RESUMEN
Elucidating the benefits of individual microbiota-derived molecules in host animals is important for understanding the symbiosis between humans and their microbiota. The bacteria-secreted enterobactin (Ent) is an iron scavenging siderophore with presumed negative effects on hosts. However, the high prevalence of Ent-producing commensal bacteria in the human gut raises the intriguing question regarding a potential host mechanism to beneficially use Ent. We discovered an unexpected and striking role of Ent in supporting growth and the labile iron pool in C. elegans. We show that Ent promotes mitochondrial iron uptake and does so, surprisingly, by binding to the ATP synthase α subunit, which acts inside of mitochondria and independently of ATP synthase. We also demonstrated the conservation of this mechanism in mammalian cells. This study reveals a distinct paradigm for the "iron tug of war" between commensal bacteria and their hosts and an important mechanism for mitochondrial iron uptake and homeostasis.
Asunto(s)
Enterobactina/fisiología , Hierro/metabolismo , Sideróforos/fisiología , Adenosina Trifosfato/metabolismo , Animales , ATPasas de Translocación de Protón Bacterianas/metabolismo , ATPasas de Translocación de Protón Bacterianas/fisiología , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Enterobactina/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Células HEK293 , Humanos , Hierro/fisiología , Mitocondrias/metabolismoRESUMEN
BACKGROUND: Bacterial growth rate, commonly reported in terms of doubling time, is frequently determined by one of two techniques: either by measuring optical absorption of a growing culture or by taking samples at different times during their growth phase, diluting them, spreading them on agar plates, incubating them, and counting the colonies that form. Both techniques require measurements of multiple repeats, as well careful assessment of reproducibility and consistency. Existing literature using either technique gives a wide range of growth rate values for even the most extensively studied species of bacteria, such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This work aims to apply several methods to reliably determine the growth rate of a recently identified species of Enterobacteriaceae, called Enterobacter sp. SM3, and to compare that rate with that of a well-known wildtype E. coli strain KP437. RESULTS: We extend conventional optical density (OD) measurements to determine the growth rate of Enterobacter sp. SM3. To assess the reliability of this technique, we compare growth rates obtained by fitting the OD data to exponential growth, applying a relative density method, and measuring shifts in OD curves following set factors of dilution. The main source of error in applying the OD technique is due to the reliance on an exponential growth phase with a short span. With proper choice of parameter range, however, we show that these three methods yield consistent results. We also measured the SM3 division rate by counting colony-forming units (CFU) versus time, yielding results consistent with the OD measurements. In lysogeny broth at 37oC, SM3 divides every 21 ± 3 min, notably faster than the RP437 strain of E. coli, which divides every 29 ± 2 min. CONCLUSION: The main conclusion of this report is that conventional optical density (OD) measurements and the colony-forming units (CFU) method can yield consistent values of bacterial growth rate. However, to ensure the reproducibility and reliability of the measured growth rate of each bacterial strain, different methods ought to be applied in close comparison. The effort of checking for consistency among multiple techniques, as we have done in this study, is necessary to avoid reporting variable values of doubling time for particular species or strains of bacteria, as seen in the literature.
Asunto(s)
Enterobacter , Enterobacter/crecimiento & desarrollo , Enterobacter/clasificación , Reproducibilidad de los Resultados , Técnicas Bacteriológicas/métodos , Escherichia coli/crecimiento & desarrollo , Recuento de Colonia Microbiana/métodosRESUMEN
AIM: The objective of this study was to investigate the antimicrobial resistance genes (ARGs) in plasmids of Enterobacteriaceae from soil, sewage, and feces of food-producing animals and humans. METHODS AND RESULTS: The plasmid sequences were obtained from the NCBI database. For the identification of ARG, comprehensive antibiotic resistance database (CARD), and ResFinder were used. Gene conservation and evolution were investigated using DnaSP v.6. The transfer potential of the plasmids was evaluated using oriTfinder and a MOB-based phylogenetic tree was reconstructed using Fastree. We identified a total of 1064 ARGs in all plasmids analyzed, conferring resistance to 15 groups of antibiotics, mostly aminoglycosides, beta-lactams, and sulfonamides. The greatest number of ARGs per plasmid was found in enterobacteria from chicken feces. Plasmids from Escherichia coli carrying multiple ARGs were found in all ecosystems. Some of the most abundant genes were shared among all ecosystems, including aph(6)-Id, aph(3'')-Ib, tet(A), and sul2. A high level of sequence conservation was found among these genes, and tet(A) and sul2 are under positive selective pressure. Approximately 62% of the plasmids carrying at least one ARG were potentially transferable. Phylogenetic analysis indicated a potential co-evolution of Enterobacteriaceae plasmids in nature. CONCLUSION: The high abundance of Enterobacteriaceae plasmids from diverse ecosystems carrying ARGs reveals their widespread distribution and importance.
Asunto(s)
Antibacterianos , Enterobacteriaceae , Animales , Humanos , Enterobacteriaceae/genética , Antibacterianos/farmacología , Filogenia , Ecosistema , Farmacorresistencia Bacteriana/genética , Plásmidos/genética , Escherichia coli/genéticaRESUMEN
Antibiotic resistance in Citrobacter freundii is a public health concern. This study evaluated the closed genome of a C. freundii isolated from the stool of a hospitalized patient initially related to a Salmonella outbreak. Confirmation of the isolate was determined by whole-genome sequencing. Nanopore sequencing was performed using a MinION with a Flongle flow cell. Assembly using SPAdes and Unicycler yielded a closed genome annotated by National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline. Genomic analyses employed MLST 2.0, ResFinder4.1, PlasmidFinder2.1, and VFanalyzer. Phylogenetic comparison utilized the Center for Food Safety and Applied Nutrition (CFSAN)-single nucleotide polymorphism pipeline and Genetic Algorithm for Rapid Likelihood Inference. Antimicrobial susceptibility was tested by broth microdilution following Clinical and Laboratory Standards Institute criteria. Multi-locus sequence type in silico analysis assigned the C. freundii as sequence type 64 and the blaCMY-41 gene was detected in resistome investigation. The susceptibility to antibiotics, determined using Sensititre® plates, revealed resistance to aztreonam, colistin, cefoxitin, amoxicillin/clavulanic acid, sulfisoxazole, ampicillin, and streptomycin. The genetic relatedness of the C. freundii CFSAN077772 with publicly available C. freundii genomes revealed a close relationship to a C. freundii SRR1186659, isolated in 2009 from human stool in Tanzania. In addition, C. freundii CFSAN077772 is nested in the same cluster with C. freundii clinical strains isolated in Denmark, Mexico, Myanmar, and Canada, suggesting a successful intercontinental spread.
Asunto(s)
Citrobacter freundii , Infecciones por Enterobacteriaceae , Humanos , Citrobacter freundii/genética , beta-Lactamasas/genética , Tipificación de Secuencias Multilocus , Filogenia , Infecciones por Enterobacteriaceae/epidemiología , Antibacterianos/farmacología , Genómica , Pruebas de Sensibilidad MicrobianaRESUMEN
Escherichia coli O157:H7 (E. coli O157:H7) and Campylobacter jejuni (C. jejuni) are pathogenic microorganisms that can cause severe clinical symptoms in humans and are associated with bovine meat consumption. Specific monitoring for E. coli O157: H7 or C. jejuni in meat is not mandatory under Chilean regulations. In this study, we analyzed 544 samples for the detection of both microorganisms, obtained from 272 bovine carcasses (280 kg average) at two slaughterhouses in the Bio-Bío District, Chile. Sampling was carried out at post-shower of carcasses and after channel passage through the cold chamber. Eleven samples were found to be positive for E. coli O157:H7 (4.0%) using microbiological and biochemical detection techniques and were subjected to a multiplex PCR to detect fliC and rfbE genes. Six samples (2.2%) were also found to be positive for the pathogenicity genes stx1, stx2, and eaeA. Twenty-two carcasses (8.0%) were found to be positive for C. jejuni using microbiological and biochemical detection techniques, but no sample with amplified mapA gene was found.
Asunto(s)
Mataderos , Campylobacter jejuni , Escherichia coli O157 , Proteínas de Escherichia coli , Microbiología de Alimentos , Animales , Bovinos , Campylobacter jejuni/aislamiento & purificación , Campylobacter jejuni/genética , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/genética , Chile , Proteínas de Escherichia coli/genética , Flagelina/genética , Carne/microbiología , Contaminación de Alimentos/análisis , Adhesinas Bacterianas/genética , Toxina Shiga I/genética , Toxina Shiga II/genética , Reacción en Cadena de la Polimerasa Multiplex , Proteínas Bacterianas/genética , Transaminasas , Carbohidrato EpimerasasRESUMEN
During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.
Asunto(s)
Antibacterianos , Variación Genética , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Plásmidos , beta-Lactamasas , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Ecosistema , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Plásmidos/genética , Microbiología del AguaRESUMEN
We examined the effects of elevated temperatures and biocides on survivability of food isolates of Cronobacter spp. (C. sakazakii) and concomitant enterobacteriaceae obtained in microbiological control of infant nutrition products. Increased resistance of certain strains of Cronobacter, Enterobacter cloacae, and Pantoea spp. to thermal processing was revealed. Salmonella, Pantoea, and Cronobacter bacteria were least sensitive to antimicrobial action of chlorine-containing agents. The above properties varied in the strains of the same species. Specifically, only two of three examined isolates of Cronobacter spp. demonstrated lower sensitivity to heat in comparison with the enterobacterial test-cultures of other species.
Asunto(s)
Cloro , Cronobacter , Desinfectantes , Microbiología de Alimentos , Desinfectantes/farmacología , Cronobacter/efectos de los fármacos , Cronobacter/aislamiento & purificación , Cloro/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Calor , Humanos , Cronobacter sakazakii/efectos de los fármacos , Cronobacter sakazakii/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/aislamiento & purificaciónRESUMEN
Antimicrobial resistance (AMR) in bacteria is a major public health problem. The main route for AMR acquisition in clinically important bacteria is the horizontal transfer of plasmids carrying resistance genes. AMR plasmids allow bacteria to survive antibiotics, but they also entail physiological alterations in the host cell. Multiple studies over the last few years have indicated that these alterations can translate into a fitness cost when antibiotics are absent. However, due to technical limitations, most of these studies are based on analysing new associations between plasmids and bacteria generated in vitro, and we know very little about the effects of plasmids in their native bacterial hosts. In this study, we used a CRISPR-Cas9-tool to selectively cure plasmids from clinical enterobacteria to overcome this limitation. Using this approach, we were able to study the fitness effects of the carbapenem resistance plasmid pOXA-48 in 35 pOXA-48-carrying isolates recovered from hospitalized patients. Our results revealed that pOXA-48 produces variable effects across the collection of wild-type enterobacterial strains naturally carrying the plasmid, ranging from fitness costs to fitness benefits. Importantly, the plasmid was only associated with a significant fitness reduction in four out of 35 clones, and produced no significant changes in fitness in the great majority of isolates. Our results suggest that plasmids produce neutral fitness effects in most native bacterial hosts, helping to explain the great prevalence of plasmids in natural microbial communities.
Asunto(s)
Bacterias , Enterobacteriaceae , Humanos , Enterobacteriaceae/genética , Plásmidos/genética , Bacterias/genética , Antibacterianos/farmacología , beta-Lactamasas/genéticaRESUMEN
The development of rapid, simple, and accurate bioassays for the detection of nucleic acids has received increasing demand in recent years. Here, localized surface plasmon resonance (LSPR) spectroscopy for the detection of an antimicrobial resistance gene, sulfhydryl variable ß-lactamase (blaSHV), which confers resistance against a broad spectrum of ß-lactam antibiotics is used. By performing limit of detection experiments, a 23 nucleotide (nt) long deoxyribonucleic acid (DNA) sequence down to 25 nm was detected, whereby the signal intensity is inversely correlated with sequence length (23, 43, 63, and 100 nt). In addition to endpoint measurements of hybridization events, the setup also allowed to monitor the hybridization events in real-time, and consequently enabled to extract kinetic parameters of the studied binding reaction. Performing LSPR measurements using single nucleotide polymorphism (SNP) variants of blaSHV revealed that these sequences can be distinguished from the fully complementary sequence. The possibility to distinguish such sequences is of utmost importance in clinical environments, as it allows to identify mutations essential for enzyme function and thus, is crucial for the correct treatment with antibiotics. Taken together, this system provides a robust, label-free, and cost-efficient analytical tool for the detection of nucleic acids and will enable the surveillance of antimicrobial resistance determinants.
Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles/métodos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genéticaRESUMEN
AIMS: To evaluate the composition and functions of the gut microbiota in patients with decompensated alcohol-associated cirrhosis, with and without hepatic encephalopathy (HE). METHODS AND RESULTS: Faecal samples from 31 inpatients (20 with HE, 11 without HE), and from 18 age-balanced healthy controls (HC), were included. Microbial composition was determined by 16S rRNA amplicon sequencing and analysed using QIIME2. Metabolic pathways were inferred by PICRUSt2, and short-chain fatty acids (SCFAs) quantification was performed by gas chromatography. The gut microbiota of patients with HE was characterized by a diminished α-diversity, compared to no-HE (P < 0.01) and HC (P < 0.001) groups; ß-diversity also differed between HE vs no-HE patients (P < 0.05), and between HE vs HC (P < 0.001). In patients with HE, Escherichia/Shigella, Burkholderiales and Lactobacillales taxa predominated. In contrast, patients without HE were characterized by Veillonella and Bacteroides. Reduced levels of faecal SCFAs in both groups correlated with a depletion of beneficial taxa, such as Ruminococcus or Faecalibacterium. PICRUSt2 analysis showed both an enhanced catabolism of arginine through ammonia-producing pathways and chorismate biosynthesis in HE patients, a key precursor of aromatic amino acids. CONCLUSIONS: The gut microbiota of HE patients exhibits a proinflammatory dysbiotic profile, plus metabolic pathways that produce potentially neurotoxic byproducts.
Asunto(s)
Microbioma Gastrointestinal , Encefalopatía Hepática , Microbiota , Humanos , Encefalopatía Hepática/microbiología , Arginina , ARN Ribosómico 16S/genética , Heces/microbiología , Ácidos Grasos Volátiles/análisisRESUMEN
The aim of this work was to evaluate the anti-Escherichia coli effect of cell-free supernatant (CFS) of Lactobacillus spp. against planktonic and biofilm forms of foodborne isolates. Escherichiacoli strains (P12, P25, P35 and P36), previously isolated from fresh filets of fish, were subjected to antimicrobial susceptibility determination by the disc-diffusion agar method. Subsequently, the antagonistic effect between probiotic and pathogenic strains was determined by spot overlay assay. Finally, the CFS activity against pre-established (12 h) biofilms was demonstrated through biomass quantification by crystal violet staining and scanning electron microscopy (SEM). All isolates presented some pattern of resistance, primarily to ampicillin and tetracycline. Probiotic strains presented high antagonistic effects against all E. coli strains, presenting inhibition zones (R) ranging from 15.60 to 20.67 mm. Additionally, the residual biomass of pre-established (12 h) biofilm was drastically reduced about 50% after CFS treatment (P < 0.01). What can be noted by SEM images, which show less surface-attached cells of CFS-treated biofilms of E. coli (P12). Thus, cell-free preparations produced from Lactobacillus spp. may represent a tool in the battle against planktonic cells and biofilm forms of antibiotic-resistant E. coli.
Asunto(s)
Escherichia coli , Animales , Lactobacillus , Biopelículas , Antibacterianos/farmacologíaRESUMEN
Probiotic Escherichia coli Nissle 1917 (EcN) possesses excellent antibacterial effects on pathogenic enterobacteria. The microcins MccM and MccH47 produced in EcN played critical roles, but they are understudied and poorly characterized, and the individual antibacterial mechanisms are still unclear. In this study, three EcN mutants (ΔmcmA, ΔmchB, and ΔmcmAΔmchB) were constructed and compared with wild-type EcN (EcN wt) to test for inhibitory effects on the growth of Escherichia coli O157: H7, Salmonella enterica (SE), and Salmonella typhimurium (ST). The antibacterial effects on O157: H7 were not affected by the knockout of mcmA (MccM) and mchB (MccH47) in EcN. However, the antibacterial effect on Salmonella declined sharply in EcN mutants ΔmcmA. The overexpressed mcmA gene in EcN::mcmA showed more efficient antibacterial activity on Salmonella than that of EcN wt. Furthermore, the EcN::mcmA strain significantly reduced the abilities of adhesion and invasion of Salmonella to intestinal epithelial cells, decreasing the invasion ability of ST by 56.31% (62.57 times more than that of EcN wt) while reducing the adhesion ability of ST by 50.14% (2.41 times more than that of EcN wt). In addition, the supernatant of EcN::mcmA culture significantly decreased the mRNA expression and secretion of IL-1ß, TNF-α, and IL-6 on macrophages induced by LPS. The EcN::mcmA strain generated twice as much orange halo as EcN wt by CAS agar diffusion assay by producing more siderophores. MccM was more closely related to the activity of EcN against Salmonella, and MccM-overproducing EcN inhibited Salmonella growth by producing more siderophores-MccM to compete for iron, which was critical to pathogen growth. Based on the above, EcN::mcmA can be developed as engineered probiotics to fight against pathogenic enterobacteria colonization in the gut.
Asunto(s)
Escherichia coli O157 , Probióticos , Enterobacteriaceae , Sideróforos , Antibacterianos/farmacología , Salmonella typhimurium , Probióticos/farmacología , Probióticos/metabolismoRESUMEN
The family Enterobacteriaceae has undergone significant morphogenetic changes in its more than 85-year history, particularly during the past 2 decades (2000 to 2020). The development and introduction of new and novel molecular methods coupled with innovative laboratory techniques have led to many advances. We now know that the global range of enterobacteria is much more expansive than previously recognized, as they play important roles in the environment in vegetative processes and through widespread environmental distribution through insect vectors. In humans, many new species have been described, some associated with specific disease processes. Some established species are now observed in new infectious disease settings and syndromes. The results of molecular taxonomic and phylogenetics studies suggest that the current family Enterobacteriaceae should possibly be divided into seven or more separate families. The logarithmic explosion in the number of enterobacterial species described brings into question the relevancy, need, and mechanisms to potentially identify these taxa. This review covers the progression, transformation, and morphogenesis of the family from the seminal Centers for Disease Control and Prevention publication (J. J. Farmer III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, et al., J Clin Microbiol 21:46-76, 1985, https://doi.org/10.1128/JCM.21.1.46-76.1985) to the present.
Asunto(s)
Enterobacteriaceae , Enterobacteriaceae/genética , Humanos , Filogenia , SíndromeRESUMEN
Little has been published on the factors influencing the safety and quality of milk derived from water buffalo in Bangladesh. This study aims to describe the milk hygiene parameters and milk chain characteristics of unpasteurized raw milk sold to consumers in order to improve milk hygiene. A quantitative study design evaluated somatic cell counts, total bacterial counts, and specific gram-negative (Enterobacteria) and gram-positive (staphylococci) pathogens in 377 aseptically collected milk samples. Samples were collected at multiple nodes along the buffalo milk value chain: 122 bulk tank milk samples were collected at the farm level, 109 milk samples at the middlemen level, and 111 milk samples at the milk collection centers. In addition, 35 samples were taken from various milk products at the retail level. It was found that progressively increasing somatic cell counts and bacterial counts, including potential pathogens, occurred along the milk chain. A seasonal increase in spring was found, varying based on the farming system (semi-intensive versus intensive). Other factors included water purity and cleanliness of containers, mixing buffalo and cow's milk, and the location of the water buffalo milk producer (coastal or river basin). This study demonstrated how improving udder health and milk hygiene along the water buffalo milk value chain would increase the safety and quality of water buffalo milk in the study area.
Asunto(s)
Búfalos , Leche , Femenino , Bovinos , Animales , Leche/microbiología , Bangladesh , Industria Lechera , Bacterias , Recuento de Células/veterinariaRESUMEN
Cell-free supernatant of Lactobacillus plantarum exhibit a strong antimicrobial effect against a number of pathogenic enterobacteria (E. coli, Shigella flexneri, Salmonella typhimurium, Proteus mirabilis, and Campylobacter jejuni). The degree of growth inhibition in broth culture reached a high level for all tested bacteria. The highest rates were noted for P. mirabilis (by 13 times) and the lowest for S. flexneri (by 5 times) and C. jejuni (by 4.5 times). Significant antiproliferative effect of the supernatant on cells of tumor-derived epithelial cell lines was shown. The highest degree of inhibition (by 22 times) was observed for HT-29 cells (colon carcinoma). Thus, inclusion of probiotics in traditional treatment schemes can increase the effectiveness of antibacterial and antitumor drug therapy.
Asunto(s)
Campylobacter , Lactobacillus plantarum , Probióticos , Humanos , Lactobacillus plantarum/metabolismo , Enterobacteriaceae , Escherichia coli , Salmonella typhimurium , Probióticos/farmacologíaRESUMEN
AIM: To characterize a novel bacteriophage, En5822, isolated from the environment against Enterobacter cloacae and exploring its application as an alternate antimicrobial. METHODS AND RESULTS: Bacteriophage was isolated from sewage sample by membrane-filtration immobilization technique. It was purified and studied for its various physical properties like microscopic structure, thermal and pH stability, latent period and burst time, antimicrobial and anti-biofilm activity as well as molecular aspects by genome sequencing and analysis. En5822 is a myovirus with relative pH and thermal stability. En5822 shows a notable reduction of host bacterial biofilm as well as planktonic cultures. Whole genome sequence analysis revealed that the En5822 genome does not contain undesirable temperate lifestyle genes, antibiotic resistance genes and toxin-encoding genes. CONCLUSIONS: En5822 displays high lytic activity, specificity and biofilm reduction capability. It has a short latent period and high burst size that aid faster activity. Its genomic and physical attributes offer possibilities for its as an alternative antimicrobial for the treatment of drug-resistant E. cloacae infections. SIGNIFICANCE AND IMPACT OF STUDY: The study describes a novel, naturally virulent bacteriophage from environment capable of lysing multi-drug resistant E. cloacae effectively. The phage could potentially serve as an alternative strategy for treating antibiotic-resistant infections.
Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Biopelículas , Enterobacter cloacae/genética , Genoma Viral , Aguas del AlcantarilladoRESUMEN
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.
Asunto(s)
Aves de Corral , Salmonella , Animales , Humanos , Salmonella/genética , Virulencia/genética , Especificidad del Huésped , Enterobacteriaceae , MamíferosRESUMEN
The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer.
Asunto(s)
Bacteriófagos , Receptores de Bacteriógrafos , Bacteriófagos/metabolismo , Escherichia coli/metabolismo , Especificidad del Huésped , Antígenos O/metabolismoRESUMEN
Silage is an essential global feedstuff and an emitter of greenhouse gases. However, few studies have examined the formation of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) during the ensiling process. This study aimed to record the course of gas concentrations in forage during the ensiling process and determine the temporal variation in the (microbiological) formation processes. Grass and lucerne, each with two different dry matter (DM) concentrations (four variants, each n = 3), were ensiled in laboratory-scale barrels (120 L). Gas samples were taken from the headspace of the barrels and analysed using a gas chromatograph. The measurement period included the first 49 days of the ensiling process and the measurement interval was 0.5-48.0 h. For all variants, a rapid increase in CO2 concentration and a one-time N2O concentration peak was observed between ensiling hours 36 and 96. Lower DM concentration led to significantly faster CO2 production (p < 0.05). Lucerne forage and higher DM concentrations led to significantly increased N2O concentrations (p < 0.05). The extensive measurements demonstrated that butyric acid formation by clostridia contributes to CH4 formation; thus, lucerne silage had a significantly higher concentration from ensiling day 13 (p < 0.05). Therefore, malfermentation actively contributes to the formation of greenhouse gases. The method described here provides further insights into greenhouse gas formation during the ensiling process and can thus help to improve ensiling research and management.
Asunto(s)
Gases de Efecto Invernadero , Ensilaje , Fermentación , Medicago sativa , Poaceae , Ensilaje/análisisRESUMEN
BACKGROUND: Ethyl carbamate (EC) is a potential carcinogen existing in fermented foods such as Chinese rice wine (Huangjiu). Since urea is an important precursor of EC, the degradation of urea could be an effective way to reduce EC in foods. RESULTS: In this study, an Enterobacter sp. R-SYB082 with acid urea degradation characteristics was obtained through microbial screening. Further research isolated a new acid urea-degrading enzyme from R-SYB082 strain - ureidoglycolate amidohydrolase (UAH) - which could degrade EC directly. The cloning and expression of UAH in Escherichia coli BL21 (DE3) suggested that the activity of urea-degrading enzyme reached 3560 U L-1 , while urethanase activity reached 2883 U L-1 in the optimal fermentation condition. The enzyme had the dual ability of degrading substrate urea and product EC. The removal rate of EC in Chinese rice wine could reach 90.7%. CONCLUSION: This study provided a new method for the integrated control of EC in Chinese rice wine and other fermented foods. © 2022 Society of Chemical Industry.