Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(3): 628-642.e10, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33476549

RESUMEN

SARS-CoV-2 infection causes more severe disease in pregnant women compared to age-matched non-pregnant women. Whether maternal infection causes changes in the transfer of immunity to infants remains unclear. Maternal infections have previously been associated with compromised placental antibody transfer, but the mechanism underlying this compromised transfer is not established. Here, we used systems serology to characterize the Fc profile of influenza-, pertussis-, and SARS-CoV-2-specific antibodies transferred across the placenta. Influenza- and pertussis-specific antibodies were actively transferred. However, SARS-CoV-2-specific antibody transfer was significantly reduced compared to influenza- and pertussis-specific antibodies, and cord titers and functional activity were lower than in maternal plasma. This effect was only observed in third-trimester infection. SARS-CoV-2-specific transfer was linked to altered SARS-CoV-2-antibody glycosylation profiles and was partially rescued by infection-induced increases in IgG and increased FCGR3A placental expression. These results point to unexpected compensatory mechanisms to boost immunity in neonates, providing insights for maternal vaccine design.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , Intercambio Materno-Fetal/inmunología , Placenta/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , SARS-CoV-2/inmunología , Adulto , Femenino , Humanos , Recién Nacido , Embarazo , Tercer Trimestre del Embarazo/inmunología , Receptores de IgG/inmunología , Células THP-1
2.
Cell ; 177(6): 1553-1565.e16, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31104841

RESUMEN

Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.


Asunto(s)
Enterovirus Humano B/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/ultraestructura , Receptores Fc/metabolismo , Receptores Fc/ultraestructura , Cápside/metabolismo , Microscopía por Crioelectrón , Enterovirus , Enterovirus Humano B/patogenicidad , Infecciones por Enterovirus/metabolismo , Antígenos de Histocompatibilidad Clase I/fisiología , Humanos , Modelos Moleculares , Filogenia , Receptores Fc/fisiología , Virión , Internalización del Virus
3.
Cell ; 174(1): 131-142.e13, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958103

RESUMEN

Macrophages protect the body from damage and disease by targeting antibody-opsonized cells for phagocytosis. Though antibodies can be raised against antigens with diverse structures, shapes, and sizes, it is unclear why some are more effective at triggering immune responses than others. Here, we define an antigen height threshold that regulates phagocytosis of both engineered and cancer-specific antigens by macrophages. Using a reconstituted model of antibody-opsonized target cells, we find that phagocytosis is dramatically impaired for antigens that position antibodies >10 nm from the target surface. Decreasing antigen height drives segregation of antibody-bound Fc receptors from the inhibitory phosphatase CD45 in an integrin-independent manner, triggering Fc receptor phosphorylation and promoting phagocytosis. Our work shows that close contact between macrophage and target is a requirement for efficient phagocytosis, suggesting that therapeutic antibodies should target short antigens in order to trigger Fc receptor activation through size-dependent physical segregation.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos/química , Macrófagos/inmunología , Proteínas Opsoninas/metabolismo , Fagocitosis , Animales , Anticuerpos Monoclonales/química , Antígenos/genética , Antígenos/inmunología , Antígeno Carcinoembrionario/química , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/inmunología , Edición Génica , Integrinas/metabolismo , Antígenos Comunes de Leucocito/química , Antígenos Comunes de Leucocito/genética , Antígenos Comunes de Leucocito/inmunología , Macrófagos/citología , Ratones , Proteínas Opsoninas/química , Fosforilación , Células RAW 264.7 , Receptores Fc/inmunología , Receptores Fc/metabolismo , Liposomas Unilamelares/química
4.
Cell ; 172(1-2): 305-317.e10, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328918

RESUMEN

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Receptores de Hialuranos/metabolismo , Receptores Inmunológicos/metabolismo , Adulto , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Humanos , Receptores de Hialuranos/química , Receptores de Hialuranos/genética , Ácido Hialurónico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica
5.
Immunity ; 56(5): 1046-1063.e7, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36948194

RESUMEN

Immunoglobulin G (IgG) antibodies are major drivers of inflammation during infectious and autoimmune diseases. In pooled serum IgG (IVIg), however, antibodies have a potent immunomodulatory and anti-inflammatory activity, but how this is mediated is unclear. We studied IgG-dependent initiation of resolution of inflammation in cytokine- and autoantibody-driven models of rheumatoid arthritis and found IVIg sialylation inhibited joint inflammation, whereas inhibition of osteoclastogenesis was sialic acid independent. Instead, IVIg-dependent inhibition of osteoclastogenesis was abrogated in mice lacking receptors Dectin-1 or FcγRIIb. Atomistic molecular dynamics simulations and super-resolution microscopy revealed that Dectin-1 promoted FcγRIIb membrane conformations that allowed productive IgG binding and enhanced interactions with mouse and human IgG subclasses. IVIg reprogrammed monocytes via FcγRIIb-dependent signaling that required Dectin-1. Our data identify a pathogen-independent function of Dectin-1 as a co-inhibitory checkpoint for IgG-dependent inhibition of mouse and human osteoclastogenesis. These findings may have implications for therapeutic targeting of autoantibody and cytokine-driven inflammation.


Asunto(s)
Artritis Reumatoide , Inmunoglobulinas Intravenosas , Lectinas Tipo C , Receptores de IgG , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Membrana Celular/metabolismo , Inmunoglobulinas Intravenosas/administración & dosificación , Lectinas Tipo C/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de IgG/metabolismo
6.
Immunity ; 53(2): 290-302.e6, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32768386

RESUMEN

CD47 acts as a "don't eat me" signal that protects cells from phagocytosis by binding and activating its receptor SIPRA on macrophages. CD47 suppresses multiple different pro-engulfment "eat me" signals, including immunoglobulin G (IgG), complement, and calreticulin, on distinct target cells. This complexity has limited understanding of how the "don't eat me" signal is transduced biochemically. Here, we utilized a reconstituted system with a defined set of signals to interrogate the mechanism of SIRPA activation and its downstream targets. CD47 ligation altered SIRPA localization, positioning SIRPA for activation at the phagocytic synapse. At the phagocytic synapse, SIRPA inhibited integrin activation to limit macrophage spreading across the surface of the engulfment target. Chemical reactivation of integrin bypassed CD47-mediated inhibition and rescued engulfment, similar to the effect of a CD47 function-blocking antibody. Thus, the CD47-SIRPA axis suppresses phagocytosis by inhibiting inside-out activation of integrin signaling in the macrophage, with implications to cancer immunotherapy applications.


Asunto(s)
Antígeno CD47/metabolismo , Integrinas/metabolismo , Macrófagos/inmunología , Fagocitosis/inmunología , Receptores Inmunológicos/metabolismo , Animales , Calreticulina/inmunología , Línea Celular , Proteínas del Sistema Complemento/inmunología , Células HEK293 , Humanos , Inmunoglobulina G/inmunología , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilserinas/inmunología , Células RAW 264.7 , Transducción de Señal/inmunología
7.
Immunity ; 52(6): 1039-1056.e9, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32392463

RESUMEN

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1s and cDC2s, respectively) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen-presenting cells (APCs). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of the Fc receptor CD64 shared with MCs and of IRF8 shared with cDC1s. These inflammatory cDC2s (inf-cDC2s) were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2s matured in response to cell-intrinsic Toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module, and acquired antigens via convalescent serum and Fc receptors. Because hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.


Asunto(s)
Plasticidad de la Célula/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inmunidad , Macrófagos/inmunología , Macrófagos/metabolismo , Infecciones por Respirovirus/etiología , Presentación de Antígeno , Biomarcadores , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Inmunofenotipificación , Interferón Tipo I/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Especificidad de Órganos/inmunología , Receptores Fc/metabolismo , Infecciones por Respirovirus/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Virosis/virología
8.
Immunol Rev ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158044

RESUMEN

The Fc region of antibodies is vital for most of their physiological functions, many of which are engaged through binding to a range of Fc receptors. However, these same interactions are not always helpful or wanted when therapeutic antibodies are directed against self-antigens, and can sometimes cause catastrophic adverse reactions. Over the past 40 years, there have been intensive efforts to "silence" unwanted binding to Fc-gamma receptors, resulting in at least 45 different variants which have entered clinical trials. One of the best known is "LALA" (L234A/L235A). However, neither this, nor most of the other variants in clinical use are completely silenced, and in addition, the biophysical properties of many of them are compromised. I review the development of different variants to see what we can learn from their biological properties and use in the clinic. With the rise of powerful new uses of antibody therapy such as bispecific T-cell engagers, antibody-drug conjugates, and checkpoint inhibitors, it is increasingly important to optimize the Fc region as well as the antibody binding site in order to achieve the best combination of safety and efficacy.

9.
Immunity ; 46(4): 577-586, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28410988

RESUMEN

CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Citometría de Flujo , Humanos , Inmunoterapia/métodos , Células K562 , Estimación de Kaplan-Meier , Depleción Linfocítica , Ratones , Neoplasias/patología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Unión Proteica/inmunología , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Linfocitos T Reguladores/metabolismo
10.
J Biol Chem ; 300(8): 107558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002669

RESUMEN

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.


Asunto(s)
Fucosa , Fucosiltransferasas , Inmunoglobulina G , Ratones Noqueados , Receptores de IgG , Animales , Fucosa/metabolismo , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Ratones , Receptores de IgG/metabolismo , Receptores de IgG/genética , Glicosilación , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/inmunología , Receptores Fc , Antígenos de Histocompatibilidad Clase I
11.
J Cell Sci ; 136(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37565427

RESUMEN

Human serum albumin (HSA) has a long circulatory half-life owing, in part, to interaction with the neonatal Fc receptor (FcRn or FCGRT) in acidic endosomes and recycling of internalised albumin. Vascular endothelial and innate immune cells are considered the most relevant cells for FcRn-mediated albumin homeostasis in vivo. However, little is known about endocytic trafficking of FcRn-albumin complexes in primary human endothelial cells. To investigate FcRn-albumin trafficking in physiologically relevant endothelial cells, we generated primary human vascular endothelial cell lines from blood endothelial precursors, known as blood outgrowth endothelial cells (BOECs). We mapped the endosomal system in BOECs and showed that BOECs efficiently internalise fluorescently labelled HSA predominantly by fluid-phase macropinocytosis. Pulse-chase studies revealed that intracellular HSA molecules co-localised with FcRn in acidic endosomal structures and that the wildtype HSA, but not the non-FcRn-binding HSAH464Q mutant, was excluded from late endosomes and/or lysosomes. Live imaging revealed that HSA is partitioned into FcRn-positive tubules derived from maturing macropinosomes, which are then transported towards the plasma membrane. These findings identify the FcRn-albumin trafficking pathway in primary vascular endothelial cells, relevant to albumin homeostasis.


Asunto(s)
Albúminas , Células Endoteliales , Humanos , Albúminas/metabolismo , Línea Celular , Endosomas/metabolismo , Células Endoteliales/metabolismo , Semivida , Antígenos de Histocompatibilidad Clase I/metabolismo
12.
Eur J Immunol ; 54(10): e2451044, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39014923

RESUMEN

Human cytomegalovirus is a medically important pathogen. Previously, using murine CMV (MCMV), we provided evidence that both neutralizing and nonneutralizing antibodies can confer protection from viral infection in vivo. In this study, we report that serum derived from infected animals had a greater protective capacity in MCMV-infected RAG-/- mice than serum from animals immunized with purified virus. The protective activity of immune serum was strictly dependent on functional Fcγ receptors (FcγR). Deletion of individual FcγRs or combined deletion of FcγRI and FcγRIV had little impact on the protection afforded by serum. Adoptive transfer of CD115-positive cells from noninfected donors demonstrated that monocytes represent important cellular mediators of the protective activity provided by immune serum. Our studies suggest that Fc-FcγR interactions and monocytic cells are critical for antibody-mediated protection against MCMV infection in vivo. These findings may provide new avenues for the development of novel strategies for more effective CMV vaccines or antiviral immunotherapies.


Asunto(s)
Anticuerpos Antivirales , Infecciones por Citomegalovirus , Ratones Noqueados , Muromegalovirus , Receptores de IgG , Animales , Ratones , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Anticuerpos Antivirales/inmunología , Muromegalovirus/inmunología , Monocitos/inmunología , Infecciones por Herpesviridae/inmunología , Ratones Endogámicos C57BL , Traslado Adoptivo , Citomegalovirus/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Receptores Fc/inmunología , Receptores Fc/metabolismo
13.
Eur J Immunol ; : e2451226, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246165

RESUMEN

COVID-19, the disease caused by SARS-CoV-2, particularly causes severe inflammatory disease in elderly, obese, and male patients. Since both aging and obesity are associated with decreased testosterone and estradiol expression, we hypothesized that decreased hormone levels contribute to excessive inflammation in the context of COVID-19. Previously, we and others have shown that hyperinflammation in severe COVID-19 patients is induced by the production of pathogenic anti-spike IgG antibodies that activate alveolar macrophages. Therefore, we developed an in vitro assay in which we stimulated human macrophages with viral stimuli, anti-spike IgG immune complexes, and different sex hormones. Treatment with levels of testosterone reflecting young adults led to a significant reduction in TNF and IFN-γ production by human macrophages. In addition, estradiol significantly attenuated the production of a very broad panel of cytokines, including TNF, IL-1ß, IL-6, IL-10, and IFN-γ. Both testosterone and estradiol reduced the expression of Fc gamma receptors IIa and III, the two main receptors responsible for anti-spike IgG-induced inflammation. Combined, these findings indicate that sex hormones reduce the inflammatory response of human alveolar macrophages to specific COVID-19-associated stimuli, thereby providing a potential immunological mechanism for the development of severe COVID-19 in both older male and female patients.

14.
Genes Cells ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266307

RESUMEN

Human astrovirus (HAstV) is a global cause of gastroenteritis in infants, the elderly, and the immunocompromised. However, the molecular mechanisms that control its susceptibility are not fully understood, as the functional receptor used by the virus has yet to be identified. Here, a genome-wide CRISPR-Cas9 library screen in Caco2 cells revealed that the neonatal Fc receptor (FcRn) can function as a receptor for classical HAstV (Mamastrovirus genotype 1). Deletion of FCGRT or B2M, which encode subunits of FcRn, rendered Caco2 cells and intestinal organoid cells resistant to HAstV infection. We also showed that human FcRn expression renders non-susceptible cells permissive to viral infection and that FcRn binds directly to the HAstV spike protein. Therefore, our findings provide insight into the entry mechanism of HAstV into susceptible cells. We anticipate that this information can be used to develop new therapies targeting human astroviruses, providing new strategies to treat this global health issue.

15.
Int Immunol ; 36(10): 529-540, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38738271

RESUMEN

B cell initial activity is regulated through a balance of activation and suppression mediated by regulatory molecules expressed in B cells; however, the molecular mechanisms underlying this process remain incompletely understood. In this study, we investigated the function of the Fc receptor-like (Fcrl) family molecule Fcrl5, which is constitutively expressed in naive B cells, in humoral immune responses. Our study demonstrated that B cell-specific overexpression of Fcrl5 enhanced antibody (Ab) production in both T cell-independent type 1 (TI1) and T cell-dependent (TD) responses. Additionally, it promoted effector B cell formation under competitive conditions in TD responses. Mechanistically, in vitro ligation of Fcrl5 by agonistic Abs reduced cell death and enhanced proliferation in lipopolysaccharide-stimulated B cells. In the presence of anti-CD40 Abs and IL-5, the Fcrl5 ligation not only suppressed cell death but also enhanced differentiation into plasma cells. These findings reveal a novel role of Fcrl5 in promoting humoral immune responses by enhancing B cell viability and plasma cell differentiation.


Asunto(s)
Linfocitos B , Supervivencia Celular , Inmunidad Humoral , Animales , Linfocitos B/inmunología , Supervivencia Celular/inmunología , Ratones , Receptores Fc/metabolismo , Receptores Fc/inmunología , Receptores Fc/genética , Diferenciación Celular/inmunología , Ratones Endogámicos C57BL , Activación de Linfocitos/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética
16.
J Pathol ; 262(2): 161-174, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37929639

RESUMEN

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Colágeno Tipo XVII , Penfigoide Ampolloso , Animales , Ratones , Humanos , Penfigoide Ampolloso/tratamiento farmacológico , Receptores de IgG/genética , Autoantígenos/genética , Colágenos no Fibrilares/genética , Ratones Endogámicos C57BL , Autoanticuerpos , Inmunoglobulina G
17.
Infect Immun ; 92(4): e0050323, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38451079

RESUMEN

Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.


Asunto(s)
Infecciones por Chlamydia , Receptores Fc , Humanos , Fagocitosis , Neutrófilos , Anticuerpos Antibacterianos , Chlamydia trachomatis
18.
Immunology ; 172(1): 46-60, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38247105

RESUMEN

Chicken single-chain fragment variable (IgY-scFv) is a functional fragment and an emerging development in genetically engineered antibodies with a wide range of biomedical applications. However, scFvs have considerably shorter serum half-life due to the absence of antibody Fc region compared with the full-length antibody, and usually requires continuous intravenous administration for efficacy. A promising approach to overcome this limitation is to fuse scFv with immunoglobulin G (IgG) Fc region, for better recognition and mediation by the neonatal Fc receptor (FcRn) in the host. In this study, engineered mammalian ΔFc domains (CH2, CH3, and intact Fc region) were fused with anti-canine parvovirus-like particles avian IgY-scFv to produce chimeric antibodies and expressed in the HEK293 cell expression system. The obtained scFv-CH2, scFv-CH3, and scFv-Fc can bind with antigen specifically and dose-dependently. Surface plasmon resonance investigation confirmed that scFv-CH2, scFv-CH3, and scFv-Fc had different degrees of binding to FcRn, with scFv-Fc showing the highest affinity. scFv-Fc had a significantly longer half-life in mice compared with the unfused scFv. The identified ΔFcs are promising for the development of engineered Fc-based therapeutic antibodies and proteins with longer half-lives. The avian IgY-scFv-mammalian IgG Fc region opens up new avenues for antibody engineering, and it is a novel strategy to enhance the rapid development and screening of functional antibodies in veterinary and human medicine.


Asunto(s)
Quimerismo , Inmunoglobulina G , Inmunoglobulinas , Humanos , Ratones , Animales , Células HEK293 , Fragmentos Fc de Inmunoglobulinas/genética , Mamíferos/metabolismo
19.
Kidney Int ; 105(1): 54-64, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38707675

RESUMEN

The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Enfermedades Renales , Receptores Fc , Humanos , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Receptores Fc/metabolismo , Receptores Fc/inmunología , Receptores Fc/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/terapia , Enfermedades Renales/inmunología , Animales , Riñón/metabolismo , Riñón/inmunología , Riñón/patología , Podocitos/metabolismo , Podocitos/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo
20.
J Neurol Neurosurg Psychiatry ; 95(9): 845-854, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38729747

RESUMEN

BACKGROUND: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a peripheral nerve disorder characterised by weakness and sensory loss. We assessed the neonatal Fc receptor inhibitor rozanolixizumab for CIDP management. METHODS: CIDP01 (NCT03861481) was a randomised, subject-blind, investigator-blind, placebo-controlled, phase 2a study. Adults with definite or probable CIDP receiving subcutaneous or intravenous immunoglobulin maintenance therapy were randomised 1:1 to 12 once-weekly subcutaneous infusions of rozanolixizumab 10 mg/kg or placebo, stratified according to previous immunoglobulin administration route. Investigators administering treatment and assessing efficacy, and patients, were blinded. The primary outcome was a change from baseline (CFB) to day 85 in inflammatory Rasch-built Overall Disability Scale (iRODS) score. Eligible patients who completed CIDP01 entered the open-label extension CIDP04 (NCT04051944). RESULTS: In CIDP01, between 26 March 2019 and 31 March 2021, 34 patients were randomised to rozanolixizumab or placebo (17 (50%) each). No significant difference in CFB to day 85 in iRODS centile score was observed between rozanolixizumab (least squares mean 2.0 (SE 3.2)) and placebo (3.4 (2.6); difference -1.5 (90% CI -7.5 to 4.5)). Overall, 14 (82%) patients receiving rozanolixizumab and 13 (76%) receiving placebo experienced a treatment-emergent adverse event during the treatment period. Across CIDP01 and CIDP04, rozanolixizumab was well tolerated over up to 614 days; no clinically meaningful efficacy results were seen. No deaths occurred. CONCLUSIONS: Rozanolixizumab did not show efficacy in patients with CIDP in this study, although this could be due to a relatively high placebo stability rate. Rozanolixizumab was well tolerated over medium-to-long-term weekly use, with an acceptable safety profile.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Humanos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Método Simple Ciego , Anciano , Inmunoglobulinas Intravenosas/uso terapéutico , Inmunoglobulinas Intravenosas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA