Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.007
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(27): e2220570120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364097

RESUMEN

Understanding the origins of variation in agricultural pathogens is of fundamental interest and practical importance, especially for diseases that threaten food security. Fusarium oxysporum is among the most important of soil-borne pathogens, with a global distribution and an extensive host range. The pathogen is considered to be asexual, with horizontal transfer of chromosomes providing an analog of assortment by meiotic recombination. Here, we challenge those assumptions based on the results of population genomic analyses, describing the pathogen's diversity and inferring its origins and functional consequences in the context of a single, long-standing agricultural system. We identify simultaneously low nucleotide distance among strains, and unexpectedly high levels of genetic and genomic variability. We determine that these features arise from a combination of genome-scale recombination, best explained by widespread sexual reproduction, and presence-absence variation consistent with chromosomal rearrangement. Pangenome analyses document an accessory genome more than twice the size of the core genome, with contrasting evolutionary dynamics. The core genome is stable, with low diversity and high genetic differentiation across geographic space, while the accessory genome is paradoxically more diverse and unstable but with lower genetic differentiation and hallmarks of contemporary gene flow at local scales. We suggest a model in which episodic sexual reproduction generates haplotypes that are selected and then maintained through clone-like dynamics, followed by contemporary genomic rearrangements that reassort the accessory genome among sympatric strains. Taken together, these processes contribute unique genome content, including reassortment of virulence determinants that may explain observed variation in pathogenic potential.


Asunto(s)
Fusarium , Fusarium/genética , Especificidad del Huésped , Genómica , Agricultura , Enfermedades de las Plantas/genética
2.
Plant J ; 119(4): 1920-1936, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924321

RESUMEN

Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Resistencia a la Enfermedad , Etilenos , Fusarium , Glicina Hidroximetiltransferasa , Lignina , Enfermedades de las Plantas , Pseudomonas syringae , Arabidopsis/genética , Arabidopsis/microbiología , Etilenos/metabolismo , Lignina/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pseudomonas syringae/fisiología , Fusarium/fisiología , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente
3.
Proteins ; 92(9): 1097-1112, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38666709

RESUMEN

Fusarium oxysporum f.sp. lycopersici is a phytopathogen which causes vascular wilt disease in tomato plants. The survival tactics of both pathogens and hosts depend on intricate interactions between host plants and pathogenic microbes. Iron-binding proteins (IBPs) and copper-binding proteins (CBPs) play a crucial role in these interactions by participating in enzyme reactions, virulence, metabolism, and transport processes. We employed high-throughput computational tools at the sequence and structural levels to investigate the IBPs and CBPs of F. oxysporum. A total of 124 IBPs and 37 CBPs were identified in the proteome of Fusarium. The ranking of amino acids based on their affinity for binding with iron is Glu > His> Asp > Asn > Cys, and for copper is His > Asp > Cys respectively. The functional annotation, determination of subcellular localization, and Gene Ontology analysis of these putative IBPs and CBPs have unveiled their potential involvement in a diverse array of cellular and biological processes. Three iron-binding glycosyl hydrolase family proteins, along with four CBPs with carbohydrate-binding domains, have been identified as potential effector candidates. These proteins are distinct from the host Solanum lycopersicum proteome. Moreover, they are known to be located extracellularly and function as enzymes that degrade the host cell wall during pathogen-host interactions. The insights gained from this report on the role of metal ions in plant-pathogen interactions can help develop a better understanding of their fundamental biology and control vascular wilt disease in tomato plants.


Asunto(s)
Cobre , Proteínas Fúngicas , Fusarium , Hierro , Proteoma , Solanum lycopersicum , Fusarium/metabolismo , Fusarium/química , Proteoma/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Hierro/metabolismo , Cobre/metabolismo , Cobre/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Unión a Hierro/metabolismo , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/genética , Enfermedades de las Plantas/microbiología , Unión Proteica
4.
Mol Plant Microbe Interact ; 37(6): 530-541, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552146

RESUMEN

Fusarium oxysporum f. sp. fragariae (Fof) race 1 is avirulent on cultivars with the dominant resistance gene FW1, while Fof race 2 is virulent on FW1-resistant cultivars. We hypothesized there was a gene-for-gene interaction between a gene at the FW1 locus and an avirulence gene (AvrFW1) in Fof race 1. To identify a candidate AvrFW1, we compared genomes of 24 Fof race 1 and three Fof race 2 isolates. We found one candidate gene that was present in race 1, was absent in race 2, was highly expressed in planta, and was homologous to a known effector, secreted in xylem 6 (SIX6). We knocked out SIX6 in two Fof race 1 isolates by homologous recombination. All SIX6 knockout transformants (ΔSIX6) gained virulence on FW1/fw1 cultivars, whereas ectopic transformants and the wildtype isolates remained avirulent. ΔSIX6 isolates were quantitatively less virulent on FW1/fw1 cultivars Fronteras and San Andreas than fw1/fw1 cultivars. Seedlings from an FW1/fw1 × fw1/fw1 population were genotyped for FW1 and tested for susceptibility to a SIX6 knockout isolate. Results suggested that additional minor-effect quantitative resistance genes could be present at the FW1 locus. This work demonstrates that SIX6 acts as an avirulence factor interacting with a resistance gene at the FW1 locus. The identification of AvrFW1 enables surveillance for Fof race 2 and provides insight into the mechanisms of FW1-mediated resistance. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Resistencia a la Enfermedad , Fragaria , Fusarium , Enfermedades de las Plantas , Fusarium/patogenicidad , Fusarium/genética , Enfermedades de las Plantas/microbiología , Virulencia , Fragaria/microbiología , Resistencia a la Enfermedad/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/microbiología
5.
Plant Mol Biol ; 114(3): 42, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630198

RESUMEN

Continuous cropping of faba bean (Vicia faba L.) has led to a high incidence of wilt disease. The implementation of an intercropping system involving wheat and faba bean can effectively control the propagation of faba bean wilt disease. To investigate the mechanisms of wheat in mitigating faba bean wilt disease in a wheat-faba bean intercropping system. A comprehensive investigation was conducted to assess the temporal variations in Fusarium oxysporum f. sp. fabae (FOF) on the chemotaxis of benzoxazinoids (BXs) and wheat root through indoor culture tests. The effects of BXs on FOF mycelial growth, spore germination, spore production, and electrical conductivity were examined. The influence of BXs on the ultrastructure of FOF was investigated through transmission electron microscopy. Eukaryotic mRNA sequencing was utilized to analyze the differentially expressed genes in FOF upon treatment with BXs. FOF exhibited a significant positive chemotactic effect on BXs in wheat roots and root secretions. BXs possessed the potential to exert significant allelopathic effects on the mycelial growth, spore germination, and sporulation of FOF. In addition, BXs demonstrated a remarkable ability to disrupt the structural integrity and stability of the membrane and cell wall of the FOF mycelia. BXs possessed the capability of posing threats to the integrity and stability of the cell membrane and cell wall. This ultimately resulted in physiological dysfunction, effectively inhibiting the regular growth and developmental processes of the FOF.


Asunto(s)
Benzoxazinas , Fusarium , Vicia faba , Pared Celular , Triticum , Crecimiento y Desarrollo
6.
BMC Plant Biol ; 24(1): 599, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918732

RESUMEN

BACKGROUND: Cowpea wilt is a harmful disease caused by Fusarium oxysporum, leading to substantial losses in cowpea production. Melatonin reportedly regulates plant immunity to pathogens; however the specific regulatory mechanism underlying the protective effect of melatonin pretreated of cowpea against Fusarium oxysporum remains known. Accordingly, the study sought to evaluate changes in the physiological and biochemical indices of cowpea following melatonin treated to facilitate Fusarium oxysporum resistance and elucidate the associated molecular mechanism using a weighted gene coexpression network. RESULTS: Treatment with 100 µM melatonin was effective in increasing cowpea resistance to Fusarium oxysporum. Glutathione peroxidase (GSH-PX), catalase (CAT), and salicylic acid (SA) levels were significantly upregulated, and hydrogen peroxide (H2O2) levels were significantly downregulated in melatonin treated samples in roots. Weighted gene coexpression network analysis of melatonin- and Fusarium oxysporum-treated samples identified six expression modules comprising 2266 genes; the number of genes per module ranged from 9 to 895. In particular, 17 redox genes and 32 transcription factors within the blue module formed a complex interconnected expression network. KEGG analysis revealed that the associated pathways were enriched in secondary metabolism, peroxisomes, phenylalanine metabolism, flavonoids, and flavonol biosynthesis. More specifically, genes involved in lignin synthesis, catalase, superoxide dismutase, and peroxidase were upregulated. Additionally, exogenous melatonin induced activation of transcription factors, such as WRKY and MYB. CONCLUSIONS: The study elucidated changes in the expression of genes associated with the response of cowpea to Fusarium oxysporum under melatonin treated. Specifically, multiple defence mechanisms were initiated to improve cowpea resistance to Fusarium oxysporum.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Redes Reguladoras de Genes , Melatonina , Enfermedades de las Plantas , Vigna , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Melatonina/farmacología , Melatonina/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/efectos de los fármacos , Fusarium/fisiología , Vigna/genética , Vigna/microbiología , Vigna/efectos de los fármacos , Vigna/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácido Salicílico/metabolismo
7.
Fungal Genet Biol ; 170: 103860, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38114016

RESUMEN

Fusarium oxysporum f. sp. cepae (Foc) is the causative agent of Fusarium basal rot disease in onions, which leads to catastrophic global crop production losses. Therefore, the interaction of Foc with its host has been actively investigated, and the pathogen-specific (PS) regions of the British strain Foc_FUS2 have been identified. However, it has not been experimentally determined whether the identified PS region plays a role in pathogenicity. To identify the pathogenicity chromosome in the Japanese strain Foc_TA, we initially screened effector candidates, defined as small proteins with a signal peptide that contain two or more cysteines, from genome sequence data. Twenty-one candidate effectors were identified, five of which were expressed during infection. Of the expressed effector candidates, four were located on the 4-Mb-sized chromosome in Foc_TA. To clarify the relationship between pathogenicity and the 4-Mb-sized chromosome in Foc_TA, nine putative 4-Mb-sized chromosome loss strains were generated by treatment with benomyl (a mitotic inhibitor drug). A pathogenicity test with putative 4-Mb-sized chromosome loss strains showed that these strains were impaired in their pathogenicity toward onions. Genome analysis of three putative 4-Mb-sized chromosome loss strains revealed that two strains lost a 4-Mb-sized chromosome in common, and another strain maintained a 0.9-Mb region of the 4-Mb-sized chromosome. Our findings show that the 4-Mb-sized chromosome is the pathogenicity chromosome in Foc_TA, and the 3.1-Mb region within the 4-Mb-sized chromosome is required for full pathogenicity toward onion.


Asunto(s)
Fusarium , Virulencia/genética , Fusarium/genética , Cromosomas , Enfermedades de las Plantas/genética
8.
Plant Biotechnol J ; 22(1): 248-261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37822043

RESUMEN

Vascular wilt diseases caused by Fusarium oxysporum are a major threat to many agriculturally important crops. Genetic resistance is rare and inevitably overcome by the emergence of new races. To identify potentially durable and non-race-specific genetic resistance against Fusarium wilt diseases, we set out to identify effector targets in tomato that mediate susceptibility to the fungus. For this purpose, we used the SIX8 effector protein, an important and conserved virulence factor present in many pathogenic F. oxysporum isolates. Using protein pull-downs and yeast two-hybrid assays, SIX8 was found to interact specifically with two members of the tomato TOPLESS family: TPL1 and TPL2. Loss-of-function mutations in TPL1 strongly reduced disease susceptibility to Fusarium wilt and a tpl1;tpl2 double mutant exerted an even higher level of resistance. Similarly, Arabidopsis tpl;tpr1 mutants became significantly less diseased upon F. oxysporum inoculation as compared to wildtype plants. We conclude that TPLs encode susceptibility genes whose mutation can confer resistance to F. oxysporum.


Asunto(s)
Arabidopsis , Fusarium , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/microbiología , Solanum lycopersicum/genética , Factores de Virulencia/genética , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
9.
New Phytol ; 243(3): 1123-1136, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38831656

RESUMEN

Plant secreted peptides RAPID ALKALINISATION FACTORs (RALFs), which act through the receptor FERONIA (FER), play important roles in plant growth. However, it remains unclear whether and how RALF-FER contributes to the trade-off of plant growth-defense. Here, we used a variety of techniques such as CRISPR/Cas9, protein-protein interaction and transcriptional regulation methods to investigate the role of RALF2 and its receptor FER in regulating lignin deposition, root growth, and defense against Fusarium oxysporum f. sp. lycopersici (Fol) in tomato (Solanum lycopersicum). The ralf2 and fer mutants show reduced primary root length, elevated lignin accumulation, and enhanced resistance against Fol than the wild-type. FER interacts with and phosphorylates MYB63 to promote its degradation. MYB63 serves as an activator of lignin deposition by regulating the transcription of dirigent protein gene DIR19. Mutation of DIR19 suppresses lignin accumulation, and reverses the short root phenotype and Fol resistance in ralf2 or fer mutant. Collectively, our results demonstrate that the RALF2-FER-MYB63 module fine-tunes root growth and resistance against Fol through regulating the deposition of lignin in tomato roots. The study sheds new light on how plants maintain the growth-defense balance via RALF-FER.


Asunto(s)
Fusarium , Regulación de la Expresión Génica de las Plantas , Lignina , Mutación , Proteínas de Plantas , Raíces de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Lignina/metabolismo , Fusarium/fisiología , Mutación/genética , Resistencia a la Enfermedad/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Enfermedades de las Plantas/microbiología , Fosforilación
10.
New Phytol ; 241(4): 1732-1746, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037458

RESUMEN

Lysine acetylation is an evolutionarily conserved and widespread post-translational modification implicated in the regulation of multiple metabolic processes, but its function remains largely unknown in plant pathogenic fungi. A comprehensive analysis combined with proteomic, molecular and cellular approaches was presented to explore the roles of cytoplasmic acetylation in Fusarium oxsysporum f.sp. lycopersici (Fol). The divergent cytoplasmic deacetylase FolSir2 was biochemically characterized, which is contributing to fungal virulence. Based on this, a total of 1752 acetylated sites in 897 proteins were identified in Fol via LC-MS/MS analysis. Further analyses of the quantitative acetylome revealed that 115 proteins representing two major pathways, translational and ribosome biogenesis, were hyperacetylated in the ∆Folsir2 strain. We experimentally examined the regulatory roles of FolSir2 on K271 deacetylation of FolGsk3, a serine/tyrosine kinase implicated in a variety of cellular functions, which was found to be crucial for the activation of FolGsk3 and thus modulated Fol pathogenicity. Cytoplasmic deacetylation by FolSir2 homologues has a similar function in Botrytis cinerea and likely other fungal pathogens. These findings reveal a conserved mechanism of silent information regulator 2-mediated cytoplasmic deacetylation that is involved in plant-fungal pathogenicity, providing a candidate target for designing broad-spectrum fungicides to control plant diseases.


Asunto(s)
Fusarium , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hongos , Procesamiento Proteico-Postraduccional , Enfermedades de las Plantas/microbiología
11.
New Phytol ; 242(2): 610-625, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402521

RESUMEN

Many pathogens evolved compartmentalized genomes with conserved core and variable accessory regions (ARs) that carry effector genes mediating virulence. The fungal plant pathogen Fusarium oxysporum has such ARs, often spanning entire chromosomes. The presence of specific ARs influences the host range, and horizontal transfer of ARs can modify the pathogenicity of the receiving strain. However, how these ARs evolve in strains that infect the same host remains largely unknown. We defined the pan-genome of 69 diverse F. oxysporum strains that cause Fusarium wilt of banana, a significant constraint to global banana production, and analyzed the diversity and evolution of the ARs. Accessory regions in F. oxysporum strains infecting the same banana cultivar are highly diverse, and we could not identify any shared genomic regions and in planta-induced effectors. We demonstrate that segmental duplications drive the evolution of ARs. Furthermore, we show that recent segmental duplications specifically in accessory chromosomes cause the expansion of ARs in F. oxysporum. Taken together, we conclude that extensive recent duplications drive the evolution of ARs in F. oxysporum, which contribute to the evolution of virulence.


Asunto(s)
Fusarium , Genoma Fúngico , Duplicaciones Segmentarias en el Genoma , Fusarium/genética , Especificidad del Huésped , Genómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
12.
Arch Microbiol ; 206(4): 200, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564016

RESUMEN

Fusarium wilt of lentil caused by Fusarium oxysporum f. sp. lentis (Fol) is a destructive pathogen limiting lentil production in India. In the present study, Secreted in Xylem (SIX) effectors genes were explored in Indian races of Fol and also a diagnostic tool for reliable detection of the disease was developed. Four SIX effectors genes, SIX11, SIX13, SIX6 and SIX2 were identified in 12 isolates of Fol belonging to seven races. SIX11 was present in all the races while SIX 13 was absent in race 6 and SIX6 was present only in race 4. The phylogenetic analysis revealed the conserved nature of the SIX genes within the forma specialis and showed sequence homology with F. oxysporum f. sp. pisi. The presence of three effectors, SIX11, SIX13 and SIX6 in race 4 correlates with high disease incidence in lentil germplasms. The in-silico characterization revealed the presence of signal peptide and localization of the effectors. Further SIX11 effector gene present in all the isolates was used to develop Fol-specific molecular marker for accurate detection. The marker developed could differentiate F. oxysporum f. sp. lycopersici, F. solani, F. oxysporum, Rhizoctonia solani and Sclerotium rolfsii and had a detection limit of 0.01ng µL- 1. The effector-based marker detection helps in the unambiguous detection of the pathogen under field conditions.


Asunto(s)
Fusarium , Filogenia , Marcadores Genéticos , Fusarium/genética , Xilema
13.
Arch Microbiol ; 206(6): 271, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767679

RESUMEN

Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.


Asunto(s)
Biomarcadores , Fusarium , Musa , Enfermedades de las Plantas , Xilema , Fusarium/genética , Fusarium/patogenicidad , Fusarium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Xilema/microbiología , Musa/microbiología , Virulencia/genética , Interacciones Huésped-Patógeno , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Raíces de Plantas/microbiología , Regulación Fúngica de la Expresión Génica
14.
Int Microbiol ; 27(2): 435-448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37491678

RESUMEN

The current study used zinc oxide nanoparticles (ZnO-NPs) to protect the tomato plant against Fusarium wilt. Gamma rays were used to synthesize ZnO-NPs, and the designed ZnO-NPs were characterized using high-resolution transmission electron microscopy (HRTEM), scanning electron microscope (SEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDX), and ultraviolet-visible (UV-Vis.) spectroscopy. We found that the 20 kGy dose is the most effective for ZnO-NPs synthesis, with the highest O.D. = 1.65 (diluted 3 times) at 400 nm. The scale of ZnO-NPs ranged from 10.45 to 75.25 nm with an average diameter of 40.20 nm. The results showed that the designed ZnO-NPs showed promising activity as a potent inducer of plant physiological immunity against Fusarium wilt disease. Likewise, ZnO-NPs significantly reduced the wilt disease symptoms incidence by 28.57% and high protection by 67.99% against F. oxysporum. Additionally, infected tomato plants treated with ZnO-NPs show improved shoot length (44.71%), root length (40.0%), number of leaves (60.0 %), chlorophyll a (36.93%), chlorophyll b (16.46%), and carotenoids (21.87%) versus infected plants. Notably, in the treatment of tomato seedlings, the beneficial effects of ZnO-NPs extended to increase not only in osmolyte contents but also total phenol contents in comparison with control plants. In conclusion, the designed ZnO-NPs can control Fusarium wilt disease and improve and develop biochemical compounds responsible for defense against fusarial infection.


Asunto(s)
Fusarium , Nanopartículas del Metal , Solanum lycopersicum , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Clorofila A , Inmunidad
15.
Int Microbiol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020234

RESUMEN

The study aimed to understand the dynamic interplay between plants and their associated microbes to develop an efficient microbial consortium for managing Fusarium wilt of cumin. A total of 601 rhizospheric and endophytic bacteria and fungi were screened for antagonistic activity against Fusarium oxysporum f.sp. cumini (Foc). Subsequently, ten bacteria and ten fungi were selected for characterizing their growth promotion traits and ability to withstand abiotic stress. Furthermore, a pot experiment was conducted to evaluate the bioefficacy of promising biocontrol isolates-1F, 16B, 31B, and 223B in mono and consortium mode, focusing on disease severity, plant growth, and defense responses in cumin challenged with Foc. Promising isolates were identified as Trichoderma atrobruneum 15F, Pseudomonas sp. 2B, Bacillus amyloliquefaciens 9B, and Bacillus velezensis 32B. In planta, results revealed that cumin plants treated with consortia of 15F, 2B, 9B, and 32B showed highest percent disease control (76.35%) in pot experiment. Consortia of biocontrol agents significantly enhanced production of secondary metabolites and activation of antioxidant-defense enzymes compared to individual strain. Moreover, consortium treatments effectively reduced electrolyte leakage over the individual strain and positive control. The four-microbe consortium significantly enhanced chlorophyll (~ 2.74-fold), carotenoid content (~ 2.14-fold), plant height (~ 1.8-fold), dry weight (~ 1.96-fold), and seed yield (~ 19-fold) compared to positive control in pot experiment. Similarly, four microbe consortia showed highest percent disease control (72.2%) over the positive control in field trial. Moreover, plant growth, biomass, yield, and yield attributes of cumin were also significantly increased in field trial over the positive control as well as negative control.

16.
Microb Ecol ; 87(1): 44, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367043

RESUMEN

The effects of compost on physical and chemical characteristics of soil are well-studied but impacts on soil microbiomes are poorly understood. This research tested effects of green waste compost on bacterial communities in soil infested with the plant pathogen Fusarium oxysporum. Compost was added to pathogen-infested soil and maintained in mesocosms in a greenhouse experiment and replicated growth chamber experiments. Bacteria and F. oxysporum abundance were quantified using quantitative PCR. Taxonomic and functional characteristics of bacterial communities were measured using shotgun metagenome sequencing. Compost significantly increased bacterial abundance 8 weeks after amendment in one experiment. Compost increased concentrations of chemical characteristics of soil, including phosphorus, potassium, organic matter, and pH. In all experiments, compost significantly reduced abundance of F. oxysporum and altered the taxonomic composition of soil bacterial communities. Sixteen bacterial genera were significantly increased from compost in every experiment, potentially playing a role in pathogen suppression. In all experiments, there was a consistent negative effect of compost on functions related to carbohydrate use and a positive effect on bacteria with flagella. Results from this work demonstrate that compost can reduce the abundance of soilborne plant pathogens and raise questions about the role of microbes in plant pathogen suppression.


Asunto(s)
Compostaje , Fusarium , Suelo/química , Microbiología del Suelo , Bacterias/genética , Análisis de Secuencia
17.
Antonie Van Leeuwenhoek ; 117(1): 33, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334837

RESUMEN

Plant probiotics are live microbial cells or cultures that support plant growth and control plant pathogens through different mechanisms. They have various effects on plants, including plant growth promotion through the production of indole acetic acid (IAA), biological control activity (BCA), and production of cellulase enzymes, thus inducing systemic resistance and increasing the availability of mineral elements. The present work aimed to study the potential of Achromobacter marplatensis and Bacillus velezensis as plant probiotics for the field cultivation of potatoes. In vitro studies have demonstrated the ability of selected probiotics to produce IAA and cellulase, as well as antimicrobial activity against two plant pathogens that infect Solanum tuberosum as Fusarium oxysporum and Ralstonia solanacearum under different conditions at a broad range of different temperatures and pH values. In vivo study of the effects of the probiotics A. marplatensis and B. velezensis on S. tuberosum plants grown in sandy clay loamy soil was detected after cultivation for 90 days. Probiotic isolates A. marplatensis and B. velezensis were able to tolerate ultraviolet radiation (UV) exposure for up to two hours, the dose response curve exhibited that the D10 values of A. marplatensis and B. velezensis were 28 and 16 respectively. In the case of loading both probiotics with broth, the shoot dry weight was increased significantly from 28 in the control to 50 g, shoot length increased from 24 to 45.7 cm, branches numbers increased from 40 to 70 branch, leaves number increased from 99 to 130 leaf, root dry weight increased from 9.3 to 12.9 g, root length increased from 24 to 35.7 cm, tuber weight increased from 15 to 37.0 g and tubers number increased from 9 to 24.4 tuber, the rot percentage was reduced to 0%. The addition of both probiotic isolates, either broth or wheat grains load separately has enhanced all the growth parameters; however, better results and increased production were in favor of adding probiotics with broth more than wheat. On the other hand, both probiotics showed a remarkable protective effect against potato pathogens separately and reduced the negative impact of the infection using them together.


Asunto(s)
Celulasas , Fusarium , Ralstonia solanacearum , Solanum tuberosum , Rayos Ultravioleta , Plantas , Celulasas/farmacología , Enfermedades de las Plantas/prevención & control
18.
Phytopathology ; 114(8): 1791-1801, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38809697

RESUMEN

Dendrobium officinale soft rot is a widespread and destructive disease caused by Fusarium oxysporum that can seriously affect yield and quality. To better understand the fungal infection and colonization, we successfully created an F. oxysporum labeled with green fluorescent protein using the Agrobacterium tumefaciens-mediated transformation method. Transformants had varying fluorescence intensities, but their pathogenicity did not differ from that of the wild type. Fluorescence microscopy revealed that F. oxysporum primarily entered the aboveground portion of D. officinale through the leaf margin, stomata, or by direct penetration of the leaf surface. It then colonized the mesophyll and spread along its vascular bundles. D. officinale exhibited typical symptoms of decay and wilting at 14 days postinoculation, accompanied by a pronounced fluorescence signal in the affected area. The initial colonization of F. oxysporum in the subterranean region primarily involved attachment to the root hair and epidermis, which progressed to the medullary vascular bundle. At 14 days postinoculation, the root vascular bundles of D. officinale exhibited significant colonization by F. oxysporum. Macroconidia were also observed in black rot D. officinale tissue. In particular, the entire root was surrounded by a significant number of chlamydospore-producing F. oxysporum mycelia at 28 days postinoculation. This approach allowed for the visualization of the complete infection process of F. oxysporum and provided a theoretical foundation for the development of field control strategies.


Asunto(s)
Agrobacterium tumefaciens , Dendrobium , Fusarium , Proteínas Fluorescentes Verdes , Enfermedades de las Plantas , Hojas de la Planta , Raíces de Plantas , Fusarium/genética , Fusarium/fisiología , Fusarium/patogenicidad , Fusarium/crecimiento & desarrollo , Dendrobium/microbiología , Dendrobium/genética , Proteínas Fluorescentes Verdes/genética , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Hojas de la Planta/microbiología , Agrobacterium tumefaciens/genética , Microscopía Fluorescente , Transformación Genética
19.
Phytopathology ; 114(8): 1782-1790, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829851

RESUMEN

Nontoxic alternatives to chemical soil fumigants for suppressing soilborne pathogens such as Fusarium oxysporum (Fo), one causative agent of strawberry black root rot complex prevalent in the Southeastern United States, are urgently needed. A promising alternative is anaerobic soil disinfestation, in which soil is amended with labile organic materials, irrigated to field capacity, and tarped to induce anaerobic fermentation for a brief period before planting. Pathogen-suppression mechanisms of anaerobic soil disinfestation include anaerobic conditions and generation of reduced metal cations (Fe2+ and Mn2+) and volatile fatty acids (VFAs; e.g., acetic, n-butyric, isovaleric, and others). However, little is known about how the interaction between VFAs, reduced metals, soil texture, and liming influences suppression of Fo. We investigated Fo suppression by VFAs and reduced metal cations in both aqueous and soil-based incubation trials. Inoculum containing Fo chlamydospores was added to aqueous medium containing either 5 or 10 mmol/liter VFAs and either 0.01 or 0.05% (wt/wt) reduced metals. In soil-based incubations, chlamydospore-containing inoculum was applied to sandy, sandy loam, and silty clay soil saturated by solutions containing 10 or 20 mmol/liter VFAs with or without 0.05% (wt/wt) reduced metals. VFAs, particularly in combination with Fe2+ in aqueous solutions and Mn2+ in soils, significantly reduced Fo viability. At the same time, liming and higher soil clay content reduced the effectiveness of VFAs and reduced metals for suppressing Fo, highlighting the influence of soil pH and soil texture on anaerobic soil disinfestation effectiveness.


Asunto(s)
Fragaria , Fusarium , Enfermedades de las Plantas , Raíces de Plantas , Microbiología del Suelo , Suelo , Fusarium/fisiología , Fusarium/crecimiento & desarrollo , Fusarium/efectos de los fármacos , Fragaria/microbiología , Fragaria/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Suelo/química , Raíces de Plantas/microbiología , Anaerobiosis , Ácidos Grasos Volátiles/metabolismo
20.
Plant Cell Rep ; 43(2): 42, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246927

RESUMEN

KEY MESSAGE: Phenylpropanoid biosynthesis and plant-pathogen interaction pathways in saffron and cell wall degrading enzymes in Fusarium oxysporum R1 are key players involved in the interaction. Fusarium oxysporum causes corm rot in saffron (Crocus sativus L.), which is one of the most devastating fungal diseases impacting saffron yield globally. Though the corm rot agent and its symptoms are known widely, little is known about the defense mechanism of saffron in response to Fusarium oxysporum infection at molecular level. Therefore, the current study reports saffron-Fusarium oxysporum R1 (Fox R1) interaction at the molecular level using dual a transcriptomics approach. The results indicated the activation of various defense related pathways such as the mitogen activated protein kinase pathway (MAPK), plant-hormone signaling pathways, plant-pathogen interaction pathway, phenylpropanoid biosynthesis pathway and PR protein synthesis in the host during the interaction. The activation of pathways is involved in the hypersensitive response, production of various secondary metabolites, strengthening of the host cell wall, systemic acquired resistance etc. Concurrently, in the pathogen, 60 genes reported to be linked to pathogenicity and virulence has been identified during the invasion. The expression of genes encoding plant cell wall degrading enzymes, various transcription factors and effector proteins indicated the strong pathogenicity of Fusarium oxysporum R1. Based on the results obtained, the putative molecular mechanism of the saffron-Fox R1 interaction was identified. As saffron is a male sterile plant, and can only be improved by genetic manipulation, this work will serve as a foundation for identifying genes that can be used to create saffron varieties, resistant to Fusarium oxysporum infection.


Asunto(s)
Crocus , Fusarium , Crocus/genética , Perfilación de la Expresión Génica , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA