RESUMEN
Effective nitrogen fertilizer management is crucial for reducing nitrous oxide (N2O) emissions while ensuring food security within planetary boundaries. However, climate change might also interact with management practices to alter N2O emission and emission factors (EFs), adding further uncertainties to estimating mitigation potentials. Here, we developed a new hybrid modeling framework that integrates a machine learning model with an ensemble of eight process-based models to project EFs under different climate and nitrogen policy scenarios. Our findings reveal that EFs are dynamically modulated by environmental changes, including climate, soil properties, and nitrogen management practices. Under low-ambition nitrogen regulation policies, EF would increase from 1.18%-1.22% in 2010 to 1.27%-1.34% by 2050, representing a relative increase of 4.4%-11.4% and exceeding the IPCC tier-1 EF of 1%. This trend is particularly pronounced in tropical and subtropical regions with high nitrogen inputs, where EFs could increase by 0.14%-0.35% (relative increase of 11.9%-17%). In contrast, high-ambition policies have the potential to mitigate the increases in EF caused by climate change, possibly leading to slight decreases in EFs. Furthermore, our results demonstrate that global EFs are expected to continue rising due to warming and regional drying-wetting cycles, even in the absence of changes in nitrogen management practices. This asymmetrical influence of nitrogen fertilizers on EFs, driven by climate change, underscores the urgent need for immediate N2O emission reductions and further assessments of mitigation potentials. This hybrid modeling framework offers a computationally efficient approach to projecting future N2O emissions across various climate, soil, and nitrogen management scenarios, facilitating socio-economic assessments and policy-making efforts.
Asunto(s)
Agricultura , Cambio Climático , Fertilizantes , Óxido Nitroso , Óxido Nitroso/análisis , Agricultura/métodos , Fertilizantes/análisis , Modelos Teóricos , Nitrógeno/análisis , Aprendizaje Automático , Suelo/químicaRESUMEN
Sub-Saharan Africa is a hotspot for biomass burning (BB)-derived carbonaceous aerosols, including light-absorbing organic (brown) carbon (BrC). However, the chemically complex nature of BrC in BB aerosols from this region is not fully understood. We generated smoke in a chamber through smoldering combustion of common sub-Saharan African biomass fuels (hardwoods, cow dung, savanna grass, and leaves). We quantified aethalometer-based, real-time light-absorption properties of BrC-containing organic-rich BB aerosols, accounting for variations in wavelength, fuel type, relative humidity, and photochemical aging conditions. In filter samples collected from the chamber and Botswana in the winter, we identified 182 BrC species, classified into lignin pyrolysis products, nitroaromatics, coumarins, stilbenes, and flavonoids. Using an extensive set of standards, we determined species-specific mass and emission factors. Our analysis revealed a linear relationship between the combined BrC species contribution to chamber-measured BB aerosol mass (0.4-14%) and the mass-absorption cross-section at 370 nm (0.2-2.2 m2 g-1). Hierarchical clustering resolved key molecular-level components from the BrC matrix, with photochemically aged emissions from leaf and cow-dung burning showing BrC fingerprints similar to those found in Botswana aerosols. These quantitative findings could potentially help refine climate model predictions, aid in source apportionment, and inform effective air quality management policies for human health and the global climate.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Anciano , Carbono , Biomasa , Monitoreo del Ambiente , Contaminación del Aire/análisis , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisisRESUMEN
Partial replacement of mineral fertilisers (MF) with animal manures is a good alternative to reduce MF use and increase both nutrient cycling in agriculture and soil organic matter. However, the adoption of this practice must not lead to increased environmental impacts. In this two-year study conducted in an apple orchard, MF were partially replaced with various animal manures, including cattle slurry (CS), acidified cattle slurry (ACS), solid cattle manure (CsM), or poultry manure (PM), and their impacts on greenhouse gas emission (GHG: CO2, N2O and CH4) were examined. A control (CTRL) receiving only MF served as the baseline, representing the conventional scenario in orchard fertilisation. Overall, replacing MF with manures increased GHG emissions, with the magnitude of the impacts depending on the specific characteristics of the manures and the amount of nutrients and organic matter applied. Comparing to the CTRL, application of ACS and CS led to higher CH4 and N2O emissions, while PM application increased both N2O and CO2 emissions. In contrast, replacement with PM and CsM decreased CH4 emissions. Nevertheless, results varied between the two years, influenced by several factors, including soil conditions. While acidification showed potential to mitigate CH4 emissions, it also led to increased N2O emissions compared to CS, particularly in 2022, suggesting the need for further investigation to avoid emission trade-offs. Replacement with CS (20.49 t CO2-eq ha-1) and CsM (20.30 t CO2-eq ha-1) showed comparable global warming potential (GWP) to the conventional scenario (CTRL, 19.49 t CO2-eq ha-1), highlighting their potential as viable MF substitutes.
Asunto(s)
Malus , Estiércol , Animales , Bovinos , Fertilizantes , Dióxido de Carbono/análisis , Óxido Nitroso/análisis , Suelo , Agricultura , Minerales , Aves de Corral , MetanoRESUMEN
The use of fixed emission factors (EFs), combined with insufficient temporal distribution, leads to substantial uncertainties in current emission inventories for India, the world's second-largest producer and consumer of synthetic N-fertilizers. Our study aimed to improve the NH3 and N2O emission estimates by utilizing crop-specific district-level activity data and refined EFs tailored to Indian conditions. In this study, a comprehensive NH3 and N2O emission inventory (EI) is methodically developed at 0.1° * 0.1° spatial and monthly temporal resolution for the year 2018-19 considering 52 crops. The data for developing this inventory is aggregated through detailed field surveys, conducted across 102 districts of 14 states, and relevant government databases. EFs have been adjusted for the Indian context by refining them to reflect local conditions through consideration of ambient temperature, application rate, and other factors. Further, upon preparing an EI for FA, a spectrum of mitigation strategies are evaluated to assess their effectiveness in reducing emissions. Yearly total NH3 and N2O emissions amount to 3.15 Tg and 138.53 Gg, with urea fertilizer as the dominant contributor accounting for 93.85% and 96.44% of emissions, respectively. Key crops such as rice, wheat, maize, sugarcane, and cotton collectively represent approximately 82% of the total N consumption. The state of Uttar Pradesh emerges as the largest emitter, contributing 706.5 Gg and 25.31 Gg of NH3 and N2O emissions, respectively. Conversely, PB and HR exhibit the highest NH3 emissions per capita. Temporally, NH3 emissions peak in August, while N2O emissions peak in July, with both pollutants reaching their nadir in February. Among the array of mitigation strategies assessed in this study, 'adhering to recommended fertilizer doses' and 'incorporating urease inhibitors' demonstrated substantial potential for reducing emissions. The current study aids policymaking to mitigate the environmental and health impacts of atmospheric emissions from synthetic N-fertilizers. Future researchers can adopt this study as a benchmark to improve Indian FA emission estimates, which helps in promoting sustainable agricultural practices and contributes to climate change mitigation efforts.
Asunto(s)
Fertilizantes , Fertilizantes/análisis , India , Productos Agrícolas , Agricultura , Monitoreo del Ambiente/métodosRESUMEN
There are limited data for greenhouse gas (GHG) emissions from smallholder agricultural systems in tropical peatlands, with data for non-CO2 emissions from human-influenced tropical peatlands particularly scarce. The aim of this study was to quantify soil CH4 and N2 O fluxes from smallholder agricultural systems on tropical peatlands in Southeast Asia and assess their environmental controls. The study was carried out in four regions in Malaysia and Indonesia. CH4 and N2 O fluxes and environmental parameters were measured in cropland, oil palm plantation, tree plantation and forest. Annual CH4 emissions (in kg CH4 ha-1 year-1 ) were: 70.7 ± 29.5, 2.1 ± 1.2, 2.1 ± 0.6 and 6.2 ± 1.9 at the forest, tree plantation, oil palm and cropland land-use classes, respectively. Annual N2 O emissions (in kg N2 O ha-1 year-1 ) were: 6.5 ± 2.8, 3.2 ± 1.2, 21.9 ± 11.4 and 33.6 ± 7.3 in the same order as above, respectively. Annual CH4 emissions were strongly determined by water table depth (WTD) and increased exponentially when annual WTD was above -25 cm. In contrast, annual N2 O emissions were strongly correlated with mean total dissolved nitrogen (TDN) in soil water, following a sigmoidal relationship, up to an apparent threshold of 10 mg N L-1 beyond which TDN seemingly ceased to be limiting for N2 O production. The new emissions data for CH4 and N2 O presented here should help to develop more robust country level 'emission factors' for the quantification of national GHG inventory reporting. The impact of TDN on N2 O emissions suggests that soil nutrient status strongly impacts emissions, and therefore, policies which reduce N-fertilisation inputs might contribute to emissions mitigation from agricultural peat landscapes. However, the most important policy intervention for reducing emissions is one that reduces the conversion of peat swamp forest to agriculture on peatlands in the first place.
Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Humanos , Dióxido de Carbono/análisis , Metano/análisis , Agricultura , Suelo , Gases de Efecto Invernadero/análisis , Árboles , Indonesia , Nitrógeno , Óxido Nitroso/análisisRESUMEN
Chlorinated organic chemicals are produced and used extensively worldwide, and their risks to the biology and environment are of increasing concern. However, chlorinated byproducts [e.g., polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)] formed during the commercial manufacturing processes and present in organochlorine products are rarely reported. The knowledge on the occurrences and fate of unintentional persistent organic chemicals in the manufacturing of organochlorine chemical is necessary for accurate assessment of the risks of commercial chemicals and their production. Here, PCDD/Fs were tracked throughout chlorobenzene and chloroethylene production processes (from raw materials to final products) by target analysis. Other byproducts that can further transform into PCDD/Fs were also identified by performing non-target screening. As a result, the PCDD/F concentrations were mostly the highest in bottom residues, and the octachlorinated congeners were dominant. Alkali/water washing stages may cause the formation of oxygen-containing byproducts including PCDD/Fs and acyl-containing compounds, so more attention should be paid to these stages. PCDD/Fs were of 0.17 and 0.21-1.2 ng/mL in monochlorobenzene and chloroethylene products, respectively. Annual PCDD/F emissions (17 g toxic equivalent in 2018) during chlorobenzene and chloroethylene production were estimated using PCDD/F emission factors. The results can contribute to the improvement of PCDD/F inventories for the analyzed commercial chemicals.
Asunto(s)
Dibenzodioxinas Policloradas , Cloruro de Vinilo , Dibenzofuranos/análisis , Cloruro de Vinilo/análisis , Dibenzofuranos Policlorados/análisis , Dibenzofuranos Policlorados/química , Monitoreo del Ambiente , ClorobencenosRESUMEN
Atmospheric nitrous acid (HONO) is an important precursor of atmospheric hydroxyl radicals. Vehicle emissions and heterogeneous reactions have been identified as major sources of urban HONO. Here, we report on HONO emissions from residential natural gas (RNG) for water and space heating in urban areas based on in situ measurements. The observed HONO emission factors (EFs) of RNG heating vary between 6.03 and 608 mg·m-3 NG, which are highly dependent on the thermal load. The highest HONO EFs are observed at a high thermal load via the thermal NO homogeneous reaction. The average HONO EFs of RNG water heating in winter are 1.8 times higher than that in summer due to the increased thermal load caused by the lower inlet water temperatures in winter. The power-based HONO EFs of the traditional RNG heaters are 1085 times and 1.7 times higher than those of gasoline and diesel vehicles that meet the latest emission standards, respectively. It is estimated that the HONO emissions from RNG heaters in a typical Chinese city are gradually close to emissions from on-road vehicles when temperatures decline. These findings highlight that RNG heating is a non-negligible source of urban HONO emissions in China. With the continuous acceleration of coal-to-gas projects and the continuous tightening of NOx emission standards for vehicle exhaust, HONO emissions from RNG heaters will become more prominent in urban areas. Hence, it is urgently needed to upgrade traditional RNG heaters with efficient emission reduction technologies such as frequency-converted blowers, secondary condensers, and low-NOx combustors.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Gas Natural , Calefacción , Emisiones de Vehículos/análisis , China , Ácido Nitroso/análisisRESUMEN
Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (â¢OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that â¢OH is the main reactant rather than the nitriate radical (â¢NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.
Asunto(s)
Envejecimiento , Pirogalol , Humanos , Anciano , Biomasa , Carbón MineralRESUMEN
Particle number emission factors were determined for hundreds of individual diesel and gasoline vehicles in their real operation on Finnish highways and regional roads in 2020 with one-by-one chase measurements and Robust Regression Plume Analysis (RRPA). RRPA is a rapid way to analyze data from a large number of vehicle chases automatically. The particle number emission factors were determined for four ranges of particle diameters (>1.3, > 2.5, > 10, and >23 nm). The emission factors for most of the measured vehicles were observed to significantly exceed the non-volatile particle number limits used in the most recent European emission regulation levels, for both light-duty and heavy-duty vehicles. Additionally, most of the newest vehicles (covering regulation levels up to Euro 6), for which the particle number emission regulations (non-volatile >23 nm particles) apply, showed emission factors of the >23 nm particles clearly above the regulation limits. Although the experiments included measurements of real-world plume particles (mixture of non-volatile and semi-volatile particles) and not only the non-volatile regulated particles, it is important to note that the emissions of regulated particles were also estimated to exceed the limits, based on non-volatile >23 nm particle fraction from curbside studies. Moreover, the emission factors of the >1.3 nm particles were mostly about an order of magnitude higher compared to the >23 nm particles.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Material Particulado/análisis , Gasolina/análisis , Vehículos a Motor , Monitoreo del Ambiente , Tamaño de la PartículaRESUMEN
Success in reducing oil and gas sector methane emissions is contingent on understanding the sources driving emissions, associated options for mitigation, and the effectiveness of regulations in achieving intended outcomes. This study combines high-resolution, high-sensitivity aerial survey data with subsequent on-site investigations of detected sources to examine these points. Measurements were performed in British Columbia, Canada, an active oil- and gas-producing province with modern methane regulations featuring mandatory three times per year leak detection and repair (LDAR) surveys at most facilities. Derived emission factors enabled by source attribution show that significant methane emissions persist under this regulatory framework, dominated by (i) combustion slip (compressor exhaust and also catalytic heaters, which are not covered in current regulations), (ii) intentional venting (uncontrolled tanks, vent stacks or intentionally unlit flares, and uncontrolled compressors), and (iii) unintentional venting (controlled tanks, unintentionally unlit/blown out flares, and abnormally operating pneumatics). Although the detailed analysis shows mitigation options exist for all sources, the importance of combustion slip and the persistently large methane contributions from controlled tanks and unlit flares demonstrate the limits of current LDAR programs and the critical need for additional monitoring and verification if regulations are to have the intended impacts, and reduction targets of 75% and greater are to be met.
Asunto(s)
Contaminantes Atmosféricos , Metano , Metano/análisis , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Colombia Británica , Encuestas y Cuestionarios , Gas Natural/análisisRESUMEN
Operational-sized prescribed grassland burns at three mid-West U.S. locations and ten 1-ha-sized prescribed grassland burns were conducted in the Flint Hills of Kansas to determine emission factors and their potential seasonal effects. Ground-, aerostat-, and unmanned aircraft system-based platforms were used to sample plume emissions for a range of gaseous and particulate pollutants. The ten co-located, 1-ha-sized plots allowed for testing five plots in the spring and five in the late summer, allowing for control of vegetation type, biomass loading, climate history, and land use. The operational-sized burns provided a range of conditions under which to determine emission factors relevant to the Flint Hills grasslands. The 1-ha plots showed that emission factors for pollutants such as PM2.5 and BTEX (benzene, toluene, ethylbenzene, and xylene) were higher during the late summer than during the traditional spring burn season. This is likely due to increased biomass density and fuel moisture in the growing season biomass resulting in reduced combustion efficiency.
RESUMEN
The current study aimed to measure real-world emissions of three-wheeled autorickshaws powered by CNG and parameters (such as speed, acceleration, air-fuel (A/F) ratio, and rpm) influencing 3-wheeler emission rates. Test vehicles manufactured under Bharat Standards BS-III and BS-IV were monitored for exhaust emissions in Delhi city using a portable exhaust emission measurement system (AVL Ditest Gas 1000). The average emission rates of CO, HC, and NO gases for on-road autorickshaws were found to be 0.015 ± 0.017, 0.003 ± 0.0017, and 0.007 ± 0.005 g/s, respectively. Further, the highest emission factor values of 3.98 g/km and 3.93 g/km were estimated for CO and HC+NO gases, respectively. These values were found to be 1.4-3.2 times higher than the respective BS emission norms (BS III-CO =1.25 g/km, HC+NO = 1.25 g/km; BS-IV-CO = 0.94 g/km and HC+NO = 0.94 g/km). In this study, it was observed that the driving pattern and emissions were affected by traffic characteristics, driver behavior (constant acceleration and deceleration), and vehicle characteristics. The air-fuel ratio (A/F) was found to correlate highly with emission rates, followed by acceleration/deceleration and speed. Further analysis found that more than 70% of the aggregated emissions were due to acceleration and deceleration, which contributed to nearly 70% of the travel time. This was followed by the breakdown of speed and emissions into different bins, which found that 20-30 kmph has a higher emission rate and 40-50 kmph bin has a lower emission rate.
Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Emisiones de Vehículos/análisis , Monóxido de Carbono/análisis , Ciudades , Gases , Vehículos a Motor , GasolinaRESUMEN
Straw pellets are widely promoted and expected to be a cleaner alternative fuel to unprocessed crop residues and raw coal in rural China. However, the effectiveness of these dissemination programs is not well evaluated. In this field study, emission characteristics of burning straw pellets, raw coal, and unprocessed corn cobs in heating stoves were investigated in a pilot village in Northeast China. Emission measurements covering the whole combustion cycle (ignition, flaming, and smoldering phases) shows the promotion of improved heating stoves and straw pellets could reduce pollutant emissions (e.g., SO2 and CO), but increase NOX and PM2.5 emissions compared to the initial stove-fuel use pattern in the studied area. There is a significant variance in emission characteristics between different combustion phases. The normalized emission concentrations of the different stove-fuel combinations were higher than the limits in the Chinese national standard for heating stoves, indicating that the standard is not met for real-world emissions. Coal consumption was lower than official data. Household surveys were conducted to identify the barriers to fuel and stove access associated with existing promotion strategies, management, and policies. The pilot program was of the typical "subsidy-and-policy-dependence" pattern and was unlikely to be implemented on a large scale. Technological innovation, operational optimization, and proper policies considering the local socioeconomic factors are needed to sustain the promotion of biomass straw pellets and stoves.
Asunto(s)
Contaminantes Atmosféricos , Calefacción , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , China , CulinariaRESUMEN
To evaluate the reduction brought about by energy storage technology, it is essential to first have accurate data on carbon emissions from electricity consumption. However, when gathering this data by evaluating marginal emission factors (MEFs), previous research measured only generation emissions and direct transfer emissions while ignoring the impact of embodied emissions from the cross-grid transfer. To gather more accurate data, this study constructs an electricity network composed of 28 European countries in 2019 and compares the difference between the MEFs when considering the network-wide emissions and the MEFs when only considering generation emissions and direct transfer emissions for electricity trade (neglecting the indirect emissions in purchased electricity). Three energy storage strategies are adopted to evaluate the carbon emission reduction benefits of energy storage. The results show that the errors in emission accounting and MEF calculation are 7% and 10%, respectively, if the impact of electricity trade is not taken into account. When disregarding the indirect emissions from electricity trade, the errors in emission accounting and MEF calculation are 1%. Implementing wind curtailment reduction strategies for energy storage systems could effectively reduce electricity carbon emissions, more than 200 gCO2/kWh in most countries with 100% storage efficiency. The accuracy of MEFs has a significant impact on the results of energy storage benefits, and the choice of storage strategies has different effects on electricity emissions in the same country. Our methods have general applicability for other regions and countries.
RESUMEN
Vast black carbon (BC) emissions from sub-Saharan Africa are perceived to warm the regional climate, impact rainfall patterns, and impair human respiratory health. However, the magnitudes of these perturbations are ill-constrained, largely due to limited ground-based observations and uncertainties in emissions from different sources. This paper reports multiyear concentrations of BC and other key PM2.5 aerosol constituents from the Rwanda Climate Observatory, serving as a regional receptor site. We find a strong seasonal cycle for all investigated chemical species, where the maxima coincide with large-scale upwind savanna fires. BC concentrations show notable interannual variability, with no clear long-term trend. The Δ14C and δ13C signatures of BC unambiguously show highly elevated biomass burning contributions, up to 93 ± 3%, with a clear and strong savanna burning imprint. We further observe a near-equal contribution from C3 and C4 plants, irrespective of air mass source region or season. In addition, the study provides improved relative emission factors of key aerosol components, organic carbon (OC), K+, and NO3-, in savanna-fires-influenced background atmosphere. Altogether, we report quantitative source constraints on Eastern Africa BC emissions, with implications for parameterization of satellite fire and bottom-up emission inventories as well as regional climate and chemical transport modeling.
Asunto(s)
Contaminantes Atmosféricos , Incendios , Humanos , Contaminantes Atmosféricos/análisis , Pradera , Hollín/análisis , Aerosoles/análisis , Carbono/análisis , Biomasa , África del Sur del Sahara , Monitoreo del AmbienteRESUMEN
There have only been a few wintertime studies of heavy-duty vehicle (HDV) NOx emissions in the United States, and while they have observed increased emissions, fleet characterization to identify the cause has been lacking. We have collected wintertime measurements of NOx emission factors from 1591 HDVs at a Utah Port of Entry in December 2020 that includes individual vehicle identification. In general, NOx emission factors for 2011 and newer chassis model year HDV are significantly higher than those for 2017 spring measurements from California. The newest chassis model year HDV (2017-2021) NOx emission factors are similar, indicating no significant emission deterioration over the 5 year period, though they are still approximately a factor of 3 higher than the portable emission measurement on-road enforcement standard. We estimate that ambient temperature increases NOx emissions no more than 25% in the newer HDV, likely through reductions in catalyst efficiencies. NOx emissions increase to a significantly higher level for the 2011-2013 chassis model year vehicles, where within the uncertainties, they have emissions similar to older precontrol vehicles, indicating that they have lost their NOx control capabilities within 8 years. MOVES3 modeling of the Utah fleet underpredicted mean NOx emissions by a factor of 1.8 but the MOVES3 estimate is helped by including a larger fraction of high-emitting glider kit trucks (new chassis with pre-emission control engines) than found in the observations.
Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Vehículos a Motor , Óxido Nítrico , Óxidos de Nitrógeno/análisis , Utah , Emisiones de Vehículos/análisisRESUMEN
PURPOSE: Underground diesel exhaust exposure is an occupational health risk. It is not known how recent intensified emission legislation and use of renewable fuels have reduced or altered occupational exposures. We characterized these effects on multipollutant personal exposure to diesel exhaust and underground ambient air concentrations in an underground iron ore mine. METHODS: Full-shift personal sampling (12 workers) of elemental carbon (EC), nitrogen dioxide (NO2), polycyclic aromatic hydrocarbons (PAHs), and equivalent black carbon (eBC) was performed. The study used and validated eBC as an online proxy for occupational exposure to EC. Ambient air sampling of these pollutants and particle number size distribution and concentration were performed in the vicinity of the workers. Urine samples (27 workers) were collected after 8 h exposure and analyzed for PAH metabolites and effect biomarkers (8-oxodG for DNA oxidative damage, 4-HNE-MA for lipid peroxidation, 3-HPMA for acrolein). RESULTS: The personal exposures (geometric mean; GM) of the participating miners were 7 µg EC m-3 and 153 µg NO2 m-3, which are below the EU occupational exposure limits. However, exposures up to 94 µg EC m-3 and 1200 µg NO2 m-3 were observed. There was a tendency that the operators of vehicles complying with sharpened emission legislation had lower exposure of EC. eBC and NO2 correlated with EC, R = 0.94 and R = 0.66, respectively. No correlation was found between EC and the sum of 16 priority PAHs (GM 1790 ng m-3). Ratios between personal exposures and ambient concentrations were similar and close to 1 for EC and NO2, but significantly higher for PAHs. Semi-volatile PAHs may not be effectively reduced by the aftertreatment systems, and ambient area sampling did not predict the personal airborne PAHs exposure well, neither did the slightly elevated concentration of urinary PAH metabolites correlate with airborne PAH exposure. CONCLUSION: Miners' exposures to EC and NO2 were lower than those in older studies indicating the effect of sharpened emission legislation and new technologies. Using modern vehicles with diesel particulate filter (DPF) may have contributed to the lower ambient underground PM concentration and exposures. The semi-volatile behavior of the PAHs might have led to inefficient removal in the engines aftertreatment systems and delayed removal by the workplace ventilation system due to partitioning to indoor surfaces. The results indicate that secondary emissions can be an important source of gaseous PAH exposure in the mine.
Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Anciano , Contaminantes Ocupacionales del Aire/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Humanos , Hierro , Dióxido de Nitrógeno/análisis , Exposición Profesional/análisis , Suecia , Emisiones de VehículosRESUMEN
Methane (CH4), a powerful greenhouse gas (GHG), has been identified as a key target for emission reduction in the Paris agreement, but it is not currently clear where efforts should be focused to make the greatest impact. Currently, activity data and standard emission factors (EF) are used to generate GHG emission inventories. Many of the EFs are globally uniform and do not account for regional variability in industrial or agricultural practices and/or regulation. Regional EFs can be derived from top-down emissions measurements and used to make bespoke regional GHG emission inventories that account for geopolitical and social variability. However, most large-scale top-down approaches campaigns require significant investment. To address this, lower-cost driving surveys (DS) have been identified as a viable alternative to more established methods. DSs can take top-down measurements of many emission sources in a relatively short period of time, albeit with a higher uncertainty. To investigate the use of a portable measurement system, a 2260 km DS was conducted throughout the Denver-Julesburg Basin (DJB). The DJB covers an area of 8000 km2 north of Denver, CO and is densely populated with CH4 emission sources, including oil and gas (O and G) operations, agricultural operations (AGOs), lakes and reservoirs. During the DS, 157 individual CH4 emission sources were detected; 51%, 43% and 4% of sources were AGOs, O and G operations, and natural sources, respectively. Methane emissions from each source were quantified using downwind concentration and meteorological data and AGOs and O and G operations represented nearly all the CH4 emissions in the DJB, accounting for 54% and 37% of the total emission, respectively. Operations with similar emission sources were grouped together and average facility emission estimates were generated. For agricultural sources, emissions from feedlot cattle, dairy cows and sheep were estimated at 5, 31 and 1 g CH4 head-1 h-1, all of which agreed with published values taken from focused measurement campaigns. Similarly, for O and G average emissions for well pads, compressor stations and gas processing plants (0.5, 14 and 110 kg CH4 facility-1 h-1) were in reasonable agreement with emission estimates from intensive measurement campaigns. A comparison of our basin wide O and G emissions to measurements taken a decade ago show a decrease of a factor of three, which can feasibly be explained by changes to O and G regulation over the past 10 years, while emissions from AGOs have remained constant over the same time period. Our data suggest that DSs could be a low-cost alternative to traditional measurement campaigns and used to screen many emission sources within a region to derive representative regionally specific and time-sensitive EFs. The key benefit of the DS is that many regions can be screened and emission reduction targets identified where regional EFs are noticeably larger than the regional, national or global averages.
Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , Contaminantes Atmosféricos/análisis , Animales , Bovinos , Femenino , Metano , OvinosRESUMEN
To assess solid-liquid separation as a technology to reduce ammonia (NH3) emission from storage and field application of animal slurry, it is necessary to consider a possible higher NH3 loss from the solid fraction after application than from raw slurry, as well as losses during storage. A literature review was conducted, and a case study was developed for Denmark, including cattle slurry, pig slurry, and biogas digestate applied by trailing hose, trailing shoe, or open slot injection at five different periods of the year. Standard storage emission factors were used and emission factors after field application were estimated using the ALFAM2 model with input data for dry matter (DM), pH, total ammoniacal nitrogen (TAN), and separation efficiency all from the literature compilation. In general, a clear reduction in the emission factors after application of the liquid fraction was found relative to application of raw slurry in the literature data. Case study results provide some evidence that separation of cattle slurry or digestate, followed by storage and subsequent application by trailing hose or trailing shoe of the liquid fraction and broadcast application of the solid fraction reduces overall NH3 loss, with a higher reduction when the solid fraction is incorporated by plowing after 4 h. This effect was not present for pig slurry. For all slurry types when the raw slurry and liquid fraction is applied by open slot injection, the overall reduction in emission due to separation is not present or even negative.
Asunto(s)
Amoníaco , Estiércol , Animales , Bovinos , Amoníaco/análisis , Biocombustibles , Nitrógeno/análisis , PorcinosRESUMEN
Different environmental and social concerns can arise due to the generation of gaseous emissions during the treatment of urban wastewater. However, there is not an extensive knowledge about which are the main potential odour and greenhouse gas (GHG) emission sources in a wastewater treatment plant (WWTP) and their variability. In this study, a multipoint characterization of the gaseous emissions generated in a full-scale municipal WWTP located in Barcelona was conducted, aiming at identifying the main odour and GHG emission sources. The WWTP under study treats an average inlet flow of 33,000 m3 d-1 using a Ludzack-Ettinger system with Membrane BioReactor (MBR) technology, and it has installed a gas caption and treatment system consisting of a biotrickling filter followed by a conventional biofilter to treat part of the off-gases produced during the wastewater treatment. For this work, gaseous emissions characterization campaigns were conducted to assess the proper performance of the gas treatment unit and to estimate the emission factors referred to odorants and GHGs for the different emission sources and to assess the proper performance of the gas treatment system. Besides, a chemical characterization of the different volatile organic compounds (VOC) present in the gaseous emissions was performed through TD-GC/MS. The main potential odour sources were the reception tank, the barscreens building and the primary settler, where odour concentrations were in the range of 1300 and 2600 ou·m-3. Moreover, GHG emissions were found during the primary treatment and in the MBR units, ranging from 2.21 to 68,217.13 mg CO2eq·m-3. Different VOCs such as aromatic hydrocarbons, alkanes and ketones were found in the gaseous emissions with a high variability among all the emission sources. The results obtained are valuable indicators that can be used to develop odour and GHG mitigation strategies in WWTPs and to estimate the environmental impact of these facilities.