Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.958
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298912

RESUMEN

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Asunto(s)
Animales Salvajes/virología , Enfermedades Transmisibles Emergentes/virología , Reservorios de Enfermedades , Mamíferos/virología , Viroma , Animales , China , Filogenia , Zoonosis
2.
Cell ; 184(13): 3486-3501.e21, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077751

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Fiebre Hemorrágica de Crimea/inmunología , Sobrevivientes , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Virales/metabolismo , Fenómenos Biofísicos , Chlorocebus aethiops , Mapeo Epitopo , Epítopos/metabolismo , Femenino , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Fiebre Hemorrágica de Crimea/prevención & control , Humanos , Inmunoglobulina G/metabolismo , Masculino , Ratones , Pruebas de Neutralización , Unión Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/inmunología , Células Vero , Proteínas Virales/química
3.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667349

RESUMEN

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Linfocitos B/inmunología , COVID-19 , Convalecencia , Células 3T3 , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/citología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
4.
Immunity ; 50(1): 37-50, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650380

RESUMEN

Plasmacytoid dendritic cells (pDCs) are a unique sentinel cell type that can detect pathogen-derived nucleic acids and respond with rapid and massive production of type I interferon. This review summarizes our current understanding of pDC biology, including transcriptional regulation, heterogeneity, role in antiviral immune responses, and involvement in immune pathology, particularly in autoimmune diseases, immunodeficiency, and cancer. We also highlight the remaining gaps in our knowledge and important questions for the field, such as the molecular basis of unique interferon-producing capacity of pDCs. A better understanding of cell type-specific positive and negative control of pDC function should pave the way for translational applications focused on this immune cell type.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Diferenciación Celular , Células Dendríticas/fisiología , Neoplasias/inmunología , Virosis/inmunología , Animales , Regulación de la Expresión Génica , Humanos , Inmunidad Celular , Interferón Tipo I/metabolismo
5.
Immunol Rev ; 322(1): 15-27, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38062988

RESUMEN

The study of primary immunodeficiencies or inborn errors of immunity continues to drive our knowledge of the function of the human immune system. From the outset, the study of inborn errors has focused on unraveling genetic etiologies and molecular mechanisms. Aided by the continuous growth in genetic diagnostics, the field has moved from the study of an infection dominated phenotype to embrace and unravel diverse manifestations of autoinflammation, autoimmunity, malignancy, and severe allergy in all medical disciplines. It has now moved from the study of ultrarare presentations to producing meaningful impact in conditions as diverse as inflammatory bowel disease, neurological conditions, and hematology. Beyond offering immunogenetic diagnosis, the study of underlying inborn errors of immunity in these conditions points to targeted treatment which can be lifesaving.


Asunto(s)
Autoinmunidad , Neoplasias , Humanos , Fenotipo
6.
Proc Natl Acad Sci U S A ; 121(7): e2312930121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315860

RESUMEN

Emerging contaminants (EC) distributed on surfaces in the environment can be oxidized by gas phase species (top-down) or by oxidants generated by the underlying substrate (bottom-up). One class of EC is the neonicotinoid (NN) pesticides that are widely distributed in air, water, and on plant and soil surfaces as well as on airborne dust and building materials. This study investigates the OH oxidation of the systemic NN pesticide acetamiprid (ACM) at room temperature. ACM on particles and as thin films on solid substrates were oxidized by OH radicals either from the gas phase or from an underlying TiO2 or NaNO2 substrate, and for comparison, in the aqueous phase. The site of OH attack is both the secondary >CH2 group as well as the primary -CH3 group attached to the tertiary amine nitrogen, with the latter dominating. In the case of top-down oxidation of ACM by gas phase OH radicals, addition to the -CN group also occurs. Major products are carbonyls and alcohols, but in the presence of sufficient water, their hydrolyzed products dominate. Kinetics measurements show ACM is more reactive toward gas phase OH radicals than other NN nitroguanidines, with an atmospheric lifetime of a few days. Bottom-up oxidation of ACM on TiO2 exposed to sunlight outdoors (temperatures were above 30 °C) was also shown to occur and is likely to be competitive with top-down oxidation. These findings highlight the different potential oxidation processes for EC and provide key data for assessing their environmental fates and toxicologies.

7.
Proc Natl Acad Sci U S A ; 121(4): e2309102121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38232287

RESUMEN

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

8.
Proc Natl Acad Sci U S A ; 121(10): e2314017121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408231

RESUMEN

Motion is the basis of nearly all animal behavior. Evolution has led to some extraordinary specializations of propulsion mechanisms among invertebrates, including the mandibles of the dracula ant and the claw of the pistol shrimp. In contrast, vertebrate skeletal movement is considered to be limited by the speed of muscle, saturating around 250 Hz. Here, we describe the unique propulsion mechanism by which Danionella cerebrum, a miniature cyprinid fish of only 12 mm length, produces high amplitude sounds exceeding 140 dB (re. 1 µPa, at a distance of one body length). Using a combination of high-speed video, micro-computed tomography (micro-CT), RNA profiling, and finite difference simulations, we found that D. cerebrum employ a unique sound production mechanism that involves a drumming cartilage, a specialized rib, and a dedicated muscle adapted for low fatigue. This apparatus accelerates the drumming cartilage at over 2,000 g, shooting it at the swim bladder to generate a rapid, loud pulse. These pulses are chained together to make calls with either bilaterally alternating or unilateral muscle contractions. D. cerebrum use this remarkable mechanism for acoustic communication with conspecifics.


Asunto(s)
Comunicación Animal , Cyprinidae , Animales , Microtomografía por Rayos X , Sonido , Acústica , Cyprinidae/genética
9.
Proc Natl Acad Sci U S A ; 121(4): e2317928121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236738

RESUMEN

Batrachochytrium dendrobatidis (Bd), a causative agent of chytridiomycosis, is decimating amphibian populations around the world. Bd belongs to the chytrid lineage, a group of early-diverging fungi that are widely used to study fungal evolution. Like all chytrids, Bd develops from a motile form into a sessile, growth form, a transition that involves drastic changes in its cytoskeletal architecture. Efforts to study Bd cell biology, development, and pathogenicity have been limited by the lack of genetic tools with which to test hypotheses about underlying molecular mechanisms. Here, we report the development of a transient genetic transformation system for Bd. We used electroporation to deliver exogenous DNA into Bd cells and detected transgene expression for up to three generations under both heterologous and native promoters. We also adapted the transformation protocol for selection using an antibiotic resistance marker. Finally, we used this system to express fluorescent protein fusions and, as a proof of concept, expressed a genetically encoded probe for the actin cytoskeleton. Using live-cell imaging, we visualized the distribution and dynamics of polymerized actin at each stage of the Bd life cycle, as well as during key developmental transitions. This transformation system enables direct testing of key hypotheses regarding mechanisms of Bd pathogenesis. This technology also paves the way for answering fundamental questions of chytrid cell, developmental, and evolutionary biology.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Batrachochytrium , Quitridiomicetos/genética , Anuros , Anfibios/microbiología , Micosis/microbiología , Transformación Genética
10.
Annu Rev Med ; 75: 443-457, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37738507

RESUMEN

Resistant hypertension (RH) is a severe form of hypertension associated with increased cardiovascular risk. Although true RH affects less than 10% of the patients receiving antihypertensive therapy, the absolute number is high and continues to increase. The workup of these patients requires screening for secondary hypertension and pseudoresistance, including poor adherence to prescribed medicines and the white-coat phenomenon. The treatment of RH consists of lifestyle modifications and pharmacological therapies. Lifestyle modifications include dietary adjustments, weight loss, physical activity, and limiting alcohol consumption; pharmacological therapies include diuretics, mineralocorticoid receptor antagonists, beta blockers, angiotensin receptor-neprilysin inhibitors, and others. Over the last 15 years, interventional approaches have emerged as adjunct treatment options; we highlight catheter-based renal denervation. This review summarizes the rationales and latest clinical evidence and, based thereon, proposes an updated algorithm for the management of RH.


Asunto(s)
Antihipertensivos , Hipertensión , Humanos , Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Estilo de Vida
11.
Annu Rev Med ; 75: 159-175, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37788486

RESUMEN

Mpox, previously known as monkeypox, is caused by an Orthopoxvirus related to the variola virus that causes smallpox. Prior to 2022, mpox was considered a zoonotic disease endemic to central and west Africa. Since May 2022, more than 86,000 cases of mpox from 110 countries have been identified across the world, predominantly in men who have sex with men, most often acquired through close physical contact or during sexual activity. The classical clinical presentation of mpox is a prodrome including fever, lethargy, and lymphadenopathy followed by a characteristic vesiculopustular rash. The recent 2022 outbreak included novel presentations of mpox with a predominance of anogenital lesions, mucosal lesions, and other features such as anorectal pain, proctitis, oropharyngeal lesions, tonsillitis, and multiphasic skin lesions. We describe the demographics and clinical spectrum of classical and novel mpox, outlining the potential complications and management.


Asunto(s)
Mpox , Minorías Sexuales y de Género , Masculino , Animales , Humanos , Homosexualidad Masculina , Zoonosis , Brotes de Enfermedades
12.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38881075

RESUMEN

The Bioinformatics Grand Challenges Consortium (BGCC) is a collaborative effort to address the most pressing challenges in bioinformatics. Initially focusing on education and training, the consortium successfully defined seven key grand challenges and is actively developing actionable solutions for these challenges. Building on this foundation, the BGCC plans to broaden its focus to include additional grand challenges in emerging areas.


Asunto(s)
Biología Computacional , Biología Computacional/educación , Biología Computacional/métodos , Humanos
13.
Immunol Rev ; 309(1): 8-11, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770708

RESUMEN

Pandemics have devastating effects that can be mitigated with the existence of global infrastructure for pandemic preparedness along with the adaptation of existing research studies and establishment of biorepositories early in an outbreak. Observational cohort studies in place prior to a pandemic, that are rapidly scalable in response to emerging infectious diseases, are essential for both the early pandemic response and evaluation of its long-term effects. The ability to quickly collect and share samples from convalescent individuals is also critical for the development of vaccines and therapeutics. We provide a reflection on key lessons learned from establishing a longitudinal observational cohort study during the SARS-CoV-2 pandemic in order to provide guidance for future pandemic preparedness.


Asunto(s)
COVID-19 , Pandemias , Estudios de Cohortes , Brotes de Enfermedades , Humanos , Estudios Observacionales como Asunto , Pandemias/prevención & control , SARS-CoV-2
14.
Semin Cancer Biol ; 98: 31-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123029

RESUMEN

Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.


Asunto(s)
Neoplasias , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/genética , Neoplasias/patología , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ADN
15.
Trends Genet ; 38(3): 273-289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34702577

RESUMEN

H2A.Z is a histone variant that provides specific structural and docking-side properties to the nucleosome, resulting in diverse and specialised molecular and cellular functions. In this review, we discuss the latest studies uncovering new functional aspects of mammalian H2A.Z in gene transcription, including pausing and elongation of RNA polymerase II (RNAPII) and enhancer activity; DNA repair; DNA replication; and 3D chromatin structure. We also review the recently described role of H2A.Z in embryonic development, cell differentiation, neurodevelopment, and brain function. In conclusion, our cumulative knowledge of H2A.Z over the past 40 years, in combination with the implementation of novel molecular technologies, is unravelling an unexpected and complex role of histone variants in gene regulation and disease.


Asunto(s)
Cromatina , Histonas , Animales , Cromatina/genética , Histonas/genética , Mamíferos/genética , Nucleosomas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
16.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38571392

RESUMEN

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Asunto(s)
Vacunas Atenuadas , Vacuna contra la Fiebre Amarilla , Virus de la Fiebre Amarilla , Humanos , Vacuna contra la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Vacunas Atenuadas/inmunología , Animales , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Vacunación/métodos
17.
J Virol ; 98(6): e0011824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38785422

RESUMEN

The production of aquatic animals has more than doubled over the last 50 years and is anticipated to continually increase. While fish are recognized as a valuable and sustainable source of nutrition, particularly in the context of human population growth and climate change, the rapid expansion of aquaculture coincides with the emergence of highly pathogenic viruses that often spread globally through aquacultural practices. Here, we provide an overview of the fish virome and its relevance for disease emergence, with a focus on the insights gained through metagenomic sequencing, noting potential areas for future study. In particular, we describe the diversity and evolution of fish viruses, for which the majority have no known disease associations, and demonstrate how viruses emerge in fish populations, most notably at an expanding domestic-wild interface. We also show how wild fish are a powerful and tractable model system to study virus ecology and evolution more broadly and can be used to identify the major factors that shape vertebrate viromes. Central to this is a process of virus-host co-divergence that proceeds over many millions of years, combined with ongoing cross-species virus transmission.


Asunto(s)
Evolución Molecular , Enfermedades de los Peces , Peces , Virus , Animales , Acuicultura/tendencias , Enfermedades de los Peces/transmisión , Enfermedades de los Peces/virología , Peces/clasificación , Peces/virología , Variación Genética , Metagenómica , Filogenia , Viroma/genética , Virosis/transmisión , Virosis/veterinaria , Virosis/virología , Virus/genética , Virus/clasificación
18.
J Virol ; 98(2): e0157123, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38206036

RESUMEN

In pandemic scenarios involving novel human pathogenic viruses, it is highly desirable that vaccines induce strong neutralizing antibodies as quickly as possible. However, current vaccine strategies require multiple immunization doses to produce high titers of neutralizing antibodies and are poorly protective after a single vaccination. We therefore wished to design a vaccine candidate that would induce increased protective immune responses following the first vaccine dose. We hypothesized that antibodies against the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein could be increased by drawing upon immunity to a previous infection. We generated a fusion protein containing the influenza H1N1 PR8 virus nucleoprotein (NP) and the SARS-CoV-2 spike RBD. Mice with or without preexisting immunity to PR8 were then vaccinated with NP/RBD. We observed significantly increased SARS-CoV-2 neutralizing antibodies in mice with PR8 immunity compared to mice without preexisting PR8 immunity. Vaccination with NP/RBD protected mice from SARS-CoV-2-induced morbidity and mortality after a single dose. Additionally, we compared SARS-CoV-2 virus titers in the lungs and nasal turbinates 4 days post-challenge of mice vaccinated with NP/RBD. SARS-CoV-2 virus was detectable in the lungs and nasal turbinate of mice without preexisting PR8 immunity, while SARS-CoV-2 virus was completely undetectable in mice with preexisting PR8 immunity. We also found that CD4-positive T cells in mice with preexisting immunity to PR8 play an essential role in producing the increased antibody response against RBD. This vaccine strategy potentially can be modified to target other pathogens of concern and offers extra value in future pandemic scenarios.IMPORTANCEIncreased globalization and changes in human interactions with wild animals has increased the likelihood of the emergence of novel viruses with pandemic potential. Vaccines can be effective in preventing severe disease caused by pandemic viruses. However, it takes time to develop protective immunity via prime-boost vaccination. More effective vaccine designs should quickly induce protective immunity. We propose leveraging preexisting immunity to a different pathogen to boost protection against emerging viruses. We targeted SARS-CoV-2 as a representative pandemic virus and generated a fusion protein vaccine that combines the nucleoprotein from influenza A virus and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Our vaccine design significantly increased the production of RBD-specific antibodies in mice that had previously been exposed to influenza virus, compared to those without previous exposure. This enhanced immunity reduced SARS-CoV-2 replication in mice. Our results offer a vaccine design that could be valuable in a future pandemic setting.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra la Influenza , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/inmunología , COVID-19/prevención & control , Subtipo H1N1 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/inmunología , Nucleoproteínas , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Vacunas contra la COVID-19/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control
19.
J Virol ; 98(1): e0156823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054738

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Proteínas de la Nucleocápside , Ribonucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN , Síndrome de Trombocitopenia Febril Grave/metabolismo , Síndrome de Trombocitopenia Febril Grave/virología , Phlebovirus/fisiología , Interacciones Huésped-Patógeno
20.
J Virol ; 98(2): e0168323, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38226809

RESUMEN

Emerging and endemic zoonotic diseases continue to threaten human and animal health, our social fabric, and the global economy. Zoonoses frequently emerge from congregate interfaces where multiple animal species and humans coexist, including farms and markets. Traditional food markets are widespread across the globe and create an interface where domestic and wild animals interact among themselves and with humans, increasing the risk of pathogen spillover. Despite decades of evidence linking markets to disease outbreaks across the world, there remains a striking lack of pathogen surveillance programs that can relay timely, cost-effective, and actionable information to decision-makers to protect human and animal health. However, the strategic incorporation of environmental surveillance systems in markets coupled with novel pathogen detection strategies can create an early warning system capable of alerting us to the risk of outbreaks before they happen. Here, we explore the concept of "smart" markets that utilize continuous surveillance systems to monitor the emergence of zoonotic pathogens with spillover potential.IMPORTANCEFast detection and rapid intervention are crucial to mitigate risks of pathogen emergence, spillover and spread-every second counts. However, comprehensive, active, longitudinal surveillance systems at high-risk interfaces that provide real-time data for action remain lacking. This paper proposes "smart market" systems harnessing cutting-edge tools and a range of sampling techniques, including wastewater and air collection, multiplex assays, and metagenomic sequencing. Coupled with robust response pathways, these systems could better enable Early Warning and bolster prevention efforts.


Asunto(s)
Enfermedades Transmisibles Emergentes , Monitoreo Epidemiológico , Animales , Humanos , Animales Salvajes , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/veterinaria , Brotes de Enfermedades/prevención & control , Zoonosis/epidemiología , Zoonosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA