Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 37(21-24): 998-1016, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38092521

RESUMEN

Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3ß, 17ß-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.


Asunto(s)
Ácido Quinurénico , Esteroides , Animales , Ácido Quinurénico/farmacología , Hormonas , Mamíferos
2.
Anal Biochem ; 690: 115529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582243

RESUMEN

Alchemilla vulgaris L., Trifolium pratense L. and Glycyrrhiza glabra L. are important remedies in traditional medicine, known for many usages, including treating gynecological diseases. Despite folkloric use of the plant materials, there is a lack of scientific data to support their therapeutic application. The aims of the present study were to evaluate the relative binding affinities (RBAs) of plant-derived phytoestrogens for estrogen receptor ß (ERß) using fluorescent biosensor in yeast and to apply this assay for the assessment of the potential of plant materials towards ERs and treatment of estrogen-related disorders. Ligand-binding domain of ERß fused with yellow fluorescent protein (ERß LBD-YFP) was expressed in S. cerevisiae and fluorescence was detected by fluorimetry and fluorescence microscopy. Structural basis for experimental results was explored by molecular docking. Yeast-based fluorescent assay was successfully optimized and applied for identification of natural phenolic compounds and phytoestrogen-rich plant extracts that interact with ERß-LBD, making this biosensor a valuable tool for screening estrogenic potential of a variety of plant extracts. This assay can be used for preliminary testing of plant-derived or fungal extracts, but also other sources of environmental substances with ER-modulating activity in order to assess their possible effects on the female reproductive system.

3.
Genomics ; 115(6): 110743, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37967683

RESUMEN

Primary osteoporosis (POP) is a widespread and severe disorder of bone metabolism characterized by reduced bone mass and destruction of bone structure, frequently inducing fracture risk and imposing a heavy economic burden on public life. The development of POP partially revolves around the estrogen receptor ß (ER-ß), one of the major mediator receptors of estrogen that influences apoptosis in a range of cells. We performed KEGG and GO analysis by mining the transcriptomic dataset of POP samples showing significant enrichment of differentially expressed genes (DEGs) in multiple apoptosis-related pathways. The results of the Spearman correlation analysis and Protein-Protein Interaction (PPI) Networks screening of hub genes indicated that vascular endothelial growth factor A (VEGFA) may be a key target of ER-ß in controlling osteoblast apoptosis. Further, we carried out high-throughput sequencing of ESR2-silenced MC3T3-E1 cells and noticed a substantial suppression in VEGFA expression and all apoptosis-related pathways. In addition, we determined the cell cycle and apoptosis by constructing a VEGFA-silenced cell model utilizing flow cytometry (FCM), and the results showed that ER-ß could regulate the osteoblast cycle and thus promote osteoblast apoptosis by promoting VEGFA expression. And Western blot results showed that apoptosis was most likely realized through the regulation of downstream apoptosis markers c-JUN (c-Jun N-terminal kinase, JNK) and GADD45G (Growth Arrest and DNA Damage-Inducible Protein 45 gamma). The effects of ESR2 and VEGFA on the proliferation of osteoblasts were lastly assessed using the cell counting kit- 8 (CCK-8) assay. In conclusion, this study identifies that the roles of ER-ß in the regulation of osteoblast apoptosis are closely related to VEGFA and provides a new target for POP treatment.


Asunto(s)
Receptor beta de Estrógeno , Osteoporosis , Humanos , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Osteoblastos/metabolismo , Osteoporosis/genética , Apoptosis/genética , Diferenciación Celular
4.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542176

RESUMEN

Loss of ERß increases primordial follicle growth activation (PFGA), leading to premature ovarian follicle reserve depletion. We determined the expression and gene regulatory functions of ERß in dormant primordial follicles (PdFs) and activated primary follicles (PrFs) using mouse models. PdFs and PrFs were isolated from 3-week-old Erß knockout (Erßnull) mouse ovaries, and their transcriptomes were compared with those of control Erßfl/fl mice. We observed a significant (≥2-fold change; FDR p-value ≤ 0.05) deregulation of approximately 5% of genes (866 out of 16,940 genes, TPM ≥ 5) in Erßnull PdFs; ~60% (521 out of 866) of the differentially expressed genes (DEGs) were upregulated, and 40% were downregulated, indicating that ERß has both transcriptional enhancing as well as repressing roles in dormant PdFs. Such deregulation of genes may make the Erßnull PdFs more susceptible to increased PFGA. When the PdFs undergo PFGA and form PrFs, many new genes are activated. During PFGA of Erßfl/fl follicles, we detected a differential expression of ~24% genes (4909 out of 20,743; ≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5); 56% upregulated and 44% downregulated, indicating the gene enhancing and repressing roles of Erß-activated PrFs. In contrast, we detected a differential expression of only 824 genes in Erßnull follicles during PFGA (≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5). Moreover, most (~93%; 770 out of 824) of these DEGs in activated Erßnull PrFs were downregulated. Such deregulation of genes in Erßnull activated follicles may impair their inhibitory role on PFGA. Notably, in both Erßnull PdFs and PrFs, we detected a significant number of epigenetic regulators and transcription factors to be differentially expressed, which suggests that lack of ERß either directly or indirectly deregulates the gene expression in PdFs and PrFs, leading to increased PFGA.


Asunto(s)
Receptor beta de Estrógeno , Folículo Ovárico , Femenino , Ratones , Animales , Receptor beta de Estrógeno/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Regulación de la Expresión Génica , Transcriptoma , Ratones Noqueados
5.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612938

RESUMEN

Glioblastoma multiforme (GBM) is a malignant tumor with a higher prevalence in men and a higher survival rate in transmenopausal women. It exhibits distinct areas influenced by changing environmental conditions. This study examines how these areas differ in the levels of estrogen receptors (ERs) which play an important role in the development and progression of many cancers, and whose expression levels are often correlated with patient survival. This study utilized two research models: an in vitro model employing the U87 cell line and a second model involving tumors resected from patients (including tumor core, enhancing tumor region, and peritumoral area). ER expression was assessed at both gene and protein levels, with the results validated using confocal microscopy and immunohistochemistry. Under hypoxic conditions, the U87 line displayed a decrease in ERß mRNA expression and an increase in ERα mRNA expression. In patient samples, ERß mRNA expression was lower in the tumor core compared to the enhancing tumor region (only in males when the study group was divided by sex). In addition, ERß protein expression was lower in the tumor core than in the peritumoral area (only in women when the study group was divided by sex). Immunohistochemical analysis indicated the highest ERß protein expression in the enhancing tumor area, followed by the peritumoral area, and the lowest in the tumor core. The findings suggest that ER expression may significantly influence the development of GBM, exhibiting variability under the influence of conditions present in different tumor areas.


Asunto(s)
Glioblastoma , Masculino , Humanos , Femenino , Glioblastoma/genética , Receptor beta de Estrógeno/genética , Expresión Génica , Estrógenos , ARN Mensajero/genética
6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673823

RESUMEN

Energy metabolism plays a pivotal role in the pathogenesis of endometriosis. For the initial stages of the disease in adolescents, this aspect remains unexplored. The objective of this paper was to analyze the association of cellular and endosomal profiles of markers of glycolysis, mitochondrial biogenesis, apoptosis, autophagy and estrogen signaling in peritoneal endometriosis (PE) in adolescents. We included 60 girls aged 13-17 years in a case-control study: 45 with laparoscopically confirmed PE (main group) and 15 with paramesonephric cysts (comparison group). Samples of plasma and peritoneal fluid exosomes, endometrioid foci and non-affected peritoneum were tested for estrogen receptor (Erα/ß), hexokinase (Hex2), pyruvate dehydrogenase kinase (PDK1), glucose transporter (Glut1), monocarboxylate transporters (MCT1 and MCT2), optic atrophy 1 (OPA1, mitochondrial fusion protein), dynamin-related protein 1 (DRP1, mitochondrial fission protein), Bax, Bcl2, Beclin1, Bnip3, P38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor 1 (Hif-1α), mitochondrial voltage-dependent anion channel (VDAC) and transforming growth factor (TGFß) proteins as markers of estrogen signaling, glycolysis rates, mitochondrial biogenesis and damage, apoptosis and autophagy (Western-Blot and PCR). The analysis identified higher levels of molecules associated with proliferation (ERß), glycolysis (MCT2, PDK1, Glut1, Hex2, TGFß and Hif-1α), mitochondrial biogenesis (OPA1, DRP1) and autophagy (P38, Beclin1 and Bnip3) and decreased levels of apoptosis markers (Bcl2/Bax) in endometrioid foci compared to non-affected peritoneum and that in the comparison group (p < 0.05). Patients with PE had altered profiles of ERß in plasma and peritoneal fluid exosomes and higher levels of Glut1, MCT2 and Bnip3 in plasma exosomes (p < 0.05). The results of the differential expression profiles indicate microenvironment modification, mitochondrial biogenesis, estrogen reception activation and glycolytic switch along with apoptosis suppression in peritoneal endometrioid foci already in adolescents.


Asunto(s)
Apoptosis , Autofagia , Endometriosis , Glucólisis , Femenino , Humanos , Adolescente , Endometriosis/metabolismo , Endometriosis/patología , Estudios de Casos y Controles , Biogénesis de Organelos , Receptor beta de Estrógeno/metabolismo , Transducción de Señal , Receptor alfa de Estrógeno/metabolismo , Biomarcadores
7.
Int J Cancer ; 153(6): 1287-1299, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37212571

RESUMEN

In a previous study, our research group observed that estrogen promotes the metastasis of non-small cell lung cancer (NSCLC) through the estrogen receptor ß (ERß). Invadopodia are key structures involved in tumor metastasis. However, it is unclear whether ERß is involved in the promotion of NSCLC metastasis through invadopodia. In our study, we used scanning electron microscopy to observe the formation of invadopodia following the overexpression of ERß and treatment with E2. In vitro experiments using multiple NSCLC cell lines demonstrated that ERß can increase the formation of invadopodia and cell invasion. Mechanistic studies revealed that ERß can upregulate the expression of ICAM1 by directly binding to estrogen-responsive elements (EREs) located on the ICAM1 promoter, which in turn can enhance the phosphorylation of Src/cortactin. We also confirmed these findings in vivo using an orthotopic lung transplantation mouse model, which validated the results obtained from the in vitro experiments. Finally, we examined the expressions of ERß and ICAM1 using immunohistochemistry in both NSCLC tissue and paired metastatic lymph nodes. The results confirmed that ERß promotes the formation of invadopodia in NSCLC cells through the ICAM1/p-Src/p-Cortactin signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Podosomas , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Cortactina/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Neoplasias Pulmonares/patología , Invasividad Neoplásica/patología , Podosomas/metabolismo , Podosomas/patología , Transducción de Señal
8.
Curr Issues Mol Biol ; 45(3): 2533-2548, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36975536

RESUMEN

Nuclear receptor coregulators are the principal regulators of Estrogen Receptor (ER)-mediated transcription. ERß, an ER subtype first identified in 1996, is associated with poor outcomes in breast cancer (BCa) subtypes, and the coexpression of the ERß1 isoform and AIB-1 and TIF-2 coactivators in BCa-associated myofibroblasts is associated with high-grade BCa. We aimed to identify the specific coactivators that are involved in the progression of ERß-expressing BCa. ERß isoforms, coactivators, and prognostic markers were tested using standard immunohistochemistry. AIB-1, TIF-2, NF-kB, p-c-Jun, and/or cyclin D1 were differentially correlated with ERß isoform expression in the BCa subtypes and subgroups. The coexpression of the ERß5 and/or ERß1 isoforms and the coactivators were found to be correlated with a high expression of P53, Ki-67, and Her2/neu and large-sized and/or high-grade tumors in BCa. Our study supports the notion that ERß isoforms and coactivators seemingly coregulate the proliferation and progression of BCa and may provide insight into the potential therapeutic uses of the coactivators in BCa.

9.
Oncologist ; 28(4): 358-363, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36772966

RESUMEN

The absence of effective therapeutic targets and aggressive nature of triple-negative breast cancer (TNBC) renders this disease subset difficult to treat. Although estrogen receptor beta (ERß) is expressed in TNBC, studies on its functional role have yielded inconsistent results. However, recently, our preclinical studies, along with other observations, have shown the potential therapeutic utility of ERß in the context of mutant p53 expression. The current case study examines the efficacy of the selective estrogen receptor modulator tamoxifen in p53-mutant TNBC with brain metastases. Significant increase in ERß protein expression and anti-proliferative interaction between mutant p53 and ERß were observed after cessation of tamoxifen therapy, with significant regression of brain metastases. This case study provides supporting evidence for the use of tamoxifen in p53-mutant, ERß+TNBC, especially in the setting of brain metastasis.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptor alfa de Estrógeno , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/uso terapéutico , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Proteína p53 Supresora de Tumor/genética
10.
Phytother Res ; 37(9): 4149-4165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37300355

RESUMEN

Anxiety disorder is a chronic and disabling psychiatric disorder that is more prevalent in females than in males. 11-Ethoxyviburtinal is an iridoid extracted from Valeriana jatamansi Jones, which has anxiolytic potential. The aim of the present work was to study the anxiolytic efficacy and mechanism of 11-ethoxyviburtinal in gender-specific mice. We first evaluated the anxiolytic-like efficacy of 11-ethoxyviburtinal in chronic restraint stress (CRS) mice of different sexes through behavioral experiments and biochemical indexes. In addition, network pharmacology and molecular docking were used to predict potential targets and important pathways for the treatment of anxiety disorder with 11-ethoxyviburtinal. Finally, the influence of 11-ethoxyviburtinal on phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, estrogen receptor ß (ERß) expression, and anxiety-like behavior in mice was verified by western blotting, immunohistochemistry staining, antagonist intervention methods, and behavioral experiments. 11-ethoxyviburtinal alleviated the anxiety-like behaviors induced by CRS and inhibited neurotransmitter dysregulation and HPA axis hyperactivity. It inhibited the abnormal activation of the PI3K/Akt signaling pathway, modulated estrogen production, and promoted ERß expression in mice. In addition, the female mice may be more sensitive to the pharmacological effects of 11-ethoxyviburtinal. 11-ethoxyviburtinal may exert its anxiolytic-like effects through PI3K/Akt and E2/ERß signaling pathways. Meanwhile, by comparing the male and female mice, gender differences may affect the therapy and development of anxiety disorder.


Asunto(s)
Ansiolíticos , Proteínas Proto-Oncogénicas c-akt , Ratones , Masculino , Animales , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor beta de Estrógeno/metabolismo , Ansiolíticos/farmacología , Sistema Hipotálamo-Hipofisario , Simulación del Acoplamiento Molecular , Sistema Hipófiso-Suprarrenal/metabolismo , Transducción de Señal , Ansiedad/tratamiento farmacológico
11.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37569842

RESUMEN

Liver X receptors (LXRα and LXRß) are oxysterol-activated nuclear receptors that play key roles in cholesterol homeostasis, the central nervous system, and the immune system. We have previously reported that LXRαß-deficient mice are more susceptible to dextran sodium sulfate (DSS)-induced colitis than their WT littermates, and that an LXR agonist protects against colitis in mice mainly via the regulation of the immune system in the gut. We now report that both LXRα and LXRß are expressed in the colonic epithelium and that in aging LXRαß-/- mice there is a reduction in the intensity of goblet cells, mucin (MUC2), TFF3, and estrogen receptor ß (ERß) levels. The cytoplasmic compartment of the surface epithelial cells was markedly reduced and there was a massive invasion of macrophages in the lamina propria. The expression and localization of ß-catenin, α-catenin, and E-cadherin were not changed, but the shrinkage of the cytoplasm led to an appearance of an increase in staining. In the colonic epithelium there was a reduction in the expression of plectin, a hemidesmosome protein whose loss in mice leads to spontaneous colitis, ELOVL1, a fatty acid elongase protein coding gene whose overexpression is found in colorectal cancer, and non-neuronal choline acetyltransferase (ChAT) involved in the regulation of epithelial cell adhesion. We conclude that in aging LXRαß-/- mice, the phenotype in the colon is due to loss of ERß expression.


Asunto(s)
Colitis , Receptor beta de Estrógeno , Ratones , Animales , Receptor beta de Estrógeno/metabolismo , Ratones Noqueados , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Colon/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL
12.
Molecules ; 28(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903555

RESUMEN

Hydrogen peroxide is one of the most important reactive oxygen species, which plays a vital role in many physiological and pathological processes. A dramatic increase in H2O2 levels is a prominent feature of cancer. Therefore, rapid and sensitive detection of H2O2 in vivo is quite conducive to an early cancer diagnosis. On the other hand, the therapeutic potential of estrogen receptor beta (ERß) has been implicated in many diseases including prostate cancer, and this target has attracted intensive attention recently. In this work, we report the development of the first H2O2-triggered ERß-targeted near-infrared fluorescence (NIR) probe and its application in imaging of prostate cancer both in vitro and in vivo. The probe showed good ERß selective binding affinity, excellent H2O2 responsiveness and near infrared imaging potential. Moreover, in vivo and ex vivo imaging studies indicated that the probe could selectively bind to DU-145 prostate cancer cells and rapidly visualizes H2O2 in DU-145 xenograft tumors. Mechanistic studies such as high-resolution mass spectrometry (HRMS) and density functional theory (DFT) calculations indicated that the borate ester group is vital for the H2O2 response turn-on fluorescence of the probe. Therefore, this probe might be a promising imaging tool for monitoring the H2O2 levels and early diagnosis studies in prostate cancer research.


Asunto(s)
Peróxido de Hidrógeno , Neoplasias de la Próstata , Humanos , Masculino , Diagnóstico por Imagen , Receptor beta de Estrógeno , Fluorescencia , Colorantes Fluorescentes/química , Peróxido de Hidrógeno/química , Animales
13.
Stem Cells ; 39(5): 536-550, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470499

RESUMEN

Glioblastoma (GBM) is the most common and deadliest tumor of the central nervous system. GBM has poor prognosis and glioma stem cells (GSCs) are implicated in tumor initiation and therapy resistance. Estrogen receptor ß (ERß) is expressed in GBM and exhibit tumor suppressive function. However, the role of ERß in GSCs and the therapeutic potential of ERß agonists on GSCs remain largely unknown. Here, we examined whether ERß modulates GSCs stemness and tested the utility of two ERß selective agonists (LY500307 and Liquiritigenin) to reduce the stemness of GSCs. The efficacy of ERß agonists was examined on GSCs isolated from established and patient derived GBMs. Our results suggested that knockout of ERß increased the proportion of CD133+ and SSEA+ positive GSCs and overexpression of ERß reduced the proportion of GSCs in GBM cells. Overexpression of ERß or treatment with ERß agonists significantly inhibited the GSCs cell viability, neurosphere formation, self-renewal ability, induced the apoptosis and reduced expression of stemness markers in GSCs. RNA sequencing analysis revealed that ERß agonist modulate pathways related to stemness, differentiation and apoptosis. Mechanistic studies showed that ERß overexpression or agonist treatment reduced glutamate receptor signaling pathway and induced apoptotic pathways. In orthotopic models, ERß overexpression or ERß agonists treatment significantly reduced the GSCs mediated tumor growth and improved the mice overall survival. Immunohistochemical studies demonstrated that ERß overexpression decreased SOX2 and GRM3 expression and increased expression of GFAP in tumors. These results suggest that ERß activation could be a promising therapeutic strategy to eradicate GSCs.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Receptor beta de Estrógeno/genética , Glioma/genética , Células Madre Neoplásicas/metabolismo , Antígeno AC133/genética , Animales , Apoptosis/efectos de los fármacos , Benzopiranos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Receptor beta de Estrógeno/agonistas , Flavanonas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Receptores de Glutamato/genética , Factores de Transcripción SOXB1/genética , Transducción de Señal/efectos de los fármacos , Antígenos Embrionarios Específico de Estadio/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Biomed Sci ; 29(1): 100, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36419064

RESUMEN

BACKGROUND: Endometriosis is an estrogen-dependent inflammatory reproductive disease. Therefore, systematic estrogen depletion and anti-inflammatory drugs are the current treatment for endometriosis. However, current endometriosis treatments have low efficacy and cause adverse effects in endometriosis patients. Consequently, alternative endometriosis treatments targeting endometriosis-specific factors are in demand. In this context, ERß was selected as a druggable target for endometriosis due to its critical role in progression. Therefore, selective targeting of ERß without inhibiting ERα activity would be a new paradigm for endometriosis treatment to overcome the low efficacy and adverse effects of hormonal endometriosis therapy. METHODS: Cell-based ERß and ERα activity assay systems were employed to define a selective ERß-inhibiting chemical product from a library of natural products. A surgically induced endometriosis mouse model was used to determine whether an ERß inhibitory drug suppressed endometriosis progression. Mice with endometriosis were randomly separated and then orally treated with vehicle or 25 mg/kg oleuropein (once a day for 21 days), an ERß inhibitory drug. The volume of endometriotic lesions or luciferase activity of endometriotic lesions was examined to define the growth of ectopic lesions in mice with endometriosis. The metabolite and levels of metabolic enzymes of the liver and kidney were determined in the serum of female mice treated with vehicle and oleuropein (25 mg/kg, once a day for 21 days) to define the toxicity of oleuropein. The in vitro decidualization assay was conducted with normal human endometrial stromal cells and endometriotic stromal cells to determine whether oleuropein overcomes decidualization in endometriosis patients. The pregnancy rate and pup numbers of C57BL/6 J female mice with endometriosis treated with vehicle or oleuropein (n = 10/group) were determined after mating with male mice. The cytokine profile in endometriotic lesions treated with vehicle and oleuropein (25 mg/kg) was determined with a Mouse Cytokine Array Kit. RESULTS: Among natural products, oleuropein selectively inhibited ERß but not ERα activity in vitro. Oleuropein treatment inhibited the nuclear localization of ERß in human endometrial cells upon estradiol treatment. Oleuropein (25 mg/kg) treatment suppressed the growth of mouse (6.6-fold) and human (sixfold) ectopic lesions in mice with endometriosis compared to the vehicle by inhibiting proliferation and activating apoptosis in endometriotic lesions. Oleuropein treatment did not cause reproductive toxicity in female mice. Additionally, mice with endometriosis subjected to oleuropein treatment had a higher pregnancy rate (100%) than vehicle-treated mice (70%). Furthermore, oleuropein treatment partially recovered the decidualization impact of human endometriotic stromal cells from endometriotic lesions compared to the vehicle. Oleuropein-treated mice with endometriosis exhibited significantly lower levels of cytokines directly regulated by ERß in ectopic lesions than vehicle-treated mice, illustrating the improvement in the hyperinflammatory state of mice with endometriosis. CONCLUSIONS: Oleuropein is a promising and novel nutraceutical product for nonhormonal therapy of endometriosis because it selectively inhibits ERß, but not ERα, to suppress endometriosis progression and improve the fertility of mice with endometriosis.


Asunto(s)
Productos Biológicos , Endometriosis , Embarazo , Humanos , Ratones , Masculino , Femenino , Animales , Endometriosis/tratamiento farmacológico , Receptor beta de Estrógeno/uso terapéutico , Ratones Endogámicos C57BL , Fertilidad , Estrógenos , Citocinas , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
15.
Mol Biol Rep ; 49(2): 1223-1232, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34792729

RESUMEN

BACKGROUND: Female breast cancer has become the most commonly diagnosed cancer worldwide. As a tumor suppressor, estrogen receptor ß (ERß) can be potentially targeted for breast cancer therapy. METHODS AND RESULTS: TAD1822-7 was evaluated for ERß-mediated autophagy and cell death using cell proliferation assay, Annexin V/PI staining, immunofluorescence, western blotting, ERß siRNA, ERß plasmid transfection and hypoxia cell models. TAD1822-7 upregulated ERß causing cell death and induced mitochondrial dysfunction and autophagy companied with mitochondrial located ERß. Enhanced levels of microtubule associated protein1 light chain 3 (LC3)-II and p62/SQSTM1 (p62) indicated that TAD1822-7 blocked the late-stage autolysosome formation, leading to cell death. Mechanistically, TAD1822-7-induced cell death was mediated by phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathways. Moreover, TAD1822-7 modulated hypoxia inducible factor (HIF) functions and autophagy via the inhibition of HIF-1ß in the context of hypoxia-induced autophagy. ERß overexpression and ERß agonist showed similar effects, whereas ERß siRNA abrogated TAD1822-7-induced cell death, the inhibition of PI3K/AKT pathway and autophagy. The involvement of PI3K/AKT pathway and autophagy was also demonstrated in TAD1822-7-treated hypoxic breast cancer cells. CONCLUSIONS: These findings provide new insight into the mechanism underlying the inhibitory effects of TAD1822-7 via ERß-mediated pathways in breast cancer cells.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Receptor beta de Estrógeno/metabolismo , Morfolinas/farmacología , Compuestos de Fenilurea/farmacología , Alcaloides , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Compuestos de Bifenilo , Neoplasias de la Mama/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptor beta de Estrógeno/fisiología , Femenino , Humanos , Morfolinas/metabolismo , Compuestos de Fenilurea/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Urea
16.
Ecotoxicol Environ Saf ; 231: 113207, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35051763

RESUMEN

Bisphenol A (BPA) is a ubiquitous environmental pollutant that can specifically induce estrogen receptor ß (ERß) expression, and the latter plays a crucial role during wound healing. However, no study has investigated the association between BPA exposure and skin regeneration. This study aimed to explore the impacts of BPA on wound repair using mice models. C57BL/6 mice were administrated with BPA in two different ways during the process of wound healing-dietary intake (5 and 50 mg/kg) and wound application (1 and 100 nM). Mice primary fibroblasts were exposed to BPA to verify the role of BPA on the function of fibroblasts. We also applied BPA in diabetic mice to evaluate its therapy value. BPA showed dual effects on wound healing, which were dependent on the application routes. Dietary intake of BPA delayed wound healing by suppressing ovarian estrogen secretion, whereas wound application of BPA accelerated skin regeneration via up-regulating wound localized ERß expression. Highly expressed ERß enhanced the function of fibroblasts and promoted the transformation from fibroblasts to myofibroblasts. Impacts of BPA on wound healing were dismissed when ERß was blocked. Moreover, wound application of BPA significantly accelerated wound repair in diabetic mice, but has no significant adverse effect on ovarian hormones levels. The current study indicates that although BPA disrupts the function of the endocrine system when administrated by diet, local application of BPA on wounds shows a superior role in promoting wound repair, and this may provide a novel approach for the therapy of pathologic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Receptor beta de Estrógeno , Animales , Compuestos de Bencidrilo/toxicidad , Receptor alfa de Estrógeno , Ratones , Ratones Endogámicos C57BL , Fenoles , Cicatrización de Heridas
17.
Phytother Res ; 36(8): 3248-3264, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35599350

RESUMEN

Intestinal mucus barrier dysfunction is closely involved in the pathogenesis of inflammatory bowel diseases (IBD). To investigate the protective effect and underlying mechanism of arctigenin, a phytoestrogen isolated from the fruits of Arctium lappa L., on the intestinal mucus barrier under colitis condition. The role of arctigenin on the intestinal mucus barrier and the apoptosis of goblet cells were examined by using both in vitro and in vivo assays. Arctigenin was demonstrated to promote the mucus secretion and maintain the integrity of mucus barrier, which might be achieved by an increase in the number of goblet cells via inhibiting apoptosis. Arctigenin selectively inhibited the mitochondrial pathway-mediated apoptosis. Moreover, arctigenin elevated the protein level of prohibitin 1 (PHB1) through blocking the ubiquitination via activation of estrogen receptor ß (ERß) to competitively interact with PHB1 and disrupt the binding of tripartite motif 21 (TRIM21) with PHB1. ERß knock down in the colons of mice with DSS-induced colitis resulted in significant reduction of the protection of arctigenin and DPN against the mucosal barrier. Arctigenin can maintain the integrity of the mucus barrier by inhibiting the apoptosis of goblet cells through the ERß/TRIM21/PHB1 pathway.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Apoptosis , Colitis/inducido químicamente , Receptor beta de Estrógeno/metabolismo , Furanos , Células Caliciformes/metabolismo , Células Caliciformes/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Lignanos , Ratones , Ratones Endogámicos C57BL , Moco/metabolismo , Fitoestrógenos , Prohibitinas
18.
Reprod Domest Anim ; 57(9): 989-998, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35612957

RESUMEN

The aim of our study was to determine whether silencing or overexpression of estrogen receptor ß (ERß) regulates cell proliferation, steroidogenesis, autophagy and signalling pathways in bovine ovarian granulosa cells in vitro. In this study, bovine ovarian granulosa cells (BGCs) were cultured and transfected with ERß siRNA (si-ERß) or a plasmid overexpressing ERß (oe-ERß), and CCK-8 kit was used to assess cell proliferation. Real-time PCR was used to measure gene transcription. Western blotting was used to measure protein expression, and a specific kit was used to measure the production of steroid hormones. The results showed the expression level of ERß affects BGC proliferation according to the gene transcription levels of FSHR, CYP19A1, HSD3ß1 and STAR and the production of E2 and P4. ERß was identified as an important nuclear receptor that induced BGC autophagy based on the mRNA and protein expression of autophagy-related genes. Furthermore, the role of ERß in BGC autophagy was confirmed through treatment with rapamycin (RAPA) or 3-methyladenine (3-MA) in BGCs by cotransfection with si-ERß or oe-ERß in BGCs. The results related to AKT/mTOR signalling and phosphorylation suggested that ERß induces BGC autophagy through attenuating AKT/mTOR signalling. In summary, this study demonstrates that silencing or overexpression of ERß regulates BGC proliferation and function and induces BGC autophagy by targeting AKT/mTOR signalling. These data reveal a novel regulatory mechanism of autophagy via ERß and provide insights into the role of autophagy in BGCs.


Asunto(s)
Receptor beta de Estrógeno , Proteínas Proto-Oncogénicas c-akt , Animales , Autofagia/fisiología , Bovinos , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Células de la Granulosa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
19.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499700

RESUMEN

Clinical outcomes of melanoma patients pointed out a gender disparity that supports a correlation between sex hormone activity on estrogen receptors (ER) and melanoma development and progression. Here, we found that the epithelial-to-mesenchymal transition (EMT) of melanoma cells induced by extracellular acidosis, which is a crucial hallmark of solid cancers, correlates with the expression of ERß, the most representative ER on melanoma cells. Extracellular acidosis induces an enhanced expression of ERß in female cells and EMT markers remain unchanged, while extracellular acidosis did not induce the expression of ERß in male cells and EMT was strongly promoted. An inverse relationship between ERß expression and EMT markers in melanoma cells of different sex exposed to extracellular acidosis was revealed by two different technical approaches: florescence-activated cell sorting of high ERß expressing cell subpopulations and ERß receptor silencing. Finally, we found that ERß regulates EMT through NF-κB activation. These results demonstrate that extracellular acidosis drives a differential ERß regulation in male and female melanoma cells and that this gender disparity might open new perspectives for personalized therapeutic approaches.


Asunto(s)
Receptor beta de Estrógeno , Melanoma , Humanos , Masculino , Femenino , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Melanoma/genética , Melanoma/metabolismo , Receptores de Estrógenos/metabolismo , Receptor alfa de Estrógeno
20.
Biol Pharm Bull ; 44(11): 1594-1597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34719637

RESUMEN

Estrogen is essential for the growth and development of mammary glands and its signaling is associated with breast cancer growth. Estrogen can exert physiological actions via estrogen receptors α/ß (ERα/ß). There is experimental evidence suggesting that in ERα/ß-positive breast cancer, ERα promotes tumor cell proliferation and ERß inhibits ERα-mediated transcriptional activity, resulting in abrogation of cell growth. Therefore, ERß is attracting attention as a potential tumor suppressor, and as a biomarker and therapeutic target in the ERα/ß-positive breast cancer. Based on this information, we have hypothesized that some endocrine-disrupting chemicals (EDCs) that can perturb the balance between ERα and ERß expression levels in breast cancer cells might have effects on the breast cancer proliferation (i.e., down-regulation of the α-type of ER). We have recently reported that 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, in ERα/ß-positive human breast cancer significantly down-regulates ERα expression, yet stimulates cell proliferation through the activation of ERß-mediated transcription. These results support our hypothesis by demonstrating that exposure to MBP altered the functional role of ERß in breast cancer cells from suppressor to promoter. In contrast, some EDCs, such as Δ9-tetrahydrocannabinol and bisphenol AF, can exhibit anti-estrogenic effects through up-regulation of ERß expression without affecting the ERα expression levels. However, there is no consensus on the correlation between ERß expression levels and clinical prognosis, which might be due to differences in exposed chemicals. Therefore, elucidating the exposure effects of EDCs can reveal the reason for inconsistent functional role of ERß in ERα/ß-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Disruptores Endocrinos/toxicidad , Receptor beta de Estrógeno/efectos de los fármacos , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/inducido químicamente , Antagonistas de Estrógenos/uso terapéutico , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/fisiología , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA