Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Integr Plant Biol ; 64(4): 901-914, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35043580

RESUMEN

Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Fotosíntesis/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Biol Chem ; 294(52): 20122-20134, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31699900

RESUMEN

Histone post-translational modifications (PTMs) are critical for processes such as transcription. The more notable among these are the nonacetyl histone lysine acylation modifications such as crotonylation, butyrylation, and succinylation. However, the biological relevance of these PTMs is not fully understood because their regulation is largely unknown. Here, we set out to investigate whether the main histone acetyltransferases in budding yeast, Gcn5 and Esa1, possess crotonyltransferase activity. In vitro studies revealed that the Gcn5-Ada2-Ada3 (ADA) and Esa1-Yng2-Epl1 (Piccolo NuA4) histone acetyltransferase complexes have the capacity to crotonylate histones. Mass spectrometry analysis revealed that ADA and Piccolo NuA4 crotonylate lysines in the N-terminal tails of histone H3 and H4, respectively. Functionally, we show that crotonylation selectively affects gene transcription in vivo in a manner dependent on Gcn5 and Esa1. Thus, we identify the Gcn5- and Esa1-containing ADA and Piccolo NuA4 complexes as bona fide crotonyltransferases that promote crotonylation-dependent transcription.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Crotonatos/química , Histona Acetiltransferasas/genética , Histonas/química , Lisina/química , Lisina/metabolismo , Espectrometría de Masas , Péptidos/análisis , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Curr Genet ; 64(1): 147-154, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28884217

RESUMEN

Enhancer of Polycomb (EPC) was first identified for its contributions to development in Drosophila and was soon-thereafter purified as a subunit of the NuA4/TIP60 acetyltransferase complex. Since then, EPC has often been left in the shadows as an essential, yet non-catalytic subunit of NuA4/TIP60; however, its deep conservation and disease association make clear that it warrants additional attention. In fact, recent studies in yeast demonstrated that its Enhancer of Polycomb, Epl1, was just as important for gene expression and acetylation as is the catalytic subunit of NuA4. Despite its conservation, studies of EPC have often remained siloed between organisms. Here, our goal is to provide a cohesive view of the current state of the EPC literature as it stands among the major model organisms in which it has been studied. EPC is involved in multiple processes, beginning with its cardinal role in regulating global and targeted histone acetylation. EPC also frequently serves as an important interaction partner in these basic cellular functions, as well as in multicellular development, such as in hematopoiesis and skeletal muscle differentiation, and in human disease. Taken together, a unifying theme from these studies highlights EPC as a critical genomic regulator.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica , Genómica , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genómica/métodos , Humanos , Complejos Multiproteicos/metabolismo , Unión Proteica , Biosíntesis de Proteínas
4.
Genetics ; 205(3): 1125-1137, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28108589

RESUMEN

Enzymes that modify and remodel chromatin act in broadly conserved macromolecular complexes. One key modification is the dynamic acetylation of histones and other chromatin proteins by opposing activities of acetyltransferase and deacetylase complexes. Among acetyltransferases, the NuA4 complex containing Tip60 or its Saccharomyces cerevisiae ortholog Esa1 is of particular significance because of its roles in crucial genomic processes including DNA damage repair and transcription. The catalytic subunit Esa1 is essential, as are five noncatalytic NuA4 subunits. We found that of the noncatalytic subunits, deletion of Enhancer of polycomb (Epl1), but not the others, can be bypassed by loss of a major deacetylase complex, a property shared by Esa1 Noncatalytic complex subunits can be critical for complex assembly, stability, genomic targeting, substrate specificity, and regulation. Understanding the essential role of Epl1 has been previously limited, a limitation now overcome by the discovery of its bypass suppression. Here, we present a comprehensive in vivo study of Epl1 using the powerful tool of suppression combined with transcriptional and mutational analyses. Our results highlight functional parallels between Epl1 and Esa1 and further illustrate that the structural role of Epl1 is important for promotion of Esa1 activity. This conclusion is strengthened by our dissection of Epl1 domains required in vivo for interaction with specific NuA4 subunits, histone acetylation, and chromatin targeting. These results provide new insights for the conserved, essential nature of Epl1 and its homologs, such as EPC1/2 in humans, which is frequently altered in cancers.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina , Histona Acetiltransferasas/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Front Plant Sci ; 8: 880, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611802

RESUMEN

Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

6.
Front Plant Sci ; 6: 77, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25755658

RESUMEN

Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum) plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000). Deletion (KO) of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, overexpression (OE) of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR)- and induced systemic resistance (ISR)-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA