Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
Más filtros

Intervalo de año de publicación
1.
Naturwissenschaften ; 111(4): 34, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913166

RESUMEN

With ongoing insect declines, species expanding in distribution and abundance deserve attention, as understanding their success may help design conservation strategies for less successful species. Common causes of these successes include warmer climates, novel resources, and exploiting land use change, including land abandonment. These factors affect the nymphalid butterfly Neptis rivularis, developing on Spiraea spp. shrubs and reaching the north-western limits of its trans-Palearctic distribution in Central Europe. We combined mark-recapture, behaviour analysis, and distribution modelling to study N. rivularis in wetlands of the Trebonsko Protected Landscape (IUCN category V). The long-living adults (up to 4 weeks) spent a considerable amount of time searching for partners, ovipositing and nectaring at Spiraea shrubs, alternating this with stays in tree crowns, where they located cool shelters, spent nights, and presumably fed on honeydew. They formed high-density populations (310 adults/ha), exploiting high host plant abundance. They adhered to floodplains and to conditions of relatively mild winters. The ongoing Spiraea encroachment of abandoned alluvial grasslands is, thus, a transient situation, ultimately followed by forest encroachment. Rewilding the habitats by introducing native ungulates presents an opportunity to restore the disturbance regime of the sites. The increased resource supply combined with a warming climate has opened up temperate Europe to colonization by N. rivularis.


Asunto(s)
Mariposas Diurnas , Humedales , Animales , Mariposas Diurnas/fisiología , República Checa
2.
Environ Sci Technol ; 58(17): 7554-7566, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38647007

RESUMEN

Understanding the behavior of colloidal phosphorus (Pcoll) under anoxic conditions is pivotal for addressing soil phosphorus (P) mobilization and transport and its impact on nutrient cycling. Our study investigated Pcoll dynamics in acidic floodplain soil during a 30-day flooding event. The sudden oxic-to-anoxic shift led to a significant rise in pore-water Pcoll levels, which exceeded soluble P levels by more than 2.7-fold. Colloidal fractions transitioned from dispersed forms (<220 nm) to colloid-associated microaggregates (>220 nm), as confirmed by electron microscopy. The observed increase in colloidal sizes was paralleled by their heightened ability to form aggregates. Compared to sterile control conditions, anoxia prompted the transformation of initially dispersed colloids into larger particles through microbial activity. Curiously, the 16S rRNA and ITS microbial diversity analysis indicated that fungi were more strongly associated with anoxia-induced colloidal release than bacteria. These microbially induced shifts in Pcoll lead to its higher mobility and transport, with direct implications for P release from soil into floodwaters.


Asunto(s)
Coloides , Fósforo , Suelo , Suelo/química , Coloides/química , Microbiología del Suelo , ARN Ribosómico 16S , Bacterias/metabolismo
3.
J Fish Biol ; 104(6): 1743-1753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38445748

RESUMEN

When species are introduced to a new environment, they can quickly adapt to the environment and may differ from the indigenous species. The indigenous population of Protosalanx chinensis has a high level of genetic diversity, but it is unclear on the genetic diversity of the introduced populations in northeast China, which supports the major production of P. chinensis in the world. A total of 556 individuals of P. chinensis were collected during 2016-2021, from Lianhuan Lake (LHL), Xingkai Lake (XK), and Shuifeng Reservoir (SF), and one population was collected from the indigenous Taihu Lake (TH). Overall, 36 haplotypes were detected, and the genetic differences in P. chinensis populations within and between river basins were investigated. The nucleotide diversity (π) of the populations ranged from 0.0005 to 0.0032, and the haplotype diversity (Hd) ranged from 0.455 to 0.890, with the highest genetic diversity in the TH population, followed by the SF population, and lower genetic diversity in the XK and LHL populations. The analysis of the genetic differentiation index (Fst) and the genetic distance between populations showed that there was significant genetic differentiation between the TH population and the other populations. More sampling points have been set up in LHL for further analysis; the Dalong Lake (DL) and the Xiaolong Lake (XL) populations were far from the other populations within the LHL population. In this study, we didn't find a correlation between population size, stability, and genetic diversity, and the ecological measures of management should be decisive to the population dynamics. These results provide a basis for the rational utilization and effective management of P. chinensis.


Asunto(s)
Variación Genética , Haplotipos , Lagos , China , Animales , Especies Introducidas , Genética de Población , Osmeriformes/genética
4.
J Environ Manage ; 353: 120192, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38286070

RESUMEN

Long-term mapping of floodplain wetland dynamics is fundamental for wetland protection and restoration, but it is restricted to decadal scales using satellite observations owing to scarcity of spatial data over long-term scales. The present study concentrates on the centennial dynamics of floodplain wetland in Poyang Lake, the largest freshwater lake in China. Historical topographic maps and Landsat imagery were combined to reconstruct the centennial floodplain wetland map series. A robust random forest algorithm for the land cover classification was used to investigate the conversion of the floodplain wetland to other land cover types and quantify the magnitude of the influence of hydrological disconnection over the past century. Results show that the Poyang Lake floodplain wetland experienced a net loss of 35.7 %, from 5024.3 km2 in the 1920s-1940s to 3232.1 km2 in the 2020s, with the floodplain wetland loss occurring mostly from the 1950s to the 1970s. In addition, agricultural encroachment was identified as the predominant driver of floodplain wetland loss, with a total area of 931.0 km2 of the floodplain wetland converted into cropland. Furthermore, approximately 600 km2 of sub-lakes (larger than 1 km2) became isolated from the floodplain and thus unaffected by seasonal flood pulses, which highlights the need to account for the impact of hydrological disconnection on floodplain wetland dynamics. This study indicated the combination of historical maps and satellite observations as an effective tool to track long-term wetland changes. The resultant dataset provides an extended baseline and could shed some light on floodplain wetland conservation and restoration.


Asunto(s)
Lagos , Humedales , Monitoreo del Ambiente/métodos , Agricultura , China , Ecosistema
5.
Environ Geochem Health ; 46(7): 247, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869651

RESUMEN

The gold rush at the end of the nineteenth century in south-eastern Australia resulted in the mobilization and re-deposition of vast quantities of tailings that modified the geomorphology of the associated river valleys. Previous studies of contamination risk in these systems have either been performed directly on mine wastes (e.g., battery sand) or at locations close to historical mine sites but have largely ignored the extensive area of riverine alluvial deposits extending downstream from gold mining locations. Here we studied the distribution of contaminant metal(loids) in the Loddon River catchment, one of the most intensively mined areas of the historical gold-rush period in Australia (1851-1914). Floodplain alluvium along the Loddon River was sampled to capture differences in metal and metalloid concentrations between the anthropogenic floodplain deposits and the underlying original floodplain. Elevated levels of arsenic up to 300 mg-As/kg were identified within the anthropogenic alluvial sediment, well above sediment guidelines (ISQG-high trigger value of 70 ppm) and substantially higher than in the pre-mining alluvium. Maximum arsenic concentrations were found at depth within the anthropogenic alluvium (plume-like), close to the contact with the original floodplain. The results obtained here indicate that arsenic may pose a significantly higher risk within this river catchment than previously assessed through analysis of surface floodplain soils. The risks of this submerged arsenic plume will require further investigation of its chemical form (speciation) to determine its mobility and potential bioavailability. Our work shows the long-lasting impact of historical gold mining on riverine landscapes.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Oro , Minería , Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Arsénico/análisis , Historia del Siglo XIX , Australia , Historia del Siglo XX
6.
Environ Geochem Health ; 46(6): 180, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696107

RESUMEN

Urban agriculture is common in fertile river floodplains of many developing countries. However, there is a risk of contamination in highly polluted regions. This study quantifies health risks associated with the consumption of vegetables grown in the floodplain of the urban river 'Yamuna' in the highly polluted yet data-scarce megacity Delhi, India. Six trace elements are analyzed in five kinds of vegetable samples. Soil samples from the cultivation area are also analyzed for elemental contamination. Ni, Mn, and Co are observed to be higher in leafy vegetables than others. Fruit and inflorescence vegetables are found to have higher concentrations of Cr, Pb, and Zn as compared to root vegetables. Transfer Factor indicates that Cr and Co have the highest and least mobility, respectively. Vegetable Pollution Index indicates that contamination levels follow as Cr > Ni > Pb > Zn. Higher Metal Pollution Index of leafy and inflorescence vegetables than root and fruit vegetables indicate that atmospheric deposition is the predominant source. Principal Component Analysis indicates that Pb and Cr have similar sources and patterns in accumulation. Among the analyzed vegetables, radish may pose a non-carcinogenic risk to the age group of 1-5 year. Carcinogenic risk is found to be potentially high due to Ni and Cr accumulation. Consumption of leafy vegetables was found to have relatively less risk than other vegetables due to lower Cr accumulation. Remediation of Cr and Ni in floodplain soil and regular monitoring of elemental contamination is a priority.


Asunto(s)
Metales Pesados , Ríos , Contaminantes del Suelo , Oligoelementos , Verduras , India , Verduras/química , Medición de Riesgo , Oligoelementos/análisis , Ríos/química , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Humanos , Contaminación de Alimentos/análisis , Monitoreo del Ambiente , Análisis de Componente Principal , Raphanus/química
7.
Bull Environ Contam Toxicol ; 112(6): 81, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822856

RESUMEN

The growing production of urban solid waste is a structural problem faced by most cities around the world. The proliferation of mini-open dumps (MOD; small spontaneous open-air waste dumps formed in urban and peri-urban areas) on the banks of the Paraná River is particularly evident. During the historical drought (June-December 2021), we carried out sampling campaigns identifying MODs of the Santa Fe River, a secondary channel of the Paraná River. MOD were geolocated, measured, described and classified by origin. The distance to the river and other sensitive places was considered (houses-schools-health facilities). Our results suggested a serious environmental issue associated with poor waste management. MOD were extremely abundant in the study area, being mostly composed of domestic litter. Plastics clearly dominated the MOD composition. Burning was frequently observed as a method to reduce the volume of MOD. We concluded that the proliferation of MOD is a multi-causal problem associated with a failure of public policies and a lack of environmental education.


Asunto(s)
Monitoreo del Ambiente , Ríos , Ríos/química , Monitoreo del Ambiente/métodos , Instalaciones de Eliminación de Residuos , Brasil , Administración de Residuos/métodos , Ciudades , Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Residuos Sólidos/análisis
8.
Microb Ecol ; 87(1): 10, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057381

RESUMEN

Understanding the relative importance of the factors that drive global patterns of biodiversity is among the major topics of ecological and biogeographic research. In freshwater bodies, spatial, temporal, abiotic, and biotic factors are important structurers of these ecosystems and can trigger distinct responses according to the facet of biodiversity considered. The objective was to evaluate how different facets of ß-diversity (taxonomic, functional, and phylogenetic) based on data from the planktonic ciliate community of a Neotropical floodplain, are influenced by temporal, spatial, abiotic, and biotic factors. The research was conducted in the upper Paraná River floodplain between the years 2010 and 2020 in different water bodies. All predictors showed significant importance on the facets of ß-diversity, except the abiotic predictors on species composition data, for the taxonomic facet. The functional and phylogenetic facets were mostly influenced by abiotic, biotic, and spatial factors. For temporal predictors, results showed influence on taxonomic (structure and composition data) and functional (structure data) facets. Also, a fraction of shared explanation between the temporal and abiotic components was observed for the distinct facets. Significant declines in ß-diversity in continental ecosystems have been evidenced, especially those with drastic implications for ecosystemic services. Therefore, the preservation of a high level of diversity in water bodies, also involving phylogenetic and functional facets, should be a priority in conservation plans and goals, to ensure the maintenance of important ecological processes involving ciliates.


Asunto(s)
Cilióforos , Ecosistema , Plancton , Filogenia , Agua Dulce , Biodiversidad , Agua
9.
Environ Res ; 238(Pt 2): 117231, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37793585

RESUMEN

The Araguaia River floodplain is an important biogeographic boundary between the two largest South American biomes: the Cerrado (Brazilian Savanna) and the Amazon rainforest. The large-scale degradation due to land use conversion experienced in the Araguaia River watershed represents a potential source of mercury (Hg) transport to aquatic ecosystems. However, more information is needed about the dynamics of Hg distribution in savanna floodplains, including the Araguaia River floodplain. We analyzed total mercury (THg) concentrations in the bottom sediments of 30 lakes connected to the Araguaia River and four tributaries, aiming to evaluate the environment's integrity based on the geoaccumulation index (Igeo) and the ecological risk index (ERI). The principal component analysis was applied to examine associations between Hg concentrations, environmental conditions, and land use intensity among lakes associated with different river systems. We used indicator cokriging to identify areas with a greater probability of Hg pollution and ecological risk associated with land use intensity. The land use data showed the predominance of areas used for pasture in the Araguaia River basin. THg concentrations in the sediments varied between 22.6 and 81.9 ng g-1 (mean: 46.5 ± 17.7 ng g-1). Sediments showed no significant pollution (Igeo: 1.35 - 0.50; Classes 1 and 2) and low to considerable ecological risks (ERI: 23.5-85.1; Classes 1 to 3). THg in bottom sediments was associated with land use, water turbidity and electrical conductivity, and sediment organic matter. The indicator cokriging indicates a moderate to strong spatial dependence between land use intensity and Hg, confirming the contribution of anthropic sources to the increment of ecological risk but also the influence of extrinsic factors (such as environmental conditions, geology, and hydrology). Integrating sediment assessment and land use indices with geostatistical methods proved a valuable tool for identifying priority areas for Hg accumulation at a regional scale.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Ríos , Lagos , Brasil , Ecosistema , Pradera , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/análisis
10.
Environ Res ; 237(Pt 1): 116889, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595826

RESUMEN

Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.

11.
Biol Res ; 56(1): 35, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355658

RESUMEN

BACKGROUND: High mountainous environments are of particular interest as they play an essential role for life and human societies, while being environments which are highly vulnerable to climate change and land use intensification. Despite this, our knowledge of high mountain soils in South America and their microbial community structure is strikingly scarce, which is of more concern considering the large population that depends on the ecosystem services provided by these areas. Conversely, the Central Andes, located in the Mediterranean region of Chile, has long been studied for its singular flora, whose diversity and endemism has been attributed to the particular geological history and pronounced environmental gradients in short distances. Here, we explore soil properties and microbial community structure depending on drainage class in a well-preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S. This presents an opportunity to determine changes in the overall bacterial community structure across different types of soils and their distinct layers in a soil depth profile of a highly heterogeneous environment. METHODS: Five sites closely located (<1.5 km) and distributed in a well preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S were selected based on a pedological approach taking into account soil types, drainage classes and horizons. We analyzed 113 soil samples using high-throughput sequencing of the 16S rRNA gene to describe bacterial abundance, taxonomic composition, and co-occurrence networks. RESULTS: Almost 18,427 Amplicon Sequence Variant (ASVs) affiliated to 55 phyla were detected. The bacterial community structure within the same horizons were very similar validating the pedological sampling approach. Bray-Curtis dissimilarity analysis revealed that the structure of bacterial communities in superficial horizons (topsoil) differed from those found in deep horizons (subsoil) in a site-specific manner. However, an overall closer relationship was observed between topsoil as opposed to between subsoil microbial communities. Alpha diversity of soil bacterial communities was higher in topsoil, which also showed more bacterial members interacting and with higher average connectivity compared to subsoils. Finally, abundances of specific taxa could be considered as biological markers in the transition from topsoil to subsoil horizons, like Fibrobacterota, Proteobacteria, Bacteroidota for shallower soils and Chloroflexi, Latescibacterota and Nitrospirota for deeper soils. CONCLUSIONS: The results indicate the importance of the soil drainage conditions for the bacterial community composition, suggesting that information of both structure and their possible ecological relationships, might be useful in clarifying the location of the edge of the topsoil-subsoil transition in mountainous environments.


Asunto(s)
Bacterias , Microbiota , Humanos , ARN Ribosómico 16S/genética , Bacterias/genética , Suelo/química , Proteobacteria/genética , Microbiología del Suelo
12.
Ecotoxicol Environ Saf ; 250: 114503, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610297

RESUMEN

Emerging aquatic insects serve as one link between aquatic and adjacent riparian food webs via the flux of energy and nutrients. These insects provide high-quality subsidy to terrestrial predators. Thus, any disturbance of emergence processes may cascade to higher trophic levels and lead to effects across ecosystem boundaries. One stressor with potential impact on non-target aquatic insects, especially on non-biting midges (Diptera: Chironomidae), is the widely used mosquito control agent Bacillus thuringiensis var. israelensis (Bti). In a field experiment, we investigated emerging insect communities from Bti-treated (three applications, maximum field rate) and control floodplain pond mesocosms (FPMs) over 3.5 months for changes in their composition, diversity as well as the emergence dynamics and the individual weight of emerged aquatic insects over time. Bti treatments altered community compositions over the entire study duration - an effect mainly attributed to an earlier (∼10 days) and reduced (∼26%) peak in the emergence of Chironomidae, the dominant family (88% of collected individuals). The most reasonable explanation for this significant alteration is less resource competition caused by a decrease in chironomid larval density due to lethal effects of Bti. This is supported by the higher individual weight of Chironomidae emerging from treated FPMs (∼21%) during Bti application (April - May). A temporal shift in the emergence dynamics can cause changes in the availability of prey in linked terrestrial ecosystems. Consequently, terrestrial predators may be affected by a lack of appropriate prey leading to bottom-up and top-down effects in terrestrial food webs. This study indicates the importance of a responsible and elaborated use of Bti and additionally, highlights the need to include a temporal perspective in evaluations of stressors in aquatic-terrestrial meta-ecosystems.


Asunto(s)
Bacillus thuringiensis , Chironomidae , Humanos , Animales , Ecosistema , Cadena Alimentaria , Insectos
13.
J Fish Biol ; 102(1): 155-171, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36226864

RESUMEN

We used compound-specific isotope analysis of carbon isotopes in amino acids (AAs) to determine the biosynthetic source of AAs in fish from major tributaries to California's Sacramento-San Joaquin river delta (i.e., the Sacramento, Cosumnes and Mokelumne rivers). Using samples collected in winter and spring between 2016 and 2019, we confirmed that algae are a critical component of floodplain food webs in California's Central Valley. Results from bulk stable isotope analysis of carbon and nitrogen in producers and consumers were adequate to characterize a general trophic structure and identify potential upstream and downstream migration into our study site by American shad Alosa sapidissima and rainbow trout Oncorhynchus mykiss, respectively. However, owing to overlap and variability in source isotope compositions, our bulk data were unsuitable for conventional bulk isotope mixing models. Our results from compound-specific carbon isotope analysis of AAs clearly indicate that algae are important sources of organic matter to fish of conservation concern, such as Chinook salmon Oncorhynchus tshawytscha in California's Central Valley. However, algae were not the exclusive source of energy to metazoan food webs. We also revealed that other sources of AAs, such as bacteria, fungi and higher plants, contributed to fish as well. While consistent with the well-supported notion that algae are critical to aquatic food webs, our results highlight the possibility that detrital subsidies might intermittently support metazoan food webs.


Asunto(s)
Carbono , Peces , Animales , Isótopos de Carbono/análisis , Carbono/análisis , Cadena Alimentaria , Salmón , Aminoácidos , California , Isótopos de Nitrógeno/análisis
14.
J Fish Biol ; 103(3): 481-495, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37212501

RESUMEN

Reproduction is one of the most important biological aspects for the maintenance of viable populations, and understanding the spatial and seasonal patterns in the reproduction of Neotropical fish is a point that still needs considerable investigation. In this study, the main aim was to reduce knowledge gaps concerning fish eggs and larvae distribution patterns. Therefore, the River Araguaia basin, one of the main hydrographic basins of the Neotropical savanna, was used as the focal point of study. Samplings of fish eggs and larvae were carried across the hydrological regime during flooding and drought events between December 2018 and July 2020 at 15 sites distributed along a 350 km stretch of the River Araguaia basin. Fish eggs and larvae were found in all sampling sites, with the highest number of catches in the flood season. The fish larvae were represented by 5 orders, 22 families and 22 at the genus or species level. Both environments, tributary and main channel of the River Araguaia, are important for fish reproduction, and no difference was found in the use between the main channel and the tributaries. The results showed that spatial factors are important to explain the change in larval composition, which may have a wide or restricted distribution related to specific habitats. The main factors related to the reproductive activity of fish in this region are the physical and chemical changes in the water that occur in the flood season. These results indicate that the River Araguaia basin has environmental integrity and provides favourable conditions for the reproductive activity of fish, including long-distance migratory species. Considering this, mitigate measures that guarantee the preservation of the natural flow are crucial for the maintenance of fish biodiversity.


Asunto(s)
Pradera , Ríos , Animales , Larva , Estaciones del Año , Ecosistema , Peces
15.
J Environ Manage ; 326(Pt A): 116648, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368198

RESUMEN

Floodplain reconnection and wetland restoration projects are increasingly implemented to enhance flood resiliency, and these nature-based solutions can also achieve co-benefits of nutrient storage and improved habitats. Considering the multiple and sometimes incompatible objectives of stakeholders for uses of riverside lands, a decision-support tool linked to a hydraulic model would enable planners to simulate floodplain restoration scenarios while also quantifying and assessing the trade-offs between the stakeholder objectives to arrive at optimal restoration designs. We illustrate a simple ranking approach using an n-dimensional objective function to represent key stakeholders engaged in restoration. We applied our approach in a watershed in central Vermont (USA) that has been identified by regional and state-level stakeholders as an important location to mitigate flooding damages but also to improve water quality - all within a context of increasing development pressures on riparian lands and limited financial resources to accomplish restoration. Eleven different floodplain reconnection and wetland restoration modifications were combined in six scenarios and simulated with 2D Hydrologic Engineering Center's River Analysis System (2D HEC-RAS), along with a baseline (no-action) scenario. Only modest attenuation of peak flows for 2-, 25-, 50- and 100-year design storms was achieved by the floodplain restoration scenarios due to the steep setting, and flashy nature of the watershed. Yet, several scenarios of floodplain reconnection projects more than met the necessary annual phosphorus load reductions targeted under a Total Maximum Daily Load implementation plan. Our approach provided planners with a ranking of restoration scenarios that best met multiple stakeholder objectives and allowed effectiveness of alternate design scenarios to be quantified, justified, and visualized to promote consensus decision-making.


Asunto(s)
Ríos , Humedales , Hidrología , Calidad del Agua , Ecosistema
16.
J Environ Manage ; 332: 117312, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731405

RESUMEN

Sensitivity analysis determines how perturbation or variation in the values of an independent variable affects a particular dependent variable. The present study attempts to comprehend the sensitivity of the static input parameters on the accuracy of the outputs in a hydrodynamic flood model, which subsequently improves the model accuracy. Hydrodynamic flood modeling is computationally strenuous and data-intensive. Moreover, the accuracy of the flood model outputs is extremely sensitive to the quality of hydrologic and hydraulic inputs, along with a set of static parameters that are traditionally assumed and primarily used for calibration. Therefore, we focus on developing a framework for global sensitivity analysis (GSA) of static input parameters in a 1D-2D coupled hydrodynamic flood modeling system. A set of numerical experiments is conducted by perturbing various combinations of input parameters from their standard (or observed) values to generate flow hydrographs. Nonparametric probability density functions (PDFs) of the river discharge at different locations are compared to calculate the Kullback-Leibler (KL) entropy or KL-divergence, which is used to quantify the sensitivity of the input parameters. We demonstrated the proposed framework on a highly flood-prone rural catchment of the Shilabati River in West Bengal, India, and infer that the sensitivity of the static input parameters is highly dynamic, and their importance varies spatially from the upstream to the downstream of the river. However, Manning's n values of the channel and the banks are significantly sensitive irrespective of the location in the river reach. We suggest that any flood modeling exercise should accompany a GSA, which sets a guideline for the modelers to prioritize the set of sensitive static input parameters during data monitoring, collection, and retrieval. This study is the first attempt at a GSA in a 1D-2D coupled hydrodynamic flood modeling system, whose importance cannot be over-emphasized in any flood modeling platform. The proposed novel framework is generic and can be implemented prior to flood risk analyses for any floodplain management exercise. All free and commercially-available flood models can incorporate the proposed framework for a GSA as an extension toolbox.


Asunto(s)
Inundaciones , Hidrodinámica , Ríos , India , Medición de Riesgo
17.
J Environ Manage ; 348: 119499, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924694

RESUMEN

Practitioners of environmental water management (EWM) operate within complex social-ecological systems. We sought to better understand this complexity by investigating the management of environmental water for vegetation outcomes. We conducted an online survey to determine practitioners' perspectives on EWM for non-woody vegetation (NWV) in the Murray-Darling Basin, Australia with regards to: i) desirable outcomes and benefits; ii) influencing factors and risks; iii) challenges of monitoring and evaluation, and iv) improving outcomes. Survey participants indicated that EWM aims to achieve outcomes by improving or maintaining vegetation attributes and the functions and values these provide. Our study reveals that EWM practitioners perceive NWV management in a holistic and highly interconnected way. Numerous influencing factors as well as risks and challenges to achieving outcomes were identified by participants, including many unrelated to water. Survey responses highlighted six areas to improve EWM for NWV outcomes: (1) flow regimes, (2) vegetation attributes, (3) non-flow drivers, (4) management-governance considerations, (5) functions and values, and (6) monitoring, evaluation and research. These suggest a need for more than 'just water' when it comes to the restoration and management of NWV. Our findings indicate more integrated land-water governance and management is urgently required to address the impacts of non-flow drivers such as pest species, land-use change and climate change. The results also indicate that inherent complexity in EWM for ecological outcomes has been poorly addressed, with a need to tackle social-ecological constraints to improve EWM outcomes.


Asunto(s)
Conservación de los Recursos Naturales , Agua , Humanos , Conservación de los Recursos Naturales/métodos , Australia , Abastecimiento de Agua , Ecosistema , Ríos
18.
J Environ Manage ; 348: 119260, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37879173

RESUMEN

Over 24 million hectares of the world's coastal floodplains are underlain by acid sulfate soils (ASS). Drainage of these sediments has led to widespread environmental degradation, raising serious health concerns. To date, onsite rehabilitation has been complicated by differing stakeholder priorities, with resources often allocated to sites with more vocal proponents rather than those exposed to more significant environmental impacts. To address this issue, this paper introduces the Coastal Floodplain Prioritisation (CFP) Method; a novel, data driven and spatially explicit multi-criteria assessment that ranks floodplain catchment areas according to their risk of transferring acidic drainage waters to an estuary. Results can be used to prioritise where remediation actions are likely to have the greatest benefit. The method was applied across six different estuaries in south-east Australia, with major field campaigns undertaken at each site. Within each estuary, the largest acid fluxes and impacts are identified with relevant mitigation measures provided. On a catchment scale, the results reflect the broader hydrogeomorphic characteristics of each estuary, including the historic acid formation conditions and recent anthropogenic drainage activities. Low-lying backswamps were identified as the highest risk zones within each estuary. These areas are also the most vulnerable to sea level rise. Reinstatement of tidal inundation to these backswamps effectively remediates acid sulfate soil discharges and provides a nature-based solution for adaptation to sea level rise with a range of co-benefits to encourage further investment.


Asunto(s)
Ambiente , Suelo , Estuarios , Sulfatos , Monitoreo del Ambiente/métodos
19.
J Environ Manage ; 347: 119210, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801950

RESUMEN

The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.


Asunto(s)
Agua Subterránea , Microbiota , Nitratos/análisis , Lagos , Ríos , Amoníaco , Nitrógeno , Compuestos Orgánicos , Bacterias
20.
J Environ Manage ; 346: 118948, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717396

RESUMEN

The inundation process of floodplain wetlands plays a crucial role in maintaining the balance of river ecosystems, which are highly sensitive to hydrological alteration. Nevertheless, the specific mechanisms through which these hydrological changes affect the inundation patterns of floodplain wetlands are still unclear. This study aimed to investigate the impact mechanism of cascade hydropower development on the inundation process of floodplain wetlands. Multitemporal remote sensing datasets and long-term hydrometeorological data series were utilized in this study. By employing the water appearance frequency (WAF) index, wetland hydrological stability assessment, and wavelet analysis, the inundation changes in floodplain wetlands and the underlying hydrological driving mechanisms were examined. The results revealed significant alterations in the inundation frequency of floodplain wetlands due to the construction of upstream dams. Specifically, the construction of the Danjiangkou and Wangfuzhou dams led to an increase in the total inundated area of Part A (16.09 km2) and Part B (76.93 km2), respectively. Conversely, the moderate frequency inundation zone in Part C decreased (26.7 km2) after the construction of the Cuijiaying Dam. The typical floodplain wetland 7 shifted from high to low (8.94 km2) stability after the construction of the Cuijiaying Dam. Furthermore, the cascade hydropower dam construction resulted in increased fluctuations in downstream water discharge. This study provides an effective approach to understanding the impact of cascade hydropower dams on the inundation process of floodplain wetlands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA