Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Environ Manage ; 345: 118576, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37421719

RESUMEN

Organic matter has long been understood to affect fine sediment flocculation, yet the specific effects of different types of organic matter remain only partially understood. To address this knowledge gap, laboratory tank experiments were conducted in fresh water to investigate the sensitivity of kaolinite flocculation to varying organic matter species and contents. Three species of organic matter (xanthan gum, guar gum and humic acid) were investigated at varying concentrations. Results revealed a significant enhancement in kaolinite flocculation when organic polymers (xanthan gum and guar gum) were introduced. In contrast, the addition of humic acid had minimal influence on aggregation and floc structure. Notably, the nonionic polymer guar gum demonstrated greater efficacy in promoting the development of floc size compared to the anionic polymer, xanthan gum. We observed non-linear trends in the evolution of mean floc size (Dm) and boundary fractal dimension (Np) with increasing ratios of organic polymer concentration to kaolinite concentration. Initially, increasing polymer content facilitated the formation of larger and more fractal flocs. However, beyond a certain threshold, further increases in polymer content hindered flocculation and even led to the break-up of macro-flocs, resulting in the formation of more spherical and compact flocs. We further quantified the co-relationships between floc Np and Dm and found that larger Np values corresponded to larger Dm. These findings highlight the significant impact of organic matter species and concentrations on floc size, shape and structure, and shed light on the complex dynamics of fine sediment and associated nutrients and contaminants in fluvial systems.


Asunto(s)
Sustancias Húmicas , Caolín , Caolín/química , Floculación , Agua Dulce , Polímeros , Agua/química
2.
Environ Res ; 196: 110942, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33711319

RESUMEN

Concurrent presence of algae and manganese (Mn) in water poses a significant challenge for water treatment. This study compared the treatment efficiency of Mn-containing and algae-laden water using either permanganate pre-oxidation (KMnO4) or persulfate/iron(II) (PMS/Fe2+) enhanced coagulation as pretreatment for ceramic membrane ultrafiltration. The results showed that KMnO4 pre-oxidation achieved a slightly more effective Mn removal, and was almost unaffected by the initial dissolved organic carbon (DOC) concentrations. PMS/Fe2+ removed UV254 more efficiently (above 90% at a dose of 0.25 mmol/L), compared with KMnO4 (less than 60% UV254 removal). According to X-ray photoelectron spectroscopy (XPS) analysis of aggregates, both KMnO4 and Fe2+/PMS oxidation resulted in the formation of MnO2 precipitate. Electron paramagnetic resonance(EPR) analysis demonstrated that only the reactors dosed with PMS/Fe2+ were able to generate the highly reactive hydroxyl radical(·OH). The production of ·OH caused significant rupture of algal cells and thus higher algal removal compared to the treatment with KMnO4 (whereby insignificant cell breakage was observed). The cell rupture resulted in higher amounts of organic matter released in the systems containing PMS/Fe2+, as demonstrated by excitation-emission matrix (EEM) and protein analysis. Despite the elevated level of organic matter, adding PMS/Fe2+ was found to notably mitigate membrane fouling due to the formation of large flocs (311-533 µm) as well as the elimination of major ceramic membrane foulants, i.e. humic substances.


Asunto(s)
Ultrafiltración , Purificación del Agua , Cerámica , Compuestos Ferrosos , Hierro , Manganeso , Compuestos de Manganeso , Oxidación-Reducción , Óxidos , Agua
3.
J Environ Sci (China) ; 101: 168-176, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33334513

RESUMEN

Structure properties of flocs (size, fractal dimension (Df), etc.) have a high impact on coagulation efficiency. In this work, the influences of three different additives (ferric salt (Fe), phosphate (P), and citric acid (CA)) on coagulation process/efficiency were investigated. Results showed that a small amount of extra Fe can facilitate the growth of Al flocs by providing more 'active sites'. Although zeta potential and Df showed a limited change, the average floc size increased apparently and the increment was more obvious when Fe was added after the formation of the flocs. In contrast, P addition during the rapid mixing period will decrease the final average floc size, while the influence is less significant when P was added after the growth of the flocs. In terms of CA, a more striking negative effect on the growth ability of the flocs was observed compared to P. The strong complexing/coordination interactions between CA and aluminum hydroxide is the main reason behind the influence. CA also significantly decreased the Df value of the flocs compared to P, and Df showed a comparatively higher decrease when P or CA was added during the rapid mixing stage compared to the addition after the flocs formation. These results indicated that the addition of CA or P during the rapid mixing stage 'inactivated' or occupied more 'active sites' on the preliminarily formed Al NPs during the hydrolysis process, and therefore presented stronger impact on the morphology/size of the formed flocs.


Asunto(s)
Purificación del Agua , Hidróxido de Aluminio , Compuestos Férricos , Floculación , Fractales
4.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32651202

RESUMEN

Fungi are known to play important roles in pollutant transformation in activated sludge-based wastewater treatment plants (WWTPs). However, the seasonality and distributions of fungal populations in different-sized flocs have still remained largely unknown. In this study, seasonal population dynamics and community separation of fungi in a municipal WWTP across a 1-year period were investigated. We classified all taxa into six categories based on abundances to assess their roles and contributions to the whole community. The results showed that the rare taxa (<0.01%) contributed greatly to species richness (95.27%). Conversely, although low in species diversity, abundant taxa (≥1%) accounted for the majority (89.45%) of the total relative abundance, which suggested that a few core abundant fungi existed in the activated sludge ecosystem. The abundant, conditionally rare, and rare taxa contributed 30.14%, 31.11%, and 38.75%, respectively, to temporal shifts in community structure, and their abundances responded differently to environmental variables, suggesting that these three subcommunities exhibited a large difference in environmental sensitivity. Importantly, the results revealed seasonal dynamics of the whole fungal community and the subcommunities of all the microbial taxon categories, resulting in significant differences in community structures between warm and cold seasons. Furthermore, fungal diversity and the compositions of the whole community and subcommunities differed significantly among flocs of different sizes, which underlined the size-based fungal community separation in activated sludge of WWTPs. The findings of this work improved our understanding of fungal population dynamics and community separation in WWTPs.IMPORTANCE Fungi are important contributors to the various functions of activated sludge in wastewater treatment plants (WWTPs). Unlike previous studies, this work demonstrated the seasonality of the fungal community over a longer time span while it also systematically assessed the contributions of abundant, conditionally rare, and rare taxa to the whole community. Importantly, in the present study, we considered sludge flocs of a certain size range rather than the whole sludge flocs as a community. Our results revealed significant differences in fungal community structure among different-sized flocs, which supported the idea that size-based fungal community segregation is occurring in activated sludge ecosystems. The findings provide new insights into the dynamic changes or distribution of fungi in the bioaggregates of sludge flocs in WWTPs.


Asunto(s)
Hongos/fisiología , Micobioma , Aguas Residuales/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Dinámica Poblacional , Estaciones del Año , Aguas del Alcantarillado/microbiología
5.
Sensors (Basel) ; 19(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775312

RESUMEN

The in situ scattering and transmissometry laser (LISST-100X), equipped with an acoustic wave and current (AWAC) meter and conductivity, temperature, and depth (CTD) instruments over the seabed in the East China Sea, was used to monitor the variation in suspended particles in the bottom sea layer, including particle size distribution (PSD) and volume concentration. The power law approximation was tested to describe the variability in PSD based on the field data. The results show that the power law was robust in processing continuous data, accompanied with the same optimal reference particle size (~63 µm) and little change in the corresponding exponent (~3.4) in both periods. Suspended particles were divided into three types: macroflocs (>133 µm), microflocs (36-133 µm), and single grains (<36 µm). Particle sizes were coarse during the two seasons, with macroflocs representing more than 60% of all the suspended particles, especially in February, when the particle size spectra were usually open-ended. Results from the harmonic analysis method indicate that tidal-induced resuspension and advection are the major reasons for the diurnal dynamics of sediments. Due to the tidal asymmetry in the region, we only found one mode in volume concentration at the moment of maximum velocity. However, the ratios of macroflocs were bimodal, with maximum floods and ebbs in one tidal cycle in February, when the higher mode at the maximum ebbs may be contributed to by the flocculation of finer particles considering the decreasing ratios of finer particles. Due to the enhanced stratification and the clean barrier built up by the Taiwan Warm Current in the southeast corner, the significant daily variation in suspended particles observed in February weakened in September. The influence of waves was uncertain, although the correlation coefficient between significant wave height and volume concentration was about 64% in February.

6.
J Environ Sci (China) ; 80: 116-127, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30952329

RESUMEN

Coagulation followed by floc separation is a key process for the removal of algal organic matter (AOM) in water treatment. Besides optimizing coagulation parameters, knowledge of the properties of AOM-flocs is essential to maximizing AOM removal. However, the impact of AOM on the floc properties remains unclear. This study investigated how peptides/proteins derived from the cellular organic matter (COM) of the cyanobacterium Microcystis aeruginosa influenced the size, structure, and shape of flocs formed at different shear rates (G). Flocs formed by kaolinite, COM-peptides/proteins and a mixture of the same were studied, and the effect of intermolecular interactions between floc components on floc properties was assessed. The coagulation experiments were performed in a Taylor-Couette reactor, with aluminum (Al) or ferric sulphate (Fe) utilized as coagulants. Image analysis was performed to gauge floc size and obtain data on fractal dimension. It was found that floc properties were affected by the presence of the COM-peptides/proteins and the coagulant used. COM-peptides/proteins increased floc size and porosity and widened floc size distributions. The Fe coagulant produced larger and less compact flocs than Al coagulant. Moreover, the decrease in floc size that occurred in parallel with increase in shear rate was not smooth in progress. A rapid change for the kaolinite-coagulant suspension and two rapid changes for the suspensions containing COM were observed. These were attributed to various intermolecular interactions between floc components participating in coagulation at different G. Based on the results obtained, shear rates suitable for efficient separation of flocs containing COM were suggested.


Asunto(s)
Microcystis , Microbiología del Agua , Purificación del Agua/métodos , Proteínas Bacterianas , Floculación , Péptidos
7.
J Environ Sci (China) ; 63: 307-317, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29406114

RESUMEN

Characteristics of organic matter may affect the residual aluminum after the coagulation process. This study reported the results of a survey for one drinking water treatment plant and measured the concentration of residual aluminum species with different molecular weights. Survey results indicated that humic acid or organic matter whose molecular weight was smaller than 1500Da had significant effects on residual aluminum. All the treatment processes were ineffective in removing dissolved organic matter whose molecular weight was smaller than 1500Da. These results also indicated that the addition of sand or polyacrylamide in the coagulation process could greatly decrease the concentration of humic acid, and the concentration of residual aluminum also decreased. These results revealed that for all water samples after filtration, the majority of total residual aluminum existed in the form of total dissolved aluminum, accounting for 70%-90%. The concentration of residual aluminum produced in bovine serum albumin solutions indicated that when the DOC was larger than 4.0mg/L, there were still significant differences when the solution pH value varied from 4.0 to 9.0.


Asunto(s)
Aluminio/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Aluminio/análisis , Filtración , Floculación , Concentración de Iones de Hidrógeno , Peso Molecular , Contaminantes Químicos del Agua/análisis
8.
Environ Eng Sci ; 33(1): 25-34, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26909006

RESUMEN

A nonintrusive digital imaging process was developed to study particle size distributions created through flocculation and sedimentation. Quantification of particle size distributions under different operating conditions can be of use in the understanding of aggregation mechanisms. This process was calibrated by measuring standardized polystyrene particles of known size and was utilized to count and measure individual kaolin clay particles as well as aggregates formed by coagulation with polyaluminum chloride and flocculation. Identification of out-of-focus flocs was automated with LabVIEW and used to remove them from the database that was analyzed. The particle diameter of the test suspension of kaolinite clay was measured to be 7.7 ± 3.8 µm and a linear relationship was obtained between turbidity and the concentration of clay particles determined by imaging. The analysis technique was applied to characterize flocs and floc particle size distribution as a function of coagulant dose. Removal of flocs by sedimentation was characterized by imaging, and the negative logarithm of the fraction of turbidity remaining after settling had a linear relationship with the logarithm of aluminum dose. The maximum floc size observed in the settled water was less than 120 µm, which was in accordance with the value predicted by a model for the capture velocity of the experimental tube settler of 0.21 mm/s.

9.
Environ Technol ; 36(9-12): 1123-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25363823

RESUMEN

Digital image analysis has been intensively developed over the last two decades including its application to describe morphology of activated sludge flocs. However, only few studies concerned the variation of flocs morphology with respect to the operational conditions, particularly oxido-reductive conditions, in a full-scale wastewater treatment plant (WWTP). In this work, morphology of activated sludge flocs was monitored over one year in two different full-scale WWTPs. The main aim of this study was to find the relationship between the operational parameters and morphology of sludge flocs. Simultaneously, the variations in floc size along activated sludge chamber were studied with respect to the oxido-reductive conditions. It was found that the sludge loading rate was one of the most important operational parameters influencing floc size. It was estimated that its values higher than 0.1 kg BOD5 kg TS(-1) d(-1) contributed to the decrease in floc size. Also, the oxido-reductive conditions influenced the floc size. It was statistically proved that flocs from the anaerobic zone were usually smaller than flocs from the anoxic or aerobic zones. Distribution of floc size in a full-scale WWTP usually could be described by a log-normal model.


Asunto(s)
Floculación , Aguas del Alcantarillado , Purificación del Agua
10.
Water Res ; 268(Pt A): 122519, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39378746

RESUMEN

In aquatic environments, biological factors significantly influence the flocculation process of cohesive sediments, thereby impacting sediment transport dynamics. Due to its complexity, the mechanism of biological flocculation still remains unknown. Here, we conducted laboratory experiments to investigate how living microalgae (Skeletonema costatum) affects the flocculation of mineral clay under various shear rates and suspended sediment concentrations (SSC) in saline water. The microalgae (Skeletonema costatum) and SSC both have positive influences on the increase in floc size. However, the shear rate (G) shows dual effect. Specifically, there exists a critical shear rate, G*, at which the floc size increases with G when G≤G* and decreases with G when G>G*. More importantly, G*is affected by SSC and exhibits no dependence on microalgae content. The microalgae (Skeletonema costatum) has a dominant effect on both floc shape and floc size of microalgae-mineral flocs compared to shear rate under the present experimental conditions (SSC: 700 mg/L, chlorophyll-a concentration: 0∼13.76 µg/L, shear rate: 10∼90 s-1). Additionally, the elongated-rod flocs are more easily formed in microalgae-mineral clay suspensions, whereas the plate-stacked flocs are more abundant in pure mineral clay suspensions. The promoting effect of microalgae is obvious under low shear rate conditions (G≤40 s-1), while at high shear rate (G>40 s-1), this effect is significantly attenuated, with a reduction by nearly half. Finally, a new bioflocculation model was proposed to predict the equilibrium median floc size for both conditions with and without microalgae. The model was well validated through comparisons with laboratory measurements.

11.
Water Res ; 259: 121846, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820733

RESUMEN

Ballasted flocculation is regarded as a most promising water treatment technology in aspects of retrofit and high-rate applications. To deep understand the incorporation behaviors of ballasting agent into ballasted floc growth, two distinct injection modes (namely a two-stage injection of polyacrylamide (PAM) alone, and a two-stage injection of both PAM and microsand) were developed in this study. Then, ballasted flocculation tests of kaolin and kaolin-HA (humic acid) waters were conducted at varying split ratios for fixed total dosages of both PAM and microsand. The experimental results showed that for either two-stage injection mode, the higher the second percentage of each split ratio, the greater the average size of maturated flocs at the second sub-stage of maturation. Meanwhile, the turbidity and UV254 values of settled water became lower at 30 and 180 s of sedimentation, suggesting that varying split ratios significantly affected the kinetics of ballasted floc growth. Moreover, it was suggested that the selection of either two-stage injection mode or corresponding split ratios played a more pronounced role in the HA removal than the total dosage of PAM. This suggestion was supported by SEM, FTIR and XPS analyses for surface morphological details, functional groups and chemical states of maturated flocs eventually formed in the kaolin-HA water through both two-stage injection modes. Accordingly, newly-established conceptual models of ballasted floc growth were proposed to explore the potential influencing mechanisms of varying split ratios on the ballasted flocculation performance. At each sub-stage of maturation, an appropriate dosage ratio between PAM and microsand was of great importance to effectively incorporate microsand particles into ballasted floc formation, besides the hydrolyzed produces of AS coagulant formed at the coagulation stage of ballasted flocculation. This study is expected to provide valuable insights for making ballasted flocculation more effective, economical and sustainable in water treatment engineering.


Asunto(s)
Floculación , Sustancias Húmicas , Caolín , Purificación del Agua , Caolín/química , Purificación del Agua/métodos , Resinas Acrílicas/química , Polímeros/química
12.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686928

RESUMEN

This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.

13.
Environ Technol ; 44(17): 2549-2562, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35107039

RESUMEN

The sorption of pharmaceuticals on activated sludge during the wastewater treatment process has been widely studied and considered one of the main mechanisms for the removal of these micropollutants from domestic sewage. Understanding the removal mechanism is important to reduce the environmental risk associated with these compounds. To the best of our knowledge, no data are reporting the influence of the aeration rate and, consequently, of the physicochemical properties of the sludge flocs, on the sorption of pharmaceutical compounds. In this context, the influence of the aeration rate (2, 5, and 8 L min-1) on the physical properties of the sludge and the sorption of two emerging pharmaceuticals, 17-alpha-ethynylestradiol (EE2) and diclofenac (DCF), was evaluated. The pharmaceuticals were analyzed by Solid Phase Extraction and Liquid Chromatography, and the sludge by Laser Particle Size Analyzer and Settling Curves. As a result, higher sorption for 17-alpha-ethinylestradiol (78-96%) in comparison to diclofenac (23-43%) was observed, corroborating the greater hydrophobicity of EE2. Higher pharmaceuticals removal rates were observed for the highest aeration (10.02 µgEE2 gSST-1 and 3.99 µgDCF gSST-1) in comparison to the lowest one (7.81 µgEE2 gSST-1 and 2.58 µgDCF gSST-1), what can be attributed to structural and surface changes in flocs. Smaller and more dispersed flocs were observed when aeration was increased (104.4 µm for 8 L min-1 and 63.8 µm for 2 L min-1). The results suggest that the increase in aeration seems to be promising for the removal of pharmaceuticals by sorption in sewage sludge, especially for the hydrophobic ones.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Diclofenaco , Contaminantes Químicos del Agua/química , Etinilestradiol/análisis , Preparaciones Farmacéuticas
14.
Water Res ; 244: 120451, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37582321

RESUMEN

Biophysical cohesive mud, consisting of clay minerals and extracellular polymeric substance (EPS), plays significant role in determining sediments, nutrients and pollutants transport in estuarine and coastal systems. Series of laboratory jar experiments have been conducted aiming at filling the gap of knowledge regarding how biological cohesive EPS affects equilibrium flocculation of EPS-mineral mixtures. Four types of common clay (chlorite, kaolinite, illite and montmorillonite) were chosen due to their abundance in estuarine mud and distinct crystal chemistry and structures. Turbulent shear throughout all the experimental runs were constantly provided at a mean shear parameter of G ≈ 15 s-1 being equivalent to high tidal influenced estuarine turbulent environment. The results reveal that adding EPS increases the equilibrium floc size evidently. The pure mineral flocs show unimodal equilibrium floc size distribution (eFSD) with single peak located at microfloc range (<200 µm) while the EPS-mineral flocs show bimodal eFSD with a secondary peak located in macroflocs range (>200 µm) mostly. Moreover, EPS largely reduces the effective density in EPS-mineral flocs by 1∼2 magnitude. Most importantly, the terminal settling velocity of flocs shows size-dominated in uniform mineral floc cases but density-dominated in EPS-mineral mixture floc cases especially in macroflocs. To model a full floc size or settling velocity distributions in natural environments, furtherly quantification of EPS functions within the large-sized non-fractal mixture floc individually becomes a necessity.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Eliminación de Residuos Líquidos , Arcilla , Eliminación de Residuos Líquidos/métodos , Floculación , Salinidad , Caolín , Agua
15.
Water Res ; 226: 119300, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323221

RESUMEN

Interplays between microalgae and clay minerals enhance biologically mediated flocculation, thereby affecting the sedimentation and transportation of suspended particulate matter (SPM) in water and benthic environments. This interaction forms larger flocs with a higher settling velocity and enhances SPM sinking. The aim of this study was to investigate the flocculation kinetics of microalgae and clay in suspension and to elucidate the mechanisms associated with such interactions. Standard jar test experiments were conducted using various mixtures of kaolinite and microalgal samples from batch cultures (Chlorella vulgaris) to estimate biologically mediated flocculation kinetics. The organic matter (OM) composition secreted by the microalgae was characterized using a liquid chromatography - organic carbon detection system, and quantitative analysis of transparent exopolymer particles was conducted separately. A two-class flocculation kinetic model, based on the interaction between flocculi and flocs, was also adopted to quantitatively analyze the experimental data from flocculation. Results from the flocculation kinetic tests and OM analyses, in association with other data analyses (i.e., floc size distribution and flocculation kinetic model), showed that flocculation increased with OM concentration during the growth phase (10-20 d). However, on day 23 during the early stationary phase, flocculation kinetics started decreasing and substantially declined on day 30, even though the amount of OM (mainly biopolymers) continued to increase. Our results indicate that an adequate quantity of biopolymers produced by the microalgal cells in the growth phase enhanced floc-to-floc attachment and hence flocculation kinetics. In contrast, an excessive quantity of biopolymers and humic substances in the stationary phase enhanced the formation of polymeric backbone structures and flocculation via scavenging particles but simultaneously increased steric stabilization with the production of a large number of fragmented particles.


Asunto(s)
Chlorella vulgaris , Microalgas , Floculación , Arcilla , Suspensiones , Cinética
16.
Sci Total Environ ; 807(Pt 2): 150878, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627895

RESUMEN

Membrane fouling in a membrane bioreactor (MBR) is highly influenced by the characteristics of the influent, the mixed liquor microbial community and the operational parameters, all of which are environment specific. Therefore, we studied the dynamics of microbial community during the treatment of real municipal wastewater in a pilotscale anoxic-oxic (A/O) MBR equipped with a gravity-driven membrane filtration system. The MBR was operated at three different solid retention times (SRTs): 25, 40 and 10 days for a total period of 180 days in Nordic environmental conditions. Analysis of microbial community dynamics revealed a high diversity of microbial species at SRT of 40 days, whereas SRT of 25 days was superior with microbial richness. Production of soluble microbial products (SMP) and extracellular polymeric substances (EPS) was found to be intensely connected with the SRT and food to microorganism (F/M) ratio. Relatively longer operational period with the lowest rate of membrane fouling was observed at SRT of 25 days, which was resulted from the superior microbial community, lowest production of SMP and loosely bound EPS as well as the lower filtration resistance of larger sludge flocs. Abundance of quorum quenching (QQ) bacteria and granular floc forming bacterial genera at SRT of 25 days provided relatively lower membrane fouling tendency and larger floc formation, respectively. On the other hand, substantial amount of various surface colonizing and EPS producing bacteria was found at SRT of 10 days, which promoted more rapid membrane fouling compared with the fouling rate seen at other tested SRTs. To sum up, this research provides a realistic insight into the impact of SRT on microbial community dynamics and resulting characteristics of mixed liquor, floc size distribution and membrane fouling for improved MBR operation.


Asunto(s)
Reactores Biológicos , Microbiota
17.
Sci Total Environ ; 798: 149223, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375270

RESUMEN

Calcium ions (Ca2+) can trigger coagulation-flocculation process to form macro-flocculated sludge (MFS). Thus, dosing Ca2+-containing reagents into membrane bioreactors (MBRs) is considered as a promising approach to mitigate membrane biofouling. However, a mechanistic understanding of Ca2+ addition to MBR performance remains elucidated, such as physicochemical characteristics of MFS and their functionality variations. Consequently, this study was sought to understand the interplays of Ca2+ addition and MBR performance with a focus on characterizing MFS in detail. Three parallel MBRs were amended with 82, 208 and 410 mg-Ca2+/L final concentrations. Particle size analyses revealed that MFS formation was overall enhanced by the Ca2+ addition and granular sludge with diameters of up to 900 µm was formed in the 410 mg-Ca2+/L scenario. We believed that cationic bridges facilitated by elevated Ca2+ concentrations in conjunction with coagulation-flocculation were primary mechanisms of the formation of large flocs. Moreover, significant portions of soluble proteins and polysaccharides were flocculated and precipitated by Ca2+, which demonstrated a negative correlation between extracellular polymeric substances (EPS) concentrations and the formation of MFS. Furthermore, the population abundancies of Thiotrichaceae, Sphingomonadales and Hyphomicrobiaceae decreased in the sludge with Ca2+ addition resulted in profound changes of the microbial communities in the MBRs. But MBR performance, such as chemical oxygen demand removal (over 90%), showed no variation during the MBR operation. On the contrary, total nitrogen removal was inhibited in the MBRs. It was because the enlarging MFS formed diffusion barriers to prevent organic component from entering into the sludge flocs to be consumed.


Asunto(s)
Membranas Artificiales , Aguas del Alcantarillado , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas , Floculación
18.
Water Res ; 194: 116953, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33657494

RESUMEN

The quasi-Monte Carlo (QMC) method was enhanced to solve the population balance model (PBM) including aggregation and fragmentation processes for simulating the temporal evolutions of characteristic sizes and floc size distributions (FSDs) of cohesive sediments. Ideal cases with analytical solutions were firstly adopted to validate this QMC model to illustrate selected pure aggregation, pure fragmentation, and combined aggregation and fragmentation systems. Two available laboratory data sets, one with suspended kaolinite and the other with a mixture of kaolinite and montmorillonite, were further used to monitor the FSDs of cohesive sediments in controlled shear conditions. The model results show reasonable agreements with both analytical solutions and laboratory experiments. Moreover, different QMC schemes were tested and compared with the standard Monte Carlo scheme and a Latin Hypercube Sampling scheme to optimize the model performance. It shows that all QMC schemes perform better in both accuracy and time consumption than standard Monte Carlo scheme. In particular, compared with other schemes, the QMC scheme using Halton sequence requires the least particle numbers in the simulated system to reach reasonable accuracy. In the sensitivity tests, we also show that the fractal dimension and the fragmentation distribution function have large impacts on the predicted FSDs. This study indicates a great advance in employing QMC schemes to solve PBM for simulating the flocculation of cohesive sediments.


Asunto(s)
Fractales , Sedimentos Geológicos , Floculación , Caolín , Método de Montecarlo
19.
Water Res ; 147: 177-183, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30308376

RESUMEN

Biological floc size is an important reactor microenvironment parameter that is often not experimentally controlled due to a lack of suitable methods. Here, we introduce the Couette-Taylor bioreactor (CTB) as an improved tool for controlling biological floc size, specifically as compared with bubble-column sequencing batch reactors (SBRs). A CTB consists of two concentric walls, either of which may be rotated to induce fluid motion. The induced flow produces hydrodynamic shear which is more uniform than that produced through aeration in SBRs. Because hydrodynamic shear is a major parameter controlling floc size, we hypothesized the ability to better control shear rates within a CTB would enable better-controlled floc sizes. To test this hypothesis, we measured the particle size distributions of activated sludge flocs from CTBs with either inner (iCTB) or outer (oCTB) rotating walls as well as SBRs with varying height to diameter ratios (0.5, 1.1, and 9.4). The rotation speed of the CTBs and aeration rate of the SBRs were varied to produce predicted mean shear rates from 25 to 250 s-1. Further, the shear rate distributions for each experiment were estimated using computational fluid dynamics (CFD). In all SBR experiments, the floc distributions did not significantly vary with shear rate or geometry, likely because shear rates (estimated by CFD) differed much less than originally predicted by theory. In the CTB experiments, the mean particle size decreased proportionally with increased hydrodynamic shear, and iCTBs produced particle size distributions with smaller coefficients of variation than oCTBs (0.3 vs. 0.5-0.7, respectively).


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos , Floculación , Tamaño de la Partícula , Aguas del Alcantarillado
20.
Water Res ; 147: 25-32, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30296606

RESUMEN

Conventional clarification processes imply specific facility footprints that translate into important capital costs. Ballasted flocculation, consisting of injecting ballast medium to increase floc specific gravity and size, is being increasingly used in the water industry owing to its potential for design with very high superficial velocities. However, no systematic approach has yet been proposed to compare and select an appropriate ballast medium with respect to its specific gravity and size. In order to facilitate this procedure, this research project explores the hypothesis that flocculation performance is controlled by the surface area of the medium available for ballasted flocculation. This hypothesis was tested at laboratory scale by evaluating five ballast media with differing specific gravity and size: granular activated carbon, anthracite, silica sand, ilmenite, and magnetite sand having specific gravities of 1.24, 1.45, 2.62, 3.70, and 5.08, respectively. Flocculation kinetics were monitored by measuring floc size through microscopy and with a camera installed directly on the jar-test beaker. Settling performance was monitored using turbidity measurements. This study shows that all ballast media, when expressed as total surface available during flocculation, required similar surface concentrations to achieve settled water turbidity near 1 NTU and lower. In addition, the effects from the ballast media size and specific gravity were lowered for settling time longer than 3 min. Inversely, for settling time of 12 s, larger and denser media produced lower settled water turbidity. For certain applications, lighter ballast media may be more economical because they offer more available surface area for a given mass concentration, hence reducing the amount of ballast media required in the flocculation tank. Finally, the ballast media point of zero charge and shape were not identified as key criteria for ballasted flocculation.


Asunto(s)
Purificación del Agua , Floculación , Cinética , Dióxido de Silicio , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA