Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677512

RESUMEN

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular , Priones/química , Proteínas de Unión al ARN/química , Receptores Citoplasmáticos y Nucleares/química , Adulto , Anciano , Animales , Citoplasma/química , Proteínas de Unión al ADN/química , Drosophila melanogaster , Femenino , Proteínas Fluorescentes Verdes/química , Células HEK293 , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/patología , Dominios Proteicos , Proteína EWS de Unión a ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , beta Carioferinas/química
2.
Cell ; 174(6): 1477-1491.e19, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30146158

RESUMEN

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Asunto(s)
Apoptosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Adulto , Anciano , Envejecimiento , Animales , Apoptosis/efectos de los fármacos , Axones/metabolismo , Conducta Animal , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Humanos , Quinasa I-kappa B/metabolismo , Ratones , Ratones Noqueados , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Médula Espinal/metabolismo , Estaurosporina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
3.
Cell ; 172(4): 696-705.e12, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29398115

RESUMEN

Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.


Asunto(s)
Alanina/análogos & derivados , Proteína C9orf72 , Neuronas , Ácido Poliglutámico , Complejo de la Endopetidasa Proteasomal , Agregado de Proteínas , Alanina/genética , Alanina/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Células HEK293 , Humanos , Neuronas/metabolismo , Neuronas/patología , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Biosíntesis de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley
4.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677514

RESUMEN

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Asunto(s)
Arginina/química , Proteína FUS de Unión a ARN/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Citoplasma/metabolismo , Metilación de ADN , ADN Complementario/metabolismo , Densitometría , Degeneración Lobar Frontotemporal/metabolismo , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Espectroscopía de Resonancia Magnética , Metilación , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Dominios Proteicos
5.
EMBO J ; 43(18): 3948-3967, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39103493

RESUMEN

Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.


Asunto(s)
Aminoácidos , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Serina-Treonina Quinasas , Proteínas de Unión a GTP rab7 , Humanos , Aminoácidos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Células HEK293 , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transducción de Señal
6.
Mol Cell ; 77(1): 82-94.e4, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31630970

RESUMEN

FUS is a nuclear RNA-binding protein, and its cytoplasmic aggregation is a pathogenic signature of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). It remains unknown how the FUS-RNA interactions contribute to phase separation and whether its phase behavior is affected by ALS-linked mutations. Here we demonstrate that wild-type FUS binds single-stranded RNA stoichiometrically in a length-dependent manner and that multimers induce highly dynamic interactions with RNA, giving rise to small and fluid condensates. In contrast, mutations in arginine display a severely altered conformation, static binding to RNA, and formation of large condensates, signifying the role of arginine in driving proper RNA interaction. Glycine mutations undergo rapid loss of fluidity, emphasizing the role of glycine in promoting fluidity. Strikingly, the nuclear import receptor Karyopherin-ß2 reverses the mutant defects and recovers the wild-type FUS behavior. We reveal two distinct mechanisms underpinning potentially disparate pathogenic pathways of ALS-linked FUS mutants.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Mutación/genética , Proteína FUS de Unión a ARN/genética , ARN/genética , Transporte Activo de Núcleo Celular/genética , Glicina/genética , Humanos
7.
Genes Dev ; 34(11-12): 785-805, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381627

RESUMEN

Dysregulation of the DNA/RNA-binding protein FUS causes certain subtypes of ALS/FTD by largely unknown mechanisms. Recent evidence has shown that FUS toxic gain of function due either to mutations or to increased expression can disrupt critical cellular processes, including mitochondrial functions. Here, we demonstrate that in human cells overexpressing wild-type FUS or expressing mutant derivatives, the protein associates with multiple mRNAs, and these are enriched in mRNAs encoding mitochondrial respiratory chain components. Notably, this sequestration leads to reduced levels of the encoded proteins, which is sufficient to bring about disorganized mitochondrial networks, reduced aerobic respiration and increased reactive oxygen species. We further show that mutant FUS associates with mitochondria and with mRNAs encoded by the mitochondrial genome. Importantly, similar results were also observed in fibroblasts derived from ALS patients with FUS mutations. Finally, we demonstrate that FUS loss of function does not underlie the observed mitochondrial dysfunction, and also provides a mechanism for the preferential sequestration of the respiratory chain complex mRNAs by FUS that does not involve sequence-specific binding. Together, our data reveal that respiratory chain complex mRNA sequestration underlies the mitochondrial defects characteristic of ALS/FTD and contributes to the FUS toxic gain of function linked to this disease spectrum.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Regulación de la Expresión Génica/genética , Mitocondrias/patología , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Línea Celular , Respiración de la Célula/genética , Células Cultivadas , Transporte de Electrón/genética , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mutación , Agregación Patológica de Proteínas/genética , Unión Proteica/genética
8.
Am J Hum Genet ; 111(2): 383-392, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242117

RESUMEN

The C9orf72 hexanucleotide repeat expansion (HRE) is a common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The inheritance is autosomal dominant, but a high proportion of subjects with the mutation are simplex cases. One possible explanation is de novo expansions of unstable intermediate-length alleles (IAs). Using haplotype sharing trees (HSTs) with the haplotype analysis tool kit (HAPTK), we derived majority-based ancestral haplotypes of HRE samples and discovered that IAs containing ≥18-20 repeats share large haplotypes in common with the HRE. Using HSTs of HRE and IA samples, we demonstrate that the longer IA haplotypes are largely indistinguishable from HRE haplotypes and that several ≥18-20 IA haplotypes share over 5 Mb (>600 markers) haplotypes in common with the HRE haplotypes. These analysis tools allow physical understanding of the haplotype blocks shared with the majority-based ancestral haplotype. Our results demonstrate that the haplotypes with longer IAs belong to the same pool of haplotypes as the HRE and suggest that longer IAs represent potential premutation alleles.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Árboles , Humanos , Alelos , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Expansión de las Repeticiones de ADN/genética , Haplotipos/genética , Proteínas Tirosina Quinasas Receptoras/genética , Árboles/genética
9.
Proc Natl Acad Sci U S A ; 121(17): e2307814121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621131

RESUMEN

Efforts to genetically reverse C9orf72 pathology have been hampered by our incomplete understanding of the regulation of this complex locus. We generated five different genomic excisions at the C9orf72 locus in a patient-derived induced pluripotent stem cell (iPSC) line and a non-diseased wild-type (WT) line (11 total isogenic lines), and examined gene expression and pathological hallmarks of C9 frontotemporal dementia/amyotrophic lateral sclerosis in motor neurons differentiated from these lines. Comparing the excisions in these isogenic series removed the confounding effects of different genomic backgrounds and allowed us to probe the effects of specific genomic changes. A coding single nucleotide polymorphism in the patient cell line allowed us to distinguish transcripts from the normal vs. mutant allele. Using digital droplet PCR (ddPCR), we determined that transcription from the mutant allele is upregulated at least 10-fold, and that sense transcription is independently regulated from each allele. Surprisingly, excision of the WT allele increased pathologic dipeptide repeat poly-GP expression from the mutant allele. Importantly, a single allele was sufficient to supply a normal amount of protein, suggesting that the C9orf72 gene is haplo-sufficient in induced motor neurons. Excision of the mutant repeat expansion reverted all pathology (RNA abnormalities, dipeptide repeat production, and TDP-43 pathology) and improved electrophysiological function, whereas silencing sense expression did not eliminate all dipeptide repeat proteins, presumably because of the antisense expression. These data increase our understanding of C9orf72 gene regulation and inform gene therapy approaches, including antisense oligonucleotides (ASOs) and CRISPR gene editing.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Alelos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/metabolismo , Neuronas Motoras/metabolismo , Mutación , Expansión de las Repeticiones de ADN/genética , Dipéptidos/metabolismo
10.
Trends Biochem Sci ; 47(1): 6-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34366183

RESUMEN

RNA-binding proteins (RBPs) are critical players in RNA expression and metabolism, thus, the proper regulation of this class of proteins is critical for cellular health. Regulation of RBPs often occurs through post-translational modifications (PTMs), which allow the cell to quickly and efficiently respond to cellular and environmental stimuli. PTMs have recently emerged as important regulators of RBPs implicated in neurodegenerative disorders, in particular amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we summarize how disease-associated PTMs influence the biophysical properties, molecular interactions, subcellular localization, and function of ALS/FTD-linked RBPs, such as FUS and TDP-43. We will discuss how PTMs are believed to play pathological, protective, or ambiguous roles in these neurodegenerative disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA