nephropathy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Anemia de Células Falciformes , Apolipoproteína A-I , Movimiento Celular/genética , Regulación hacia Abajo , Redes Reguladoras de Genes , Insuficiencia Renal Crónica , Regulación hacia Arriba , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Albuminuria/genética , Albuminuria/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Animales , Apolipoproteína A-I/biosíntesis , Apolipoproteína A-I/genética , Femenino , Humanos , Masculino , Ratones , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
9.
J Transl Med ; 19(1): 299, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246281

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) has an increasing global prevalence with excessive health expenditure and burden. Exosomal mRNAs regulate intercellular communications and participate in the pathogenesis of various disorders like DN. This study aimed to assess the expression levels of ACE, ELMO1, and WT1 mRNAs in the blood extracellular vesicles (EVs) of DN patients and diabetic patients without nephropathy (DM group) in comparison to healthy controls and investigate their correlations with the severity of DN. METHODS: The performed investigation is a cross-sectional study of 256 participants including 103 DN patients, 100 DM patients, and 53 healthy controls. The quantification of WT1, ACE, and ELMO1 mRNAs in the blood EVs were executed using qRT-PCR. The ROC analysis was performed to determine the diagnostic accuracy of mRNAs. RESULTS: DN patients had significantly higher expressed WT1 mRNA (1.70-fold change) and lower expressed ACE mRNA (0.55-fold change) in the blood EVs compared to DM patients and controls. ELMO1 mRNA was not expressed in EVs of any groups. A positive correlation between WT1 mRNA level and urine Alb/Cr ratio (r = 0.602, p < 0.001) and a negative correlation between ACE mRNA expression and urine Alb/Cr ratio within DN patients (r = - 0.474, p < 0.001) was identified. The accuracy of WT1 mRNA and 1/ACE mRNA for predicting incipient DN was 0.63 (95% CI 0.55, 0.72) and 0.62 (95% CI 0.54, 0.71), and for predicting overt DN was 0.83 (95% CI 0.74, 0.92) and 0.75 (95% CI 0.66, 0.83), respectively. CONCLUSIONS: WT1 and ACE mRNAs level in blood EVs were predictors for early diagnosis of DN therefore their quantifications might be used to determine the severity of albuminuria and glomerular injuries.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Vesículas Extracelulares , Proteínas Adaptadoras Transductoras de Señales , Albuminuria , Biomarcadores , Estudios de Casos y Controles , Estudios Transversales , Nefropatías Diabéticas/genética , Humanos , Peptidil-Dipeptidasa A , ARN Mensajero/genética , Proteínas WT1
10.
Cell Mol Life Sci ; 77(1): 161-177, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31161284

RESUMEN

Peripheral nervous system development involves a tight coordination of neuronal birth and death and a substantial remodelling of the myelinating glia cytoskeleton to achieve myelin wrapping of its projecting axons. However, how these processes are coordinated through time is still not understood. We have identified engulfment and cell motility 1, Elmo1, as a novel component that regulates (i) neuronal numbers within the Posterior Lateral Line ganglion and (ii) radial sorting of axons by Schwann cells (SC) and myelination in the PLL system in zebrafish. Our results show that neuronal and myelination defects observed in elmo1 mutant are rescued through small GTPase Rac1 activation. Inhibiting macrophage development leads to a decrease in neuronal numbers, while peripheral myelination is intact. However, elmo1 mutants do not show defective macrophage activity, suggesting a role for Elmo1 in PLLg neuronal development and SC myelination independent of macrophages. Forcing early Elmo1 and Rac1 expression specifically within SCs rescues elmo1-/- myelination defects, highlighting an autonomous role for Elmo1 and Rac1 in radial sorting of axons by SCs and myelination. This uncovers a previously unknown function of Elmo1 that regulates fundamental aspects of PNS development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Vaina de Mielina/metabolismo , Neurogénesis , Neuronas/citología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis , Axones/metabolismo , Axones/ultraestructura , Movimiento Celular , Neuronas/metabolismo , Neuronas/ultraestructura , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/ultraestructura , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/ultraestructura
11.
Diabetes Metab Res Rev ; 36(5): e3299, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32043290

RESUMEN

BACKGROUND AND OBJECTIVE: Diabetic nephropathy (DN) is the most common cause of end stage renal failure or even death among patients with type 2 diabetes mellitus. Genetic predisposition is widely studied among these patients to identify manageable aspects of the disease pathogenesis. This study was carried out to test the association of engulfment and cell motility 1 (ELMO1) gene polymorphism with DN among Egyptians. ELMO1 is required for phagocytosis of apoptotic cells and cell motility. METHODS: This case-control study was conducted on type 2 diabetic patients who attended Suez Canal University Hospital, Egypt, between November 2016 and October 2017. Peripheral blood was collected from 200 diabetic patients (without nephropathy), 200 patients with DN, and 100 healthy controls for DNA extraction. The single nucleotide polymorphism of ELMO1 (rs741301) was genotyped using real-time polymerase chain reaction and the allele discrimination technique. RESULTS: GG genotype was significantly associated with DN (odds ratio [OR] = 2.7; 95% confidence interval [CI]: 1.4-5.3) (P = .016). The OR for the high-risk allele (G) was 1.9 with 95% CI from 1.5 to 2.9 (P < .001). CONCLUSION: ELMO1 gene (rs741301) polymorphism is a candidate variant in the predisposition to DN.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Biomarcadores/análisis , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Glucemia/análisis , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/patología , Egipto/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
12.
J Biol Chem ; 293(20): 7674-7688, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29615491

RESUMEN

Neurite outgrowth is a crucial process in developing neurons for neural network formation. Understanding the regulatory mechanisms of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration after nerve injury and in neurodegenerative disorders. FE65 is a brain-enriched adaptor that stimulates Rac1-mediated neurite elongation. However, the precise mechanism by which FE65 promotes the process remains elusive. Here, we show that ELMO1, a subunit of ELMO1-DOCK180 bipartite Rac1 guanine nucleotide exchange factor (GEF), interacts with the FE65 N-terminal region. Overexpression of FE65 and/or ELMO1 enhances, whereas knockdown of FE65 or ELMO1 inhibits, neurite outgrowth and Rac1 activation. The effect of FE65 alone or together with ELMO1 is attenuated by an FE65 double mutation that disrupts FE65-ELMO1 interaction. Notably, FE65 is found to activate ELMO1 by diminishing ELMO1 intramolecular autoinhibitory interaction and to promote the targeting of ELMO1 to the plasma membrane, where Rac1 is activated. We also show that FE65, ELMO1, and DOCK180 form a tripartite complex. Knockdown of DOCK180 reduces the stimulatory effect of FE65-ELMO1 on Rac1 activation and neurite outgrowth. Thus, we identify a novel mechanism by which FE65 stimulates Rac1-mediated neurite outgrowth by recruiting and activating ELMO1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Proyección Neuronal/fisiología , Neuronas/citología , Proteínas Nucleares/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Movimiento Celular , Células Cultivadas , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Ratas , Proteína de Unión al GTP rac1/genética
13.
Indian J Clin Biochem ; 34(2): 172-179, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31092990

RESUMEN

Chronic diabetes mellitus is accompanied with overexpression of ELMO1 and KIM1 and enhanced oxidative stress. This study was aimed to evaluate the effects of administration of silymarin on oxidative stress markers and ELMO1 and KIM1 expression in the kidney tissue of type 2 diabetic rats. In this experimental study, 36 male Wistar rats were divided into 6 groups: Control, silymarin-treated control (60 and 120 mg/kg/day), diabetic, and silymarin-treated diabetic groups (60 and 120 mg/kg/day). Tissue levels of oxidative stress and biochemical parameters were measured by spectrophotometric methods. Lipid peroxidation levels in the kidney tissue were measured by fluorometric method. Insulin was determined using immunoassay. Gene expression analysis was determined by qPCR technique. The level of expression of ELMO1 and KIM1 in the diabetic groups treated with silymarin was significantly reduced (P < 0.001). Total antioxidant levels and thiol groups contents increased (P < 0.001) dramatically in treated groups. A significant decrease in tissue levels of malondialdehyde and total oxidant were observed in the silymarin treated diabetic rats (P < 0.001). The results showed that the urinary amount of protein in the treatment groups was significantly lower than of diabetic control (P < 0.001). These results indicate that silymarin has a blood glucose lowering effect and, due to its antioxidant properties, increases the antioxidant parameters and reduces the oxidant markers. The administration of silymarin has beneficial effects on kidney of diabetic rats with reduction of ELMO1 and KIM1expression.

14.
J Endocrinol Invest ; 41(3): 285-291, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28752301

RESUMEN

PURPOSE: Polymorphisms of the engulfment and cell motility 1 (ELMO1) gene were recently associated with type 2 diabetes (T2DM) and its complications. We investigated the association of rs10255208, rs7782979, and rs2041801 ELMO1 gene variants with T2DM in Tunisian Arabs. METHODS: Subjects comprised 900 T2DM patients and 600 normoglycemic controls. ELMO1 genotyping was done by PCR-RFLP; the contribution of ELMO1 variants to T2DM was analyzed by Haploview and regression analysis. RESULTS: Minor allele frequencies of rs7782979 and rs10255208 ELMO1 variants were significantly higher among unselected T2DM cases than controls, and significant differences in the distribution of rs7782979 genotypes were seen between T2DM cases and control subjects, which was seen in male but not female subjects. Three-locus ELMO1 haplotype analysis identified haplotype GAA to be positively associated, and haplotypes GCA, AAA, and GCG to be negatively associated with T2DM. The distribution of these haplotypes was gender-dependent for some (GCA, GCG, AAG), and gender-independent for others (GAA, AAA). This translated into altered risk of T2DM in male or female subjects, which persisted after adjusting for BMI, systolic and diastolic blood pressure, and serum lipid profile. CONCLUSION: These results confirm role for ELMO1 as T2DM susceptibility locus, which appears to be gender-dependent.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Árabes/genética , Biomarcadores/análisis , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Estudios de Seguimiento , Frecuencia de los Genes , Genotipo , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Factores Sexuales , Túnez/epidemiología
15.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495584

RESUMEN

Complete surgical resection of glioblastoma is difficult due to the invasive nature of this primary brain tumor, for which the molecular mechanisms behind remain poorly understood. The three human ELMO genes play key roles in cellular motility, and have been linked to metastasis and poor prognosis in other cancer types. The aim of this study was to investigate methylation levels of the ELMO genes and their correlation to clinical characteristics and outcome in patients diagnosed with glioblastoma. To measure DNA methylation levels we designed pyrosequencing assays targeting the promoter CpG island of each the ELMO genes. These were applied to diagnostic tumor specimens from a well-characterized cohort of 121 patients who received standard treatment consisting of surgery, radiation therapy, plus concomitant and adjuvant chemotherapy. The promoter methylation levels of ELMO1 and ELMO2 were generally low, whereas ELMO3 methylation levels were high, in the tumor biopsies. Thirteen, six, and 18 biopsies were defined as aberrantly methylated for ELMO1, ELMO2, and ELMO3, respectively. There were no significant associations between the methylation status of any of the ELMO gene promoter CpG islands and overall survival, progression-free survival, and clinical characteristics of the patients including intracranial tumor location. Therefore, the methylation status of the ELMO gene promoter CpG islands is unlikely to have prognostic value in glioblastoma.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Islas de CpG , Metilación de ADN , Glioblastoma/genética , Regiones Promotoras Genéticas , Adulto , Anciano , Línea Celular Tumoral , Movimiento Celular/genética , Proteínas del Citoesqueleto/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Adulto Joven
16.
Physiol Genomics ; 49(11): 667-681, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28939645

RESUMEN

Numerous studies implicate the cyclooxygenase 2 (COX2) enzyme and COX2-derived prostanoids in various human diseases, and thus, much effort has been made to uncover the regulatory mechanisms of this enzyme. COX2 has been shown to be regulated at both the transcriptional and posttranscriptional levels, leading to the development of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX2 inhibitors (COXIBs), which inhibit the COX2 enzyme through direct targeting. Recently, evidence of posttranslational regulation of COX2 enzymatic activity by s-nitrosylation, glycosylation, and phosphorylation has also been presented. Additionally, posttranslational regulators that actively downregulate COX2 expression by facilitating increased proteasome degradation of this enzyme have also been reported. Moreover, recent data identified proteins, located in close proximity to COX2 enzyme, that serve as posttranslational modulators of COX2 function, upregulating its enzymatic activity. While the precise mechanisms of the protein-protein interaction between COX2 and these regulatory proteins still need to be addressed, it is likely these interactions could regulate COX2 activity either as a result of conformational changes of the enzyme or by impacting subcellular localization of COX2 and thus affecting its interactions with regulatory proteins, which further modulate its activity. It is possible that posttranslational regulation of COX2 enzyme by such proteins could contribute to manifestation of different diseases. The uncovering of posttranslational regulation of COX2 enzyme will promote the development of more efficient therapeutic strategies of indirectly targeting the COX2 enzyme, as well as provide the basis for the generation of novel diagnostic tools as biomarkers of disease.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Animales , Enfermedad , Humanos , Modelos Biológicos , Unión Proteica
17.
J Biol Chem ; 290(10): 6408-18, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25586182

RESUMEN

Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Vasos Sanguíneos/metabolismo , Neovascularización Fisiológica , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/genética , Vasos Sanguíneos/crecimiento & desarrollo , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Unión al GTP rac/biosíntesis , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética
18.
Ann Hum Genet ; 80(6): 336-341, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27699784

RESUMEN

This study reports on the association of genetic variants selected from previous genome-wide association studies for type 2 diabetic nephropathy in south Indians. Eight variants were genotyped in 601 type 2 diabetic subjects without nephropathy (DM) and 583 type 2 diabetic subjects with nephropathy (DN) by MassARRAY. The minor allele frequencies of rs11643718 SLC12A3 variant and rs741301 ELMO1 variant were significantly different between DM and DN groups (P = 0.029 and 0.016, respectively). A combined analysis showed that the subjects carrying the risk genotypes of both these variants (GG of rs11643718 + AG/AA of rs741301) had a significant association with DN with an odds ratio [adjusted for age, sex, Body Mass Index (BMI), HbA1c, and systolic Blood Pressure (BP)] of 1.73 (1.30-2.30, P = 1.72 × 10-4 ) as compared to subjects carrying all other genotype combinations. This is the first study to report a significant association of the SLC12A3 rs11643718 and ELMO1 rs741301 (Single nucleotide Polymorphism) SNPs with diabetic nephropathy in south Indians.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/genética , Anciano , Pueblo Asiatico , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , India , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Miembro 3 de la Familia de Transportadores de Soluto 12/genética
19.
J Cell Sci ; 127(Pt 8): 1805-15, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24522191

RESUMEN

Phenotypic heterogeneity of cancer cells is caused not only by genetic and epigenetic alterations but also by stochastic variation of intracellular signaling molecules. Using cells that stably express Förster resonance energy transfer (FRET) biosensors, we show here a correlation between a temporal fluctuation in the activity of Rac1 and the invasive properties of C6 glioma cells. By using long-term time-lapse imaging, we found that Rac1 activity in C6 glioma cells fluctuated over a timescale that was substantially longer than that of the replication cycle. Because the relative level of Rac1 activity in each cell was unaffected by a suspension-adhesion procedure, we were able to sort C6 glioma cells according to the levels of Rac1 activity, yielding Rac1(high) and Rac1(low) cells. The Rac1(high) cells invaded more efficiently than did Rac1(low) cells in a Matrigel invasion assay. We assessed the transcriptional profiles of Rac1(high) and Rac1(low) cells and performed gene ontology analysis. Among the 14 genes that were most associated with the term 'membrane' (membrane-related genes) in Rac1(high) cells, we identified four genes that were associated with glioma invasion and Rac1 activity by using siRNA knockdown experiments. Among the transcription factors upregulated in Rac1(high) cells, Egr2 was found to positively regulate expression of the four membrane-related invasion-associated genes. The identified signaling network might cause the fluctuations in Rac1 activity and the heterogeneity in the invasive capacity of glioma cells.


Asunto(s)
Glioma/patología , Transcripción Genética , Proteína de Unión al GTP rac1/metabolismo , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Invasividad Neoplásica , Fenotipo , Transporte de Proteínas , Ratas , Transducción de Señal , Transcriptoma , Regulación hacia Arriba
20.
Mol Carcinog ; 55(12): 2051-2062, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26756176

RESUMEN

Non-small cell lung cancer (NSCLC) comprises nearly 80% of lung cancers and the poor prognosis is due to its high invasiveness and metastasis. CC chemokine ligand 18 (CCL18) is predominantly secreted by M2-tumor associated macrophages (TAMs) and promotes malignant behaviors of various human cancer types. In this study, we report that the high expression of CCL18 in TAMs of NSCLC tissues and increased expression of CCL18 in TAMs is correlated with the lymph node metastasis, distant metastasis, and poor prognosis NSCLC patients. CCL18 can increase the invasive ability of NSCLC cells by binding to its receptor Nir1. In addition, CCL18 is capable of modulating cell migration and invasion by regulating the activation of RAC1 which resulted in cytoskeleton reorganization in an ELMO1 dependent manner. Furthermore, we found that CCL18 could enhance adhesion of NSCLC cells via activating ELMO1-integrin ß1 signaling. Thus, CCL18 and its downstream molecules may be used as targets to develop novel NSCLC therapy. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas de Unión al Calcio/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Quimiocinas CC/inmunología , Neoplasias Pulmonares/patología , Pulmón/patología , Proteínas de la Membrana/inmunología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/análisis , Animales , Proteínas de Unión al Calcio/análisis , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Línea Celular Tumoral , Movimiento Celular , Quimiocinas CC/análisis , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Metástasis Linfática/inmunología , Metástasis Linfática/patología , Masculino , Proteínas de la Membrana/análisis , Ratones , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica/inmunología , Invasividad Neoplásica/patología , Proteínas de Unión al GTP rac/análisis , Proteínas de Unión al GTP rac/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA