Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Intervalo de año de publicación
1.
Clin Infect Dis ; 78(6): 1732-1744, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38253338

RESUMEN

BACKGROUND: The adjuvanted RSV prefusion F protein-based vaccine (RSVPreF3 OA) was efficacious against RSV-related lower respiratory tract disease (RSV-LRTD) in ≥60-years-olds over 1 RSV season. We evaluated efficacy and safety of 1 RSVPreF3 OA dose and of 2 RSVPreF3 OA doses given 1 year apart against RSV-LRTD over 2 RSV seasons post-dose 1. METHODS: In this phase 3, blinded trial, ≥60-year-olds were randomized (1:1) to receive RSVPreF3 OA or placebo pre-season 1. RSVPreF3 OA recipients were re-randomized (1:1) to receive a second RSVPreF3 OA dose (RSV_revaccination group) or placebo (RSV_1dose group) pre-season 2; participants who received placebo pre-season 1 received placebo pre-season 2 (placebo group). Efficacy of both vaccine regimens against RSV-LRTD was evaluated over 2 seasons combined (confirmatory secondary objective, success criterion: lower limits of 2-sided CIs around efficacy estimates >20%). RESULTS: The efficacy analysis comprised 24 967 participants (RSV_1dose: 6227; RSV_revaccination: 6242; placebo: 12 498). Median efficacy follow-up was 17.8 months. Efficacy over 2 seasons of 1 RSVPreF3 OA dose was 67.2% (97.5% CI: 48.2-80.0%) against RSV-LRTD and 78.8% (95% CI: 52.6-92.0%) against severe RSV-LRTD. Efficacy over 2 seasons of a first dose followed by revaccination was 67.1% (97.5% CI: 48.1-80.0%) against RSV-LRTD and 78.8% (95% CI: 52.5-92.0%) against severe RSV-LRTD. Reactogenicity/safety of the revaccination dose were similar to dose 1. CONCLUSIONS: One RSVPreF3 OA dose was efficacious against RSV-LRTD over 2 RSV seasons in ≥60-year-olds. Revaccination 1 year post-dose 1 was well tolerated but did not seem to provide additional efficacy benefit in the overall study population. CLINICAL TRIALS REGISTRATION: ClinicalTrials.gov: NCT04886596.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Humanos , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Masculino , Femenino , Virus Sincitial Respiratorio Humano/inmunología , Anciano , Persona de Mediana Edad , Proteínas Virales de Fusión/inmunología , Anticuerpos Antivirales/sangre , Anciano de 80 o más Años , Estaciones del Año , Eficacia de las Vacunas , Método Doble Ciego , Inmunización Secundaria
2.
Clin Infect Dis ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189778

RESUMEN

BACKGROUND: Co-administration of vaccines against respiratory syncytial virus (RSV) and influenza can be considered given their overlapping seasonality, and may increase vaccine uptake and compliance. In this phase 3, open-label, randomized study, we evaluated the immunogenicity, reactogenicity, and safety of the AS01E-adjuvanted RSV prefusion F protein-based candidate vaccine (RSVPreF3 OA) when co-administered with a seasonal quadrivalent influenza vaccine (FLU-QIV) in older adults. METHODS: Participants aged ≥60 years (randomized 1:1) received either RSVPreF3 OA and FLU-QIV simultaneously on day 1 (Co-Ad group) or FLU-QIV on day 1 followed by RSVPreF3 OA on day 31 (sequential administration [SA] group). The co-primary objectives were to demonstrate noninferiority of RSVPreF3 OA in terms of RSV-A neutralization geometric mean titer (GMT) ratio and FLU-QIV in terms of hemagglutination inhibition GMT ratio for each FLU-QIV strain, when co-administered versus when administered alone at 1-month post-vaccination. Noninferiority was demonstrated if the upper limit of the 95% confidence interview of the group GMT ratio (SA/Co-Ad) was ≤1.5. Secondary descriptive objectives comprised additional immunogenicity assessments, reactogenicity, and safety. RESULTS: Of the 885 participants who received one dose of the study vaccines, 837 were included in the per protocol set. Demographic and baseline characteristics were balanced between the groups. Both co-primary objectives were met for both vaccines. Reported adverse events in both groups were mild-to-moderate, with a low frequency of grade 3 events. CONCLUSIONS: Data from this study demonstrate that RSVPreF3 OA can be co-administered with FLU-QIV. Co-administration is well tolerated, with an acceptable safety profile. CLINICALTRIALS.GOV REGISTRATION: NCT04841577.

3.
J Virol ; 97(1): e0190022, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36602367

RESUMEN

Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many vaccine candidates are focused on the viral F protein since the F protein is more conserved than the viral G protein across RSV strains and serotypes; thus, the F protein is thought more likely to induce a broader range of protection from infection. However, it is the G protein that binds the likely receptor, CX3CR1, in lung ciliated epithelial cells, raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the prefusion F protein (pre-F), only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F-protein-specific monoclonal antibodies differently than do VLPs containing only the prefusion F protein. In RSV-naive cotton rats, VLPs assembled with only the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers, as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody titers, induced improved protection of the animals from RSV challenge compared to pre-F VLPs, and induced significantly higher levels of antibodies specific for F protein antigenic site 0, site III, and the AM14 binding site than did VLPs containing only the pre-F protein. These results indicate that assembly of pre-F protein with G protein in VLPs further stabilized the prefusion conformation or otherwise altered the conformation of the F protein, increasing the induction of protective antibodies. IMPORTANCE Respiratory syncytial virus (RSV) results in significant disease in infants, young children, and the elderly. Thus, development of an effective vaccine for these populations is a priority. Most ongoing efforts in RSV vaccine development have focused on the viral fusion (F) protein; however, the importance of the inclusion of G in vaccine candidates is unclear. Here, using virus-like particles (VLPs) assembled with only the F protein, only the G protein, or both glycoproteins, we show that VLPs assembled with both glycoproteins are a far superior vaccine in a cotton rat model compared with VLPs containing only F protein or only G protein. The results show that the presence of G protein in the VLPs influences the conformation of the F protein and the immune responses to F protein, resulting in significantly higher neutralizing antibody titers and better protection from RSV challenge. These results suggest that inclusion of G protein in a vaccine candidate may improve its effectiveness.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Vacunas de Partículas Similares a Virus , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Proteínas Virales/inmunología
4.
J Virol ; 97(5): e0025423, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133390

RESUMEN

Respiratory syncytial virus (RSV) fusion protein (F) is highly conserved between subtypes A and B (RSV/A and RSV/B). To become fully active, F precursor undergoes enzymatic cleavage to yield F1 and F2 subunits and releases a 27-amino-acid peptide (p27). Virus-cell fusion occurs when RSV F undergoes a conformational change from pre-F to post-F. Previous data show that p27 is detected on RSV F, but questions remain regarding if and how p27 affects the conformation of mature RSV F. Monoclonal antibodies against p27, site Ø (pre-F specific), and site II were used to monitor RSV F conformation by enzyme-linked immunosorbent assay (ELISA) and imaging flow cytometry. Pre-F to post-F conformational change was induced by a temperature stress test. We found that p27 cleavage efficiency was lower on sucrose-purified RSV/A (spRSV/A) than on spRSV/B. In addition, cleavage of RSV F was cell line dependent: HEp-2 cells had higher retention of p27 than did A549 cells when infected with RSV. Higher levels of p27 were also found on RSV/A-infected cells than on RSV/B-infected cells. We observed that RSV/A F with higher p27 levels could better sustain the pre-F conformation during the temperature stress challenge in both spRSV- and RSV-infected cell lines. Our findings suggest that despite F sequence similarity, p27 of RSV subtypes was cleaved with different efficiencies, which were also dependent on the cell lines used for infection. Importantly, the presence of p27 was associated with greater stability of the pre-F conformation, supporting the possibility that RSV has more than one mechanism for fusion to the host cell. IMPORTANCE RSV fusion protein (F) plays an important role in entry and viral fusion to the host cell. The F undergoes proteolytic cleavages releasing a 27-amino-acid peptide (p27) to become fully functional. The role of p27 in viral entry and the function of the partially cleaved F containing p27 has been overlooked. p27 is thought to destabilize the F trimers, and thus, there is need for a fully cleaved F. In this study, we detected p27 on purified RSV virions and on the surface of virus-infected HEp-2 and A549 cells for circulating RSV strains of both subtypes. Higher levels of partially cleaved F containing p27 better sustained the pre-F conformation during the temperature stress challenge. Our findings highlight that the cleavage efficiency of p27 is different between RSV subtypes and among cell lines and that the presence of p27 contributes to the stability of the pre-F conformation.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Línea Celular , Proteínas Virales de Fusión/metabolismo
5.
J Infect Dis ; 227(6): 761-772, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35904987

RESUMEN

BACKGROUND: The aim of this study was to investigate safety and immunogenicity of vaccine formulations against respiratory syncytial virus (RSV) containing the stabilized prefusion conformation of RSV fusion protein (RSVPreF3). METHODS: This phase 1/2, randomized controlled, observer-blind study enrolled 48 young adults (YAs; aged 18-40 years) and 1005 older adults (OAs; aged 60-80 years) between January and August 2019. Participants were randomized into equally sized groups to receive 2 doses of unadjuvanted (YAs and OAs) or AS01-adjuvanted (OAs) vaccine or placebo 2 months apart. Vaccine safety and immunogenicity were assessed until 1 month (YAs) or 12 months (OAs) after second vaccination. RESULTS: The RSVPreF3 vaccines boosted humoral (RSVPreF3-specific immunoglobulin G [IgG] and RSV-A neutralizing antibody) responses, which increased in an antigen concentration-dependent manner and were highest after dose 1. Compared to prevaccination, the geometric mean frequencies of polyfunctional CD4+ T cells increased after each dose and were significantly higher in adjuvanted than unadjuvanted vaccinees. Postvaccination immune responses persisted until end of follow-up. Solicited adverse events were mostly mild to moderate and transient. Despite a higher observed reactogenicity of AS01-containing vaccines, no safety concerns were identified for any assessed formulation. CONCLUSIONS: Based on safety and immunogenicity profiles, the AS01E-adjuvanted vaccine containing 120 µg of RSVPreF3 was selected for further clinical development. CLINICAL TRIALS REGISTRATION: NCT03814590.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Adulto Joven , Humanos , Anciano , Anticuerpos Antivirales , Infecciones por Virus Sincitial Respiratorio/prevención & control , Anticuerpos Neutralizantes , Inmunogenicidad Vacunal
6.
Protein Expr Purif ; 210: 106325, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37354924

RESUMEN

The family of ATP-binding cassette F proteins (ABC-F) is mainly made up of cytosolic proteins involved in regulating protein synthesis, and they are often part of a mechanism that confers resistance to ribosome-targeting antibiotics. The existing literature has emphasized the difficulty of purifying these recombinant proteins because of their very low solubility and stability. Here, we describe a rapid and efficient three-step purification procedure that allows for the production of untagged ABC-F proteins from Enterococcus faecium in the heterologous host Escherichia coli. After four purified ABC-F proteins were produced using this protocol, their biological activities were validated by in vitro experiment. In conclusion, our study provides an invaluable tool for obtaining large amounts of untagged and soluble ABC-F proteins that can then be used for in vitro experiments.


Asunto(s)
Enterococcus faecium , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Biosíntesis de Proteínas , Antibacterianos/metabolismo , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Molecules ; 28(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985645

RESUMEN

Respiratory syncytial virus (RSV) causes annual epidemics of respiratory infection. Usually harmless to adults, the RSV infection can be dangerous to children under 3 years of age and elderly people over 65 years of age, often causing serious problems, even death. At present, there are no vaccines and specific chemotherapeutic agents for the treatment of this disease, so the search for low-molecular weight compounds to combat RSV is a challenge. In this work, we have shown, for the first time, that monoterpene-substituted arylcoumarins are efficient RSV replication inhibitors at low micromolar concentrations. The most active compound has a selectivity index of about 200 and acts most effectively at the early stages of infection. The F protein of RSV is a potential target for these compounds, which is also confirmed by molecular docking and molecular dynamics simulation data.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Preescolar , Anciano , Simulación del Acoplamiento Molecular , Anticuerpos Antivirales , Proteínas Virales de Fusión , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Replicación Viral
8.
J Infect Dis ; 225(12): 2056-2066, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34931667

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in older adults and adults with comorbidities. An effective vaccine is needed. An investigational bivalent prefusion F vaccine (RSVpreF) was assessed in healthy adults. METHODS: This phase 1/2 study randomized adults 18-85 years old to receive placebo or 60, 120, or 240 µg RSVpreF (with or without aluminum hydroxide) alone or concomitantly with seasonal inactivated influenza vaccine (SIIV). Safety and immunogenicity were assessed. RESULTS: In older adults, reactogenicity events were predominantly mild or moderate among RSVpreF recipients; adverse events through 1 month postvaccination were similar across formulations. Coadministration with SIIV did not appear to affect safety among younger or older adults. All RSVpreF formulations with or without concomitant SIIV elicited robust RSV serum-neutralizing responses in adults aged 50-85 years 1 month postvaccination. Neutralizing titers 1 and 12 months postvaccination were 6.9-14.9 and 2.9-4.5 times, respectively, those before vaccination. SIIV immune responses trended lower when coadministered with RSVpreF. CONCLUSIONS: RSVpreF formulations administered alone or with SIIV were well tolerated and highly immunogenic in older adults, supporting the potential for RSVpreF to protect older adults from RSV disease. CLINICAL TRIALS REGISTRATION: NCT03529773.


Asunto(s)
Vacunas contra la Influenza , Vacunas contra Virus Sincitial Respiratorio , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Gripe Humana/epidemiología , Persona de Mediana Edad , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Virus Sincitial Respiratorio Humano , Vacunas de Productos Inactivados/administración & dosificación , Adulto Joven
9.
J Infect Dis ; 225(8): 1357-1366, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-34932102

RESUMEN

BACKGROUND: Protection against human respiratory syncytial virus (RSV) remains an unmet need potentially addressable by maternal immunization. This phase 1/2 study evaluated a bivalent prefusion F vaccine (RSVpreF) with antigens from RSV subgroups A and B. METHODS: Adults 18-49 years old (N = 618) were randomized to receive placebo or 60, 120, or 240 µg RSVpreF with or without Al(OH)3. Safety and immunogenicity were evaluated. RESULTS: RSVpreF recipients more frequently reported local reactions and systemic events than placebo recipients; these were mostly mild or moderate. No vaccine-related serious adverse events occurred through 12 months postvaccination. All RSVpreF formulations induced 1-month postvaccination virus-neutralizing titers higher than those associated with protection of high-risk infants by palivizumab, the only prophylactic currently available for RSV. Geometric mean fold rises (GMFRs) across RSVpreF doses/formulations were 10.6-16.9 for RSV A and 10.3-19.8 for RSV B at 1 month postvaccination, greater than those historically elicited by postfusion F vaccines. GMFRs were 3.9-5.2 and 3.7-5.1, respectively, at 12 months postvaccination. CONCLUSIONS: RSVpreF formulations were safe, well tolerated, and induced robust neutralizing responses in adults. These findings support development of RSVpreF, which is being evaluated in a pivotal phase 3 study for maternal immunization. CLINICAL TRIALS REGISTRATION: NCT03529773.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Adolescente , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Persona de Mediana Edad , Infecciones por Virus Sincitial Respiratorio/prevención & control , Proteínas Virales de Fusión , Adulto Joven
10.
J Infect Dis ; 226(3): 396-406, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-33400792

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a significant cause of severe lower respiratory tract disease in children and older adults, but has no approved vaccine. This study assessed the potential of Ad26.RSV.preF to protect against RSV infection and disease in an RSV human challenge model. METHODS: In this double-blind, placebo-controlled study, healthy adults aged 18-50 years were randomized 1:1 to receive 1 × 1011 vp Ad26.RSV.preF or placebo intramuscularly. Twenty-eight days postimmunization, volunteers were challenged intranasally with RSV-A (Memphis 37b). Assessments included viral load (VL), RSV infections, clinical symptom score (CSS), safety, and immunogenicity. RESULTS: Postchallenge, VL, RSV infections, and disease severity were lower in Ad26.RSV.preF (n = 27) vs placebo (n = 26) recipients: median VL area under the curve (AUC) quantitative real-time polymerase chain reaction: 0.0 vs 236.0 (P = .012; predefined primary endpoint); median VL-AUC quantitative culture: 0.0 vs 109; RSV infections 11 (40.7%) vs 17 (65.4%); median RSV AUC-CSS 35 vs 167, respectively. From baseline to 28 days postimmunization, geometric mean fold increases in RSV A2 neutralizing antibody titers of 5.8 and 0.9 were observed in Ad26.RSV.preF and placebo, respectively. Ad26.RSV.preF was well tolerated. CONCLUSIONS: Ad26.RSV.preF demonstrated protection from RSV infection through immunization in a human challenge model, and therefore could potentially protect against natural RSV infection and disease. CLINICAL TRIALS REGISTRATION: NCT03334695; CR108398, 2017-003194-33 (EudraCT); VAC18193RSV2002.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Niño , Humanos , Inmunización , Proteínas Virales de Fusión
11.
Appl Microbiol Biotechnol ; 106(17): 5687-5699, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35906441

RESUMEN

Antibiotic resistance genes are usually tightly controlled by transcription factors and RNA regulatory elements including sRNAs, riboswitches, and attenuators, and their expression is activated to respond to antibiotic exposure. In previous work, we revealed that the rppA gene is regulated by attenuator LRR and two mistranslation products in Bacillus thuringiensis BMB171. However, its function and promoter regulation is still not precise. In this study, we demonstrated that the encoding product of the rppA gene acts as an ARE1 ABC-F protein and confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed. Besides the reported attenuator LRR, the expression of the rppA gene is controlled by the sigma factor SigA and a global transcription factor CcpA. Consequently, its promoter activity is mainly maintained at the stationary phase of cell growth and inhibited in the presence of glucose. Our study revealed the function and regulation of the rppA gene in detail. KEY POINTS: • The RppA protein acts as an ARE1 ABC-F protein • The rppA gene confers resistance to antibiotics virginiamycin M1 and lincomycin when overexpressed • The expression of the rppA gene is regulated by the sigma factor SigA and the pleiotropic regulator CcpA.


Asunto(s)
Bacillus thuringiensis , Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Microbiana , Regulación Bacteriana de la Expresión Génica , Inmunoglobulina A Secretora , Lincomicina , Factor sigma , Estreptogramina A , Factores de Transcripción , Transcripción Genética
12.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232928

RESUMEN

Direct-acting antivirals (DAAs) have recently revolutionized the eradication of chronic hepatitis C virus (HCV) infection. However, the effects of DAAs on the development of hepatocellular carcinoma (HCC) remain unknown. Therefore, the present study aimed to investigate immune responses to HCC influenced by DAAs in HCV-infected patients and elucidate the underlying mechanisms. We compared immune responses to 19 different HCC-related tumor-associated antigen (TAA)-derived peptides and host immune cell profiles before and 24 weeks after a treatment with DAAs in 47 HLA-A24-positive patients. The relationships between the different immune responses and phenotypic changes in immune cells were also examined. The treatment with DAAs induced four types of immune responses to TAAs and markedly altered host immune cell profiles. Prominently, reductions in the frequencies of PD-1+CD4+ and PD-1+CD8+ T cells by DAAs were associated with enhanced immune responses to TAAs. The HCV F protein was identified as contributing to the increased frequency of PD-1+ T cells, which may be decreased after eradication by DAAs. DAAs altered the immune responses of patients to HCC by decreasing the frequency of PD-1-expressing CD4+ and CD8+ T cells.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Hepatitis C , Neoplasias Hepáticas , Antivirales/farmacología , Antivirales/uso terapéutico , Carcinoma Hepatocelular/patología , Antígeno HLA-A24/uso terapéutico , Hepacivirus , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Humanos , Inmunidad , Neoplasias Hepáticas/patología , Receptor de Muerte Celular Programada 1
13.
J Infect Dis ; 223(4): 699-708, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32851411

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) and influenza cause significant disease burden in older adults. Overlapping RSV and influenza seasonality presents the opportunity to coadminister vaccines for both infections. This study assessed coadministration of the investigational vaccine, Ad26.RSV.preF, an adenovirus serotype 26 (Ad26) vector encoding RSV F protein stabilized in its prefusion conformation (pre-F), with a seasonal influenza vaccine in older adults. METHODS: In this phase 2a, double-blind, placebo-controlled study, 180 adults aged ≥60 years received Ad26.RSV.preF plus Fluarix on day 1 and placebo on day 29, or placebo plus Fluarix on day 1 and Ad26.RSV.preF on day 29 (control). RESULTS: The coadministration regimen had an acceptable tolerability profile. Reactogenicity was generally higher after Ad26.RSV.preF versus Fluarix, but symptoms were generally transient and mild or moderate. At 28 days after the first vaccination, the upper confidence intervals of the hemagglutination inhibition antibody geometric mean ratio (control/coadministration) for all influenza strains were <2, demonstrating noninferiority. Robust neutralizing and binding antibody responses to RSV A2 were observed in both groups. CONCLUSIONS: Coadministration of Fluarix with Ad26.RSV.preF vaccine had an acceptable safety profile and showed no evidence of interference in immune response. The results are compatible with simultaneous seasonal vaccination with both vaccines. CLINICAL TRIALS REGISTRATION: NCT03339713.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Método Doble Ciego , Femenino , Humanos , Esquemas de Inmunización , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/efectos adversos , Masculino , Persona de Mediana Edad , Vacunas contra Virus Sincitial Respiratorio/efectos adversos , Virus Sincitiales Respiratorios/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología
14.
Antimicrob Agents Chemother ; 65(8): e0033021, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097497

RESUMEN

Macrolide resistance is always a concern when treating Mycobacterium abscessus infections. MAB_2355c was identified previously as a possible new factor that confers the intrinsic resistance of 194 clinical M. abscessus isolates to clarithromycin. Herein, the potential mechanism by which MAB_2355c exerts macrolide resistance was explored by bioinformatics analysis, MAB_2355c cloning and protein purification, ATP hydrolysis assay, gene knockout and complementation, antibiotic sensitivity, and transcription-translation assays. MAB_2355c is a putative ATP-binding cassette F (ABC-F) family protein. Purified MAB_2355c protein exhibits ATP hydrolysis activity, which can be inhibited by ribosome-targeting antibiotics. MAB_2355c mRNA expression is upregulated more significantly after exposure to macrolides than after exposure to other ribosome-targeting antibiotics. MAB_2355c deleted strains showed increased sensitivity to macrolides, which was reduced by MAB_2355c complementation. Finally, MAB_2355c rescued the transcription and translation activities affected by macrolides in vitro. These findings suggest that MAB_2355c confers the resistance of M. abscessus to macrolides by ribosome protection, thus complementing other known resistance mechanisms.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Claritromicina , Farmacorresistencia Bacteriana/genética , Humanos , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/genética , Ribosomas/genética
15.
Molecules ; 26(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946573

RESUMEN

Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.


Asunto(s)
Antivirales/farmacología , Cumarinas/farmacología , Monoterpenos/farmacología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Antivirales/química , Cumarinas/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Monoterpenos/química , Replicación Viral/efectos de los fármacos
16.
Artículo en Inglés | MEDLINE | ID: mdl-33046486

RESUMEN

Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in early childhood. However, no vaccines have yet been approved for prevention of RSV infection, and the treatment options are limited. Therefore, development of effective and safe anti-RSV drugs is needed. In this study, we evaluated the antiviral activity and mechanism of action of a novel macrocyclic anti-RSV compound, TP0591816. TP0591816 showed significant antiviral activities against both subgroup A and subgroup B RSV, while exerting no cytotoxicity. Notably, the antiviral activity of TP0591816 was maintained against a known fusion inhibitor-resistant RSV strain with a mutation in the cysteine-rich region or in heptad repeat B. Results of a time-of-addition assay and a temperature shift assay indicated that TP0591816 inhibited fusion of RSV with the cell membrane during viral entry. In addition, TP0591816 added after cell infection also inhibited cell-cell fusion. A TP0591816-resistant virus strain selected by serial passage had an L141F mutation, but no mutation in the cysteine-rich region or in heptad repeat B in the fusion (F) protein. Treatment with TP0591816 reduced lung virus titers in a dose-dependent manner in a mouse model of RSV infection. Furthermore, the estimated effective dose of TP0591816 for use against F protein mutants was thought to be clinically realistic and potentially tolerable. Taken together, these findings suggest that TP0591816 is a promising novel candidate for the treatment of resistant RSV infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anticuerpos Antivirales , Antivirales/farmacología , Antivirales/uso terapéutico , Preescolar , Humanos , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/genética , Proteínas Virales de Fusión/genética , Internalización del Virus
17.
J Virol ; 93(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30760576

RESUMEN

Most individuals are infected with respiratory syncytial virus (RSV) by age two, but infection does not result in long-term protective immunity to subsequent infections. Previous RSV infection may, however, impact responses to an RSV vaccine. The goal of these studies was to explore the effect of previous RSV infection on murine antibody responses to RSV F and G protein-containing virus-like particles (VLP), comparing responses to those resulting from VLP immunization of RSV-naive animals. These studies showed that after RSV infection, immunization with a single dose of VLPs containing a conformation-stabilized prefusion F protein stimulated high titers of neutralizing antibodies (NA), while an immunization with post-F-containing VLPs or a second RSV infection only weakly stimulated NA, even though total anti-F protein IgG antibody levels in both VLP-immunized animals were similar. Furthermore, single pre-F or post-F VLP immunization of animals previously infected (primed) with RSV resulted in total anti-F antibody titers that were 10- to 12-fold higher than titers after a VLP prime and boost of RSV-naive animals or after two consecutive RSV infections. The avidities of serum antibodies as well as numbers of splenic B cells and bone marrow cells after different immunization protocols were also assessed. The combined results show that RSV infection can quite effectively prime animals for the production of protective antibodies that can be efficiently activated by a pre-F VLP boost but not by a post-F VLP boost or a second RSV infection.IMPORTANCE Humans may experience repeated infections caused by the same serotype of respiratory syncytial virus (RSV), in contrast to infections with most other viruses, indicating that immune memory responses to RSV are defective. However, the effects of any residual but nonprotective immunity on responses to RSV vaccines are not clear. This study demonstrates that a VLP vaccine candidate containing a stabilized prefusion F protein can robustly stimulate protective immunity in animals previously infected with RSV, while a second RSV infection or a postfusion F-containing VLP cannot. This result shows that a properly constructed immunogen can be an effective vaccine in animals previously infected with RSV. The results also suggest that the defect in RSV memory is not in the induction of that memory but rather in its activation by a subsequent RSV infection.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Proteínas Virales de Fusión/inmunología , Vacunas Virales/inmunología , Virión/inmunología , Animales , Chlorocebus aethiops , Femenino , Humanos , Inmunización Secundaria , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitiales Respiratorios/genética , Células Vero , Proteínas Virales de Fusión/genética , Vacunas Virales/genética , Virión/genética
18.
J Med Virol ; 92(12): 2930-2937, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32470157

RESUMEN

Earlier observation suggests that hepatitis C virus (HCV) is a single-stranded RNA virus which encodes at least 10 viral proteins. F protein is a novel protein which has been discovered recently. These studies suggest three mechanisms for the production of this protein concerning ribosomal frameshift at codon 10, initial translation at codons 26 and 85 or 87. In this study, the association between protein F and chronicity of hepatocellular carcinoma (HCC) has been reviewed. Evidence suggests that humoral immune system can recognize this protein and produce antibodies against it. By detecting antibodies in infected people, investigators found that F protein might have a role in HCV infection causing chronic cirrhosis and HCC as higher prevalence was found in patients with mentioned complications. The increment of CD4+, CD25+, and FoxP3+ T cells, along with CD8+ T cells with low expression of granzyme B, also leads to weaker responses of the immune system which helps the infection to become chronic. Moreover, it contributes to the survival of the virus in the body through affecting the production of interferon. F protein also might play roles in the disease development, resulting in HCC. The existence of F protein affects cellular pathways through upregulating p53, c-myc, cyclin D1, and phosphorylating Rb. This review will summarize these effects on immune system and related mechanisms in cellular pathways.

19.
Appl Microbiol Biotechnol ; 104(24): 10725-10735, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33159543

RESUMEN

Canine distemper virus (CDV) infection causes mass mortality in diverse carnivore species. For effective virus surveillance, rapid and sensitive assays are needed to detect CDV in field samples. In this study, after BABL/c mice were immunized with recombinant CDV-fusion (F) protein, monoclonal antibodies (mAbs) against recombinant CDV-F protein (designated 1A5, 1A6, and 7D5) were produced using traditional hybridoma cell technology. Next, capture antibody (1A6, 800 ng/well) and horseradish peroxidase (HRP)-conjugated detection antibody (HRP-7D5, 1:100, 500 ng/well) were used in a double monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (ELISA) for CDV detection after optimization of both mAb amounts per well using a checkerboard titration test. Based on sandwich ELISA test results for 120 known CDV-negative samples, the cutoff value for a positive result was set to an OD450 nm value ≥ 0.196. As compared with test results obtained from commercial immune colloidal gold test strips, the low limits of detection for the two assays were revealed to be 100 TCID50 per 100 µL. In addition, the sandwich ELISA agreed 100% and 96.4% with commercial immune colloidal gold test strips when testing serum and stool samples. The sandwich ELISA assay provided statistically similar CDV detection. Thus, the sandwich ELISA developed here to detect CDV in fecal and serum samples provided good sensitivity, high specificity, and good reproducibility and should serve as an ideal method for large-scale surveillance of CDV infections in carnivores. KEY POINTS: • Three CDV mAbs that recognized different epitopes and bound to virion were generated. • The sandwich ELISA based mAbs to detect CDV in fecal and serum samples was developed. • The sandwich ELISA is an ideal method for detecting CDV infections in the field.


Asunto(s)
Virus del Moquillo Canino , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Ratones , Reproducibilidad de los Resultados
20.
BMC Vet Res ; 16(1): 253, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698866

RESUMEN

BACKGROUND: Newcastle disease (ND) causes severe economic losses in poultry industry worldwide. Egyptian poultry industry suffered from severe economic losses since the isolation of Velogenic Newcastle disease virus (vNDV) genotype VIId in 2011 and up till now despite the use of different vaccination programs. So, this study aimed to isolate and characterize the vNDV from a total of 120 poultry flocks from ten provinces in the Egyptian Delta region with a history of respiratory manifestation, high mortalities or a decrease in egg production between 2015 and 2019. Seventy-three samples' allantoic fluid (73/120, 60.8%) were positive for hemagglutination with chicken RBCs. These samples were submitted to molecular examination using qRT-PCR specific primers for AOAV-1, highly pathogenic avian influenza (HPAI-H5), low pathogenic avian influenza (LPAI-H9) and infectious bronchitis virus (IBV). RESULTS: Fifty samples (50/120: 41.6%) were confirmed positive for AOAV-1, based on genetic analysis of matrix and fusion protein. The co-infection rate of other respiratory viral diseases examined was 1.6, 14.1, and 4.1%, for HPAI-H5, LPAI-H9, and IBV, respectively. Biologically, the intracerebral pathogenicity index of ten selected AOAV-1 isolates ranged from 1.70 to 1.98, which indicated the velogenic nature of these isolates. All the sixteen sequenced isolates were AOAV-1 genotype VII.1.1. The full F gene sequence of six examined AOAV-1 VII.1.1 isolates contained the seven neutralizing epitopes, and the glycosylation motif of six-potential sites for N linked glycosylation at residues 85, 191, 366, 447, 471, and 541. CONCLUSION: It could be concluded that the high prevalence of AOAV-1 genotype VII.1.1 in the Egyptian chicken flocks despite the intensive vaccination with live and killed ND vaccines, as all the 16 isolates tested were belonged to this genotype. Homologous vaccination is badly needed to control and reduce the spread of AOAV-1 genotype VII.1.1infection in Egyptian poultry flocks.


Asunto(s)
Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Enfermedades de las Aves de Corral/virología , Animales , Pollos , Columbidae , Egipto/epidemiología , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Vacunación/veterinaria , Vacunas Virales/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA