Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Más filtros

Intervalo de año de publicación
1.
Syst Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093688

RESUMEN

Adaptive radiation involves diversification along multiple trait axes, producing phenotypically diverse, species-rich lineages. Theory generally predicts that multi-trait evolution occurs via a 'stages' model, with some traits saturating early in a lineage's history, and others diversifying later. Despite its multidimensional nature, however, we know surprisingly little about how different suites of traits evolve during adaptive radiation. Here, we investigated the rate, pattern, and timing of morphological and physiological evolution in the anole lizard adaptive radiation from the Caribbean island of Hispaniola. Rates and patterns of morphological and physiological diversity are largely unaligned, corresponding to independent selective pressures associated with structural and thermal niches. Cold tolerance evolution reflects parapatric divergence across elevation, rather than niche partitioning within communities. Heat tolerance evolution and the preferred temperature evolve more slowly than cold tolerance, reflecting behavioral buffering, particularly in edge-habitat species (a pattern associated with the Bogert effect). In contrast to the nearby island of Puerto Rico, closely related anoles on Hispaniola do not sympatrically partition thermal niche space. Instead, allopatric and parapatric separation across biogeographic and environmental boundaries serves to keep morphologically similar close relatives apart. The phenotypic diversity of this island's adaptive radiation accumulated largely as a by-product of time, with surprisingly few exceptional pulses of trait evolution. A better understanding of the processes that guide multidimensional trait evolution (and nuance therein) will prove key in determining whether the stages model should be considered a common theme of adaptive radiation.

2.
Proc Biol Sci ; 291(2021): 20240262, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654646

RESUMEN

The fossil fish Ptychodus Agassiz, 1834, characterized by a highly distinctive grinding dentition and an estimated gigantic body size (up to around 10 m), has remained one of the most enigmatic extinct elasmobranchs (i.e. sharks, skates and rays) for nearly two centuries. This widespread Cretaceous taxon is common in Albian to Campanian deposits from almost all continents. However, specimens mostly consist of isolated teeth or more or less complete dentitions, whereas cranial and post-cranial skeletal elements are very rare. Here we describe newly discovered material from the early Late Cretaceous of Mexico, including complete articulated specimens with preserved body outline, which reveals crucial information on the anatomy and systematic position of Ptychodus. Our phylogenetic and ecomorphological analyses indicate that ptychodontids were high-speed (tachypelagic) durophagous lamniforms (mackerel sharks), which occupied a specialized predatory niche previously unknown in fossil and extant elasmobranchs. Our results support the view that lamniforms were ecomorphologically highly diverse and represented the dominant group of sharks in Cretaceous marine ecosystems. Ptychodus may have fed predominantly on nektonic hard-shelled prey items such as ammonites and sea turtles rather than on benthic invertebrates, and its extinction during the Campanian, well before the end-Cretaceous crisis, might have been related to competition with emerging blunt-toothed globidensine and prognathodontine mosasaurs.


Asunto(s)
Fósiles , Filogenia , Tiburones , Animales , Fósiles/anatomía & histología , México , Tiburones/anatomía & histología , Tiburones/clasificación , Tiburones/fisiología , Evolución Biológica , Diente/anatomía & histología
3.
Proc Biol Sci ; 291(2021): 20240215, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654651

RESUMEN

Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Cíclidos/fisiología , Conducta Alimentaria , Cráneo , Regulación de la Expresión Génica , Fenotipo
4.
Mol Ecol ; : e17524, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279721

RESUMEN

Convergent evolution of similar phenotypes suggests some predictability in the evolutionary trajectories of organisms, due to strong and repeated selective pressures, and/or developmental constraints. In adaptive radiations, particularly in cichlid fish radiations, convergent phenotypes are commonly found within and across geographical settings. Cichlids show major repeated axes of morphological diversification. Recurrent changes in body patterns reveal adaption to alternative habitats, and modifications of the trophic apparatus respond to the exploitation of different food resources. Here we compare morphologically and genetically two Neotropical cichlid assemblages, the Mexican desert cichlid and the Nicaraguan Midas cichlid, with similar polymorphic body and trophic adaptations despite their independent evolution. We found a common morphological axis of differentiation in trophic structures in both cichlid radiations, but two different axes of differentiation in body shape, defining two alternative limnetic body patterns. Adaptation to limnetic habitats implied regulation of immune functions in the Midas cichlid, while morphogenesis and metabolic functions in the desert cichlid. Convergent phenotypic adaptions could be associated to divergent gene regulation.

5.
Mol Ecol ; 33(7): e17305, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38421099

RESUMEN

Across its Holarctic range, Arctic charr (Salvelinus alpinus) populations have diverged into distinct trophic specialists across independent replicate lakes. The major aspect of divergence between ecomorphs is in head shape and body shape, which are ecomorphological traits reflecting niche use. However, whether the genomic underpinnings of these parallel divergences are consistent across replicates was unknown but key for resolving the substrate of parallel evolution. We investigated the genomic basis of head shape and body shape morphology across four benthivore-planktivore ecomorph pairs of Arctic charr in Scotland. Through genome-wide association analyses, we found genomic regions associated with head shape (89 SNPs) or body shape (180 SNPs) separately and 50 of these SNPs were strongly associated with both body and head shape morphology. For each trait separately, only a small number of SNPs were shared across all ecomorph pairs (3 SNPs for head shape and 10 SNPs for body shape). Signs of selection on the associated genomic regions varied across pairs, consistent with evolutionary demography differing considerably across lakes. Using a comprehensive database of salmonid QTLs newly augmented and mapped to a charr genome, we found several of the head- and body-shape-associated SNPs were within or near morphology QTLs from other salmonid species, reflecting a shared genetic basis for these phenotypes across species. Overall, our results demonstrate how parallel ecotype divergences can have both population-specific and deeply shared genomic underpinnings across replicates, influenced by differences in their environments and demographic histories.


Asunto(s)
Estudio de Asociación del Genoma Completo , Somatotipos , Animales , Trucha/genética , Genómica , Sitios de Carácter Cuantitativo/genética
6.
J Anat ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38922715

RESUMEN

Although extinct sloths exhibited a wide range of dietary habits, modes of locomotion, and occupied various niches across the Americas, modern sloths are considered quite similar in their habits. The dietary habits of living sloths can be directly observed in the wild, and understanding the mechanical behavior of their jaws during chewing through finite element analysis (FEA) provides a valuable validation tool for comparative analysis with their extinct counterparts. In this study, we used FEA to simulate the mechanical behavior of sloth mandibles under lateral mastication loads, using it as a proxy for oral processing. Our research focused on the six extant sloth species to better understand their diets and validate the use of FEA for studying their extinct relatives. We found that all living sloths have the predominancy of low-stress areas in their mandibles but with significant differences. Choloepus didactylus had larger high-stress areas, which could be linked to a reduced need for processing tougher foods as an opportunistic generalist. Bradypus variegatus and Choloepus hoffmanni are shown to be similar, displaying large low-stress areas, indicating greater oral processing capacity in a seasonal and more competitive environment. Bradypus torquatus, Bradypus pygmaeus, and Bradypus tridactylus exhibited intermediary processing patterns, which can be linked to a stable food supply in more stable environments and a reduced requirement for extensive oral processing capacity. This study sheds light on extant sloths' dietary adaptations and has implications for understanding the ecological roles and evolutionary history of their extinct counterparts.

7.
J Anat ; 244(1): 22-41, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591692

RESUMEN

Marine amniotes have played many crucial roles in ocean ecosystems since the Triassic, including predation at the highest trophic levels. One genus often placed into this guild is the large Early Jurassic neoichthyosaurian Temnodontosaurus, the only post-Triassic ichthyosaurian known with teeth which bear a distinct cutting edge or carina. This taxonomically problematic genus is currently composed of seven species which show a wide variety of skull and tooth morphologies. Here we assess the craniodental disparity in Temnodontosaurus using a series of functionally informative traits. We describe the range of tooth morphologies in the genus in detail, including the first examples of serrated carinae in ichthyosaurians. These consist of false denticles created by the interaction of enamel ridgelets with the carinal keel, as well as possible cryptic true denticles only visible using scanning electron microscopy. We also find evidence for heterodonty in the species T. platyodon, with unicarinate mesial teeth likely playing a role in prey capture and labiolingually compressed, bicarinate distal teeth likely involved in prey processing. This type of heterodonty appears to be convergent with a series of other marine amniotes including early cetaceans. Overall, the species currently referred to as the genus Temnodontosaurus show a range of craniodental configurations allowing prey to be captured and processed in different ways - for example, T. eurycephalus has a deep snout and relatively small bicarinate teeth likely specialised for increased wound infliction and grip-and-tear feeding, whereas T. platyodon has a more elongate yet robust snout and larger teeth and may be more adapted for grip-and-shear feeding. These results suggest the existence of niche partitioning at higher trophic levels in Early Jurassic ichthyosaurians and have implications for future work on the taxonomy of this wastebasket genus, as well as for research into the ecology of other extinct megapredatory marine tetrapods.


Asunto(s)
Escarabajos , Ecosistema , Animales , Cabeza , Cráneo , Cetáceos , Fósiles , Evolución Biológica
8.
J Anat ; 245(3): 451-466, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733157

RESUMEN

The family Bovidae [Mammalia: Artiodactyla] is speciose and has extant representatives on every continent, forming key components of mammal communities. For these reasons, bovids are ideal candidates for studies of ecomorphology. In particular, the morphology of the bovid humerus has been identified as highly related to functional variables such as body mass and habitat. This study investigates the functional morphology of the bovid distal humerus in isolation due to its increased likelihood of preservation in the fossil record, and the resulting opportunity for a better understanding of the ecomorphology of extinct bovids. A landmark scheme of 30 landmarks was used to capture the 3D distal humerus morphology in 111 extant bovid specimens. We find that the distal humerus has identifiable morphologies associated with body mass, habitat preference and tribe affiliation and that some characteristics are shared between high body mass bovids and those living on hard, flat terrain which is likely due to the high stress on the bone in both cases. We directly apply our findings regarding extant bovids to the extinct alcelaphine bovid, Rusingoryx atopocranion from the mid to late Pleistocene (>33-45 ka) Lake Victoria region of Kenya. This species is known for some peculiar morphologies including a domed cranium with hollow nasal crests, and having small hooves for a bovid of its size. Another interesting aspect of Rusingoryx's skeletal morphology which has not been addressed is an unusual protrusion on the lateral epicondyle of the distal humerus. Despite considerable individual variation in the Rusingoryx specimens, we find evidence to support its historical assignment to the tribe Alcelaphini, and that it likely preferred open grassland habitats, which is consistent with independent reconstructions of the palaeoenvironment. We also provide the most accurate body mass estimate for Rusingoryx to date, based on distal humerus centroid size. Overall, we are able to conclude that the distal humerus in extant bovids is highly informative regarding body mass, habitat preference and tribe, and that this can be applied directly to a fossil taxon with promising results.


Asunto(s)
Fósiles , Húmero , Animales , Húmero/anatomía & histología , Fósiles/anatomía & histología , Imagenología Tridimensional , Rumiantes/anatomía & histología
9.
J Anat ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086103

RESUMEN

The mammalian skull is very malleable and has notably radiated into highly diverse morphologies, fulfilling a broad range of functional needs. Although gnawing is relatively common in mammals, this behavior and its associated morphology are diagnostic features for rodents. These animals possess a very versatile and highly mechanically advantageous masticatory apparatus, which, for instance, allowed caviomorph rodents to colonize South America during the Mid-Eocene and successfully radiate in over 200 extant species throughout most continental niches. Previous work has shown that differences in bite force within caviomorphs could be better explained by changes in muscle development than in mechanical advantages (i.e., in cranial overall morphology). Considering the strong bites they apply, it is interesting to assess how the reaction forces upon the incisors (compression) and the powerful adductor musculature pulling (tension) mechanically affect the cranium, especially between species with different ecologies (e.g., chisel-tooth digging). Thus, we ran finite element analyses upon crania of the subterranean Talas' tuco-tuco Ctenomys talarum, the semi-fossorial common degu Octodon degus, and the saxicolous long-tailed chinchilla Chinchilla lanigera to simulate: (A) in vivo biting in all species, and (B) rescaled muscle forces in non-ctenomyid rodents to match those of the tuco-tuco. Results show that the stress patterns correlate with the mechanical demands of distinctive ecologies, on in vivo-based simulations, with the subterranean tuco-tuco being the most stressed species. In contrast, when standardizing all three species (rescaled models), non-ctenomyid models exhibited a several-fold increase in stress, in both magnitude and affected areas. Detailed observations evidenced that this increase in stress was higher in lateral sections of the snout and, mainly, the zygomatic arch; between approximately 2.5-3.5 times in the common degu and 4.0-5.0 times in the long-tailed chinchilla. Yet, neither species, module, nor simulation condition presented load factor levels that would imply structural failure by strong, incidental biting. Our results let us conclude that caviomorphs have a high baseline for mechanical strength of the cranium because of the inheritance of a very robust "rodent" model, while interspecific differences are associated with particular masticatory habits and the concomitant level of development of the adductor musculature. Especially, the masseteric and zygomaticomandibular muscles contribute to >80% of the bite force, and therefore, their contraction is responsible for the highest strains upon their origin sites, that is, the zygomatic arch and the snout. Thus, the robust crania of the subterranean and highly aggressive tuco-tucos allow them to withstand much stronger forces than degus or chinchillas, such as the ones produced by their hypertrophied jaw adductor muscles or imparted by the soil reaction.

10.
J Exp Biol ; 227(9)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38722696

RESUMEN

Animals deliver and withstand physical impacts in diverse behavioral contexts, from competing rams clashing their antlers together to archerfish impacting prey with jets of water. Though the ability of animals to withstand impact has generally been studied by focusing on morphology, behaviors may also influence impact resistance. Mantis shrimp exchange high-force strikes on each other's coiled, armored telsons (tailplates) during contests over territory. Prior work has shown that telson morphology has high impact resistance. I hypothesized that the behavior of coiling the telson also contributes to impact energy dissipation. By measuring impact dynamics from high-speed videos of strikes exchanged during contests between freely moving animals, I found that approximately 20% more impact energy was dissipated by the telson as compared with findings from a prior study that focused solely on morphology. This increase is likely due to behavior: because the telson is lifted off the substrate, the entire body flexes after contact, dissipating more energy than exoskeletal morphology does on its own. While variation in the degree of telson coil did not affect energy dissipation, proportionally more energy was dissipated from higher velocity strikes and from strikes from more massive appendages. Overall, these findings show that analysis of both behavior and morphology is crucial to understanding impact resistance, and suggest future research on the evolution of structure and function under the selective pressure of biological impacts.


Asunto(s)
Crustáceos , Animales , Fenómenos Biomecánicos , Crustáceos/fisiología , Crustáceos/anatomía & histología , Metabolismo Energético , Conducta Predatoria/fisiología , Conducta Animal/fisiología , Grabación en Video
11.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39054887

RESUMEN

The physical interactions between organisms and their environment ultimately shape diversification rates, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here, we estimated a performance landscape for biting in an adaptive radiation of Cyprinodon pupfishes, including scale-biting and molluscivore specialists, and compared performance peaks with previous estimates of the fitness landscape in this system. We used high-speed video to film feeding strikes on gelatin cubes by scale eater, molluscivore, generalist and hybrid pupfishes and measured bite dimensions. We then measured five kinematic variables from 227 strikes using the SLEAP machine-learning model. We found a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant non-linear interaction between peak gape and peak jaw protrusion. Only scale eaters and their hybrids were able to perform strikes within the highest performance peak, characterized by larger peak gapes and greater jaw protrusion. A performance valley separated this peak from a lower performance peak accessible to all species, characterized by smaller peak gapes and less jaw protrusion. However, most individuals exhibited substantial variation in strike kinematics and species could not be reliably distinguished by their strikes, indicating many-to-many mapping of morphology to performance. The two performance peaks observed in the lab were partially consistent with estimates of a two-peak fitness landscape measured in the wild, with the exception of the new performance peak for scale eaters. We thus reveal a new bimodal non-linear biomechanical model that connects morphology to performance to fitness in a sympatric radiation of trophic niche specialists.


Asunto(s)
Conducta Alimentaria , Animales , Fenómenos Biomecánicos , Evolución Biológica , Maxilares/fisiología , Maxilares/anatomía & histología
12.
Biol Lett ; 20(1): 20230526, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38263882

RESUMEN

The diversity of vertebrate skeletons is often attributed to adaptations to distinct ecological factors such as diet, locomotion, and sensory environment. Although the adaptive evolution of skull, appendicular skeleton, and vertebral column is well studied in vertebrates, comprehensive investigations of all skeletal components simultaneously are rarely performed. Consequently, we know little of how modes of evolution differ among skeletal components. Here, we tested if ecological and phylogenetic effects led to distinct modes of evolution among the cranial, appendicular and vertebral regions in extant carnivoran skeletons. Using multivariate evolutionary models, we found mosaic evolution in which only the mandible, hindlimb and posterior (i.e. last thoracic and lumbar) vertebrae showed evidence of adaptation towards ecological regimes whereas the remaining skeletal components reflect clade-specific evolutionary shifts. We hypothesize that the decoupled evolution of individual skeletal components may have led to the origination of distinct adaptive zones and morphologies among extant carnivoran families that reflect phylogenetic hierarchies. Overall, our work highlights the importance of examining multiple skeletal components simultaneously in ecomorphological analyses. Ongoing work integrating the fossil and palaeoenvironmental record will further clarify deep-time drivers that govern the carnivoran diversity we see today and reveal the complexity of evolutionary processes in multicomponent systems.


Asunto(s)
Mandíbula , Cráneo , Humanos , Animales , Filogenia , Cabeza , Fósiles
13.
Exp Appl Acarol ; 92(4): 687-737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622432

RESUMEN

Changes in the functional shape of astigmatan mite moveable digit profiles are examined to test if Tyrophagus putrescentiae (Acaridae) is a trophic intermediate between a typical micro-saprophagous carpoglyphid (Carpoglyphus lactis) and a common macro-saprophagous glycyphagid (Glycyphagus domesticus). Digit tip elongation in these mites is decoupled from the basic physics of optimising moveable digit inertia. Investment in the basal ramus/coronoid process compared to that for the moveable digit mastication length varies with feeding style. A differentiated ascending ramus is indicated in C. lactis and in T. putrescentiae for different trophic reasons. Culturing affects relative investments in C. lactis. A markedly different style of feeding is inferred for the carpoglyphid. The micro-saprophagous acarid does not have an intermediate pattern of trophic functional form between the other two species. Mastication surface shape complexity confirms the acarid to be heterodontous. T. putrescentiae is a particularly variably formed species trophically. A plausible evolutionary path for the gradation of forms is illustrated. Digit form and strengthening to resist bending under occlusive loads is explored in detail. Extensions to the analytical approach are suggested to confirm the decoupling of moveable digit pattern from cheliceral and chelal adaptations. Caution is expressed when interpreting ordinations of multidimensional data in mites.


Asunto(s)
Acaridae , Animales , Acaridae/fisiología , Acaridae/crecimiento & desarrollo , Acaridae/anatomía & histología , Extremidades/anatomía & histología , Fenómenos Biomecánicos , Conducta Alimentaria , Masticación , Femenino
14.
Exp Appl Acarol ; 92(4): 567-686, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639851

RESUMEN

The dentition of the chelal moveable digit in cohabiting astigmatids from UK beehives (i.e., Carpoglyphus lactis (Linnaeus), Glycyphagus domesticus (DeGeer), and Tyrophagus putrescentiae (Schrank)) is characterised for the first time using quantitative tribological measures within a 2D mechanical model. The trophic function of astigmatid chelae are reviewed in terms of macroscopic tools used by humans including hooking devices, pliers, shears, rasps and saws. Comparisons to oribatid claws and isopod dactyli are made. The overall pattern of the moveable digit form of T. putrescentiae is not just a uniformly shrunken/swollen version between the other two taxa at either the macro- or micro-scale. Mastication surface macro-roughness values are in the range of international Roughness Grade Numbers N5-N6. The moveable digit of C. lactis has low rugosity values compared to the glycyphagid and acarid (which are topographically more similar and match that roughness typical of some coral reef surfaces). C. lactis has the most plesiomorphic moveable digit form. The mastication surface of all three species as a chewing tool is distinctly ornamented despite the moveable digit of C. lactis looking like a bar-like beam. The latter has more opportunities to be a multifunctional tool behaviourally than the other two species. Little evidence of any differences in the 'spikiness' of any 'toothiness' is found. Some differences with laboratory cultured specimens are found in C. lactis and possibly T. putrescentiae suggesting where selection on the digit may be able to occur. The chelal surface of T. putrescentiae has been deformed morphologically during evolution the most, that of C. lactis the least. Repeated localised surface differentiation is a feature of the moveable digit in G. domesticus compared to the likely more concerted changes over certain nearby locations in T. putrescentiae. An impactful chelal teeth design is present in G. domesticus but this is more equivocal in T. putrescentiae. Pockets within the mastication surface of the glycyphagid (and to some extent for the acarid) may produce foodstuff crunch forces of the scale of the chelal tips of oribatids. The moveable digit dentition of G. domesticus is adapted to shred foodstuff (like a ripsaw) more than that of the grazing/shearing dentition of T. putrescentiae. The collecting 'picker' design of C. lactis posterior teeth matches the size of Bettsia alvei hyphae which attacks hive-stored pollen. Detritus accumulated in chelal digit gullets through a sawing action matches the smallest observed ingested material. The dentition of C. lactis should produce less friction when moving through food material than G. domesticus. C. lactis is the most hypocarnivorous and may 'skim' through fluids when feeding. Astigmatid teeth do matter. The three commensal species can avoid direct competition. Future work is proposed in detail.


Asunto(s)
Ácaros , Animales , Ácaros/fisiología , Ácaros/anatomía & histología , Diente/anatomía & histología , Masticación/fisiología , Reino Unido
15.
Am Nat ; 202(6): 830-850, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38033182

RESUMEN

AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.


Asunto(s)
Ecosistema , Peces , Humanos , Animales , Filogenia , Peces/fisiología , Agua Dulce , Ecología , Evolución Biológica
16.
Proc Biol Sci ; 290(2011): 20231400, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018109

RESUMEN

Carnivores (cats, dogs and kin) are a diverse group of mammals that inhabit a remarkable range of ecological niches. While the relationship between ecology and morphology has long been of interest in carnivorans, the application of quantitative techniques has resulted in a recent explosion of work in the field. Therefore, they provide a case study of how quantitative techniques, such as geometric morphometrics (GMM), have impacted our ability to tease apart complex ecological signals from skeletal anatomy, and the implications for our understanding of the relationships between form, function and ecological specialization. This review provides a synthesis of current research on carnivoran ecomorphology, with the goal of illustrating the complex interaction between ecology and morphology in the skeleton. We explore the ecomorphological diversity across major carnivoran lineages and anatomical systems. We examine cranial elements (skull, sensory systems) and postcranial elements (limbs, vertebral column) to reveal mosaic patterns of adaptation related to feeding and hunting strategies, locomotion and habitat preference. We highlight the crucial role that new approaches have played in advancing our understanding of carnivoran ecomorphology, while addressing challenges that remain in the field, such as ecological classifications, form-function relationships and multi-element analysis, offering new avenues for future research.


Asunto(s)
Evolución Biológica , Carnívoros , Animales , Perros , Filogenia , Carnívoros/anatomía & histología , Cráneo/anatomía & histología , Locomoción
17.
Proc Biol Sci ; 290(1994): 20222020, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36883281

RESUMEN

Avian skeletal morphology is associated with locomotor function, including flight style, swimming and terrestrial locomotion, and permits informed inferences on locomotion in extinct taxa. The fossil taxon Ichthyornis (Avialae: Ornithurae) has long been regarded as highly aerial, with flight similar to terns or gulls (Laridae), and skeletal features resembling foot-propelled diving adaptations. However, rigorous testing of locomotor hypotheses has yet to be performed on Ichthyornis, despite its notable phylogenetic position as one of the most crownward stem birds. We analysed separate datasets of three-dimensional sternal shape (geometric morphometrics) and skeletal proportions (linear measurements across the skeleton), to examine how well these data types predict locomotor traits in Neornithes. We then used this information to infer locomotor capabilities of Ichthyornis. We find strong support for both soaring and foot-propelled swimming capabilities in Ichthyornis. Further, sternal shape and skeletal proportions provide complementary information on avian locomotion: skeletal proportions allow better predictions of the capacity for flight, whereas sternal shape predicts variation in more specific locomotor abilities such as soaring, foot-propelled swimming and escape burst flight. These results have important implications for future studies of extinct avialan ecology and underscore the importance of closely considering sternum morphology in investigations of fossil bird locomotion.


Asunto(s)
Charadriiformes , Esternón , Animales , Filogenia , Natación , Aclimatación
18.
Mol Ecol ; 32(3): 680-695, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394360

RESUMEN

Population isolation and concomitant genetic divergence, resulting in strong phylogeographical structure, is a core aspect of speciation initiation. If and how speciation then proceeds and ultimately completes depends on multiple factors that mediate reproductive isolation, including divergence in genomes, ecology and mating traits. Here we explored these multiple dimensions in two young (Plio-Pleistocene) species complexes of gekkonid lizards (Heteronotia) from the Kimberley-Victoria River regions of tropical Australia. Using mitochondrial DNA screening and exon capture phylogenomics, we show that the rock-restricted Heteronotia planiceps exhibits exceptional fine-scale phylogeographical structure compared to the codistributed habitat generalist Heteronotia binoei. This indicates pervasive population isolation and persistence in the rock-specialist, and thus a high rate of speciation initiation across this geographically complex region, with levels of genomic divergence spanning the "grey zone" of speciation. Proximal lineages of H. planiceps were often separated by different rock substrates, suggesting a potential role for ecological isolation; however, phylogenetic incongruence and historical introgression were inferred between one such pair. Ecomorphological divergence among lineages within both H. planiceps and H. binoei was limited, except that limestone-restricted lineages of H. planiceps tended to be larger than rock-generalists. By contrast, among-lineage divergence in the chemical composition of epidermal pore secretions (putative mating trait) exceeded ecomorphology in both complexes, but with less trait overlap among lineages in H. planiceps. This system-particularly the rock-specialist H. planiceps-highlights the role of multidimensional divergence during incipient speciation, with divergence in genomes, ecomorphology and chemical signals all at play at very fine spatial scales.


Asunto(s)
Lagartos , Animales , Filogenia , Filogeografía , ADN Mitocondrial/genética , Victoria
19.
J Anat ; 242(5): 927-952, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680380

RESUMEN

The vertebrate trigeminal nerve is the primary mediator of somatosensory information from nerve endings across the face, extending nerve branches through bony canals in the face and mandibles, terminating in sensory receptors. Reptiles evolved several extreme forms of cranial somatosensation in which enhanced trigeminal tissues are present in species engaging in unique mechanosensory behaviors. However, morphology varies by clade and ecology among reptiles. Few lineages approach the extreme degree of tactile somatosensation possessed by crocodylians, the only remaining members of a clade that underwent an ecological transition from the terrestrial to semiaquatic habitat, also evolving a specialized trigeminal system. It remains to be understood how trigeminal osteological correlates inform how adaptations for enhanced cranial sensation evolved in crocodylians. Here we identify an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding the transitions to a semiaquatic habitat. Through quantification of trigeminal neurovascular canal branching patterns in an extant phylogenetic bracket we quantify and identify morphologies associated with sensory behaviors in representative fossil taxa, we find stepwise progression of increasing neurovascular canal density, complexity, and distribution from the primitive archosaurian to the derived crocodilian condition. Model-based inferences of sensory ecologies tested on quantified morphologies of extant taxa with known sensory behaviors indicate a parallel increase in sensory abilities among pseudosuchians. These findings establish patterns of reptile trigeminal ecomorphology, revealing evolutionary patterns of somatosensory ecology.


Asunto(s)
Caimanes y Cocodrilos , Evolución Biológica , Animales , Filogenia , Nervio Trigémino , Cráneo/anatomía & histología
20.
J Anat ; 243(1): 1-22, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36929596

RESUMEN

The interrelationships of the extant crocodylians Gavialis gangeticus and Tomistoma schlegelii have been historically disputed. Whereas molecular analyses indicate a sister taxon relationship between these two gavialoid species, morphological datasets typically place Gavialis as the outgroup to all other extant crocodylians. Recent morphological-based phylogenetic analyses have begun to resolve this discrepancy, recovering Gavialis as the closest living relative of Tomistoma; however, several stratigraphically early fossil taxa are recovered as closer to Gavialis than Tomistoma, resulting in anomalously early divergence timings. As such, additional morphological data might be required to resolve these remaining discrepancies. 'Tomistoma' dowsoni is an extinct species of gavialoid from the Miocene of North Africa. Utilising CT scans of a near-complete, referred skull, we reconstruct the neuroanatomy and neurosensory apparatus of 'Tomistoma' dowsoni. Based on qualitative and quantitative morphometric comparisons with other crocodyliforms, the neuroanatomy of 'Tomistoma' dowsoni is characterised by an intermediate morphology between the two extant gavialoids, more closely resembling Gavialis. This mirrors the results of recent studies based on the external anatomy of these three species and other fossil gavialoids. Several neuroanatomical features of these species appear to reflect ecological and/or phylogenetic signals. For example, the 'simple' morphology of their neurosensory apparatus is broadly similar to that of other long and narrow-snouted (longirostrine), aquatic crocodyliforms. A dorsoventrally short, anteroposteriorly long endosseous labyrinth is also associated with longirostry. These features indicate that snout and skull morphology, which are themselves partly constrained by ecology, exert an influence on neuroanatomical morphology, as has also been recognised in birds and turtles. Conversely, the presence of a pterygoid bulla in Gavialis and several extinct gavialoids, and its absence in Tomistoma schlegelii, could be interpreted as a phylogenetic signal of crocodylians more closely related to Gavialis than to Tomistoma. Evaluation of additional fossil gavialoids will be needed to further test whether these and other neuroanatomical features primarily reflect a phylogenetic or ecological signal. By incorporating such previously inaccessible information of extinct and extant gavialoids into phylogenetic and macroecological studies, we can potentially further constrain the clade's interrelationships, as well as evaluate the timing and ecological association of the evolution of these neuroanatomical features. Finally, our study supports recent phylogenetic analyses that place 'Tomistoma' dowsoni as being phylogenetically closer to Gavialis gangeticus than to Tomistoma schlegelii, indicating the necessity of a taxonomic revision of this fossil species.


Asunto(s)
Caimanes y Cocodrilos , Neuroanatomía , Animales , Filogenia , Caimanes y Cocodrilos/anatomía & histología , Cráneo/anatomía & histología , Fósiles , África del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA