Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 730
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(31): e2303448120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487081

RESUMEN

Cancer cells are commonly subjected to endoplasmic reticulum (ER) stress. To gain survival advantage, cancer cells exploit the adaptive aspects of the unfolded protein response such as upregulation of the ER luminal chaperone GRP78. The finding that when overexpressed, GRP78 can escape to other cellular compartments to gain new functions regulating homeostasis and tumorigenesis represents a paradigm shift. Here, toward deciphering the mechanisms whereby GRP78 knockdown suppresses EGFR transcription, we find that nuclear GRP78 is prominent in cancer and stressed cells and uncover a nuclear localization signal critical for its translocation and nuclear activity. Furthermore, nuclear GRP78 can regulate expression of genes and pathways, notably those important for cell migration and invasion, by interacting with and inhibiting the activity of the transcriptional repressor ID2. Our study reveals a mechanism for cancer cells to respond to ER stress via transcriptional regulation mediated by nuclear GRP78 to adopt an invasive phenotype.


Asunto(s)
Núcleo Celular , Chaperón BiP del Retículo Endoplásmico , Humanos , Carcinogénesis , Movimiento Celular , Transformación Celular Neoplásica
2.
Proc Natl Acad Sci U S A ; 120(29): e2215744120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428911

RESUMEN

Hepatocellular carcinoma (HCC) takes the predominant malignancy of hepatocytes with bleak outcomes owing to high heterogeneity among patients. Personalized treatments based on molecular profiles will better improve patients' prognosis. Lysozyme (LYZ), a secretory protein with antibacterial function generally expressed in monocytes/macrophages, has been observed for the prognostic implications in different types of tumors. However, studies about the explicit applicative scenarios and mechanisms for tumor progression are still quite limited, especially for HCC. Here, based on the proteomic molecular classification data of early-stage HCC, we revealed that the LYZ level was elevated significantly in the most malignant HCC subtype and could serve as an independent prognostic predictor for HCC patients. Molecular profiles of LYZ-high HCCs were typical of those for the most malignant HCC subtype, with impaired metabolism, along with promoted proliferation and metastasis characteristics. Further studies demonstrated that LYZ tended to be aberrantly expressed in poorly differentiated HCC cells, which was regulated by STAT3 activation. LYZ promoted HCC proliferation and migration in both autocrine and paracrine manners independent of the muramidase activity through the activation of downstream protumoral signaling pathways via cell surface GRP78. Subcutaneous and orthotopic xenograft tumor models indicated that targeting LYZ inhibited HCC growth markedly in NOD/SCID mice. These results propose LYZ as a prognostic biomarker and therapeutic target for the subclass of HCC with an aggressive phenotype.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Muramidasa/metabolismo , Proteómica , Línea Celular Tumoral , Ratones Endogámicos NOD , Ratones SCID , Pronóstico , Procesos Neoplásicos , Biomarcadores de Tumor/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
3.
J Biol Chem ; 300(6): 107346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718859

RESUMEN

Lethal neurodegenerative prion diseases result from the continuous accumulation of infectious and variably protease-resistant prion protein aggregates (PrPD) which are misfolded forms of the normally detergent soluble and protease-sensitive cellular prion protein. Molecular chaperones like Grp78 have been found to reduce the accumulation of PrPD, but how different cellular environments and other chaperones influence the ability of Grp78 to modify PrPD is poorly understood. In this work, we investigated how pH and protease-mediated structural changes in PrPD from two mouse-adapted scrapie prion strains, 22L and 87V, influenced processing by Grp78 in the presence or absence of chaperones Hsp90, DnaJC1, and Stip1. We developed a cell-free in vitro system to monitor chaperone-mediated structural changes to, and disaggregation of, PrPD. For both strains, Grp78 was most effective at structurally altering PrPD at low pH, especially when additional chaperones were present. While Grp78, DnaJC1, Stip1, and Hsp90 were unable to disaggregate the majority of PrPD from either strain, pretreatment of PrPD with proteases increased disaggregation of 22L PrPD compared to 87V, indicating strain-specific differences in aggregate structure were impacting chaperone activity. Hsp90 also induced structural changes in 87V PrPD as indicated by an increase in the susceptibility of its n-terminus to proteases. Our data suggest that, while chaperones like Grp78, DnaJC1, Stip1, and Hsp90 disaggregate only a small fraction of PrPD, they may still facilitate its clearance by altering aggregate structure and sensitizing PrPD to proteases in a strain and pH-dependent manner.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Chaperonas Moleculares , Chaperón BiP del Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico/genética , Animales , Concentración de Iones de Hidrógeno , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Ratones , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/química , Agregado de Proteínas
4.
J Virol ; 98(6): e0026824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38775480

RESUMEN

Enteroviruses are the causative agents associated with several human and animal diseases, posing a significant threat to human and animal health. As one of the host immune defense strategies, innate immunity plays a crucial role in defending against invading pathogens, where the host utilizes a variety of mechanisms to inhibit or eliminate the pathogen. Here, we report a new strategy for the host to repress enterovirus replication by the 78 kDa glucose-regulated protein (GRP78), also known as heat shock protein family A member 5 (HSPA5). The GRP78 recognizes the EV-encoded RNA-dependent RNA polymerases (RdRPs) 3D protein and interacts with the nuclear factor kappa B kinase complex (CHUK) and subunit beta gene (IKBKB) to facilitate the phosphorylation and nuclear translocation of NF-κB, which induces the production of inflammatory factors and leads to a broad inhibition of enterovirus replication. These findings demonstrate a new role of GRP78 in regulating host innate immunity in response to viral infection and provide new insights into the mechanism underlying enterovirus replication and NF-κB activation.IMPORTANCEGRP78 is known as a molecular chaperone for protein folding and plays a critical role in maintaining protein folding and participating in cell proliferation, cell survival, apoptosis, and metabolism. However, the functions of GRP78 to participate in enterovirus genome replication and innate immune responses are rarely documented. In this study, we explored the functions of the EV-3D-interacting protein GRP78 and found that GRP78 inhibits enterovirus replication by activating NF-κB through binding to EV-F 3D and interacting with the NF-κB signaling molecules CHUK/IKBKB. This is the first report that GRP78 interacts with CHUK/IKBKB to activate the NF-κB signaling pathway, which leads to the expression of the proinflammatory cytokines and inhibition of enterovirus replication. These results demonstrate a unique mechanism of virus replication regulation by GRP78 and provide insights into the prevention and treatment of viral infections.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Quinasa I-kappa B , FN-kappa B , Proteínas Virales , Replicación Viral , Animales , Humanos , Chlorocebus aethiops , Chaperón BiP del Retículo Endoplásmico/metabolismo , Enterovirus/crecimiento & desarrollo , Enterovirus/inmunología , Enterovirus/metabolismo , Enterovirus/fisiología , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/inmunología , Proteínas de Choque Térmico/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Quinasa I-kappa B/metabolismo , Inmunidad Innata , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Transducción de Señal , Células Vero , Proteínas Virales/metabolismo
5.
FASEB J ; 38(1): e23334, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050647

RESUMEN

Mesenchymal stem cells (MSCs) are a popular cell source for repairing the liver. Improving the survival rate and colonization time of MSCs may significantly improve the therapeutic outcomes of MSCs. Studies showed that 78-kDa glucose-regulated protein (GRP78) expression improves cell viability and migration. This study aims to examine whether GRP78 overexpression improves the efficacy of rat bone marrow-derived MSCs (rBMSCs) in HS-induced liver damage. Bone marrow was isolated from the femurs and tibias of rats. rBMSCs were transfected with a GFP-labeled GRP78 expression vector. Flow cytometry, transwell invasion assay, scratch assay immunoblotting, TUNEL assay, MTT assay, and ELISA were carried out. The results showed that GRP78 overexpression enhanced the migration and invasion of rBMSCs. Moreover, GRP78-overexpressing rBMSCs relieved liver damage, repressed liver oxidative stress, and inhibited apoptosis. We found that overexpression of GRP78 in rBMSCs inhibited activation of the NLRP3 inflammasome, significantly decreased the levels of inflammatory factors, and decreased the expression of CD68. Notably, GRP78 overexpression activated the Nrf-2/HO-1 pathway and inhibited the NF-κB pathway. High expression of GRP78 efficiently enhanced the effect of rBMSC therapy. GRP78 may be a potential target to improve the therapeutic efficacy of BMSCs.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Chaperón BiP del Retículo Endoplásmico , Células Madre Mesenquimatosas , Choque Hemorrágico , Animales , Ratas , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Células Madre Mesenquimatosas/metabolismo , FN-kappa B/metabolismo , Choque Hemorrágico/metabolismo
6.
FASEB J ; 38(3): e23437, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305849

RESUMEN

Impaired functionality and loss of islet ß-cells are the primary abnormalities underlying the pathogenesis of both type 1 and 2 diabetes (T1DM and T2DM). However, specific therapeutic and preventive mechanisms underlying these conditions remain unclear. Mitogen-activated protein kinase phosphatase-5 (MKP-5) has been implicated in carcinogenesis, lipid metabolism regulation, and immune cell activation. In a previous study, we demonstrated the involvement of exogenous MKP-5 in the regulation of obesity-induced T2DM. However, the role of endogenous MKP-5 in the T1DM and T2DM processes is unclear. Thus, mice with MKP-5 knockout (KO) were generated and used to establish mouse models of both T1DM and T2DM. Our results showed that MKP-5 KO exacerbated diabetes-related symptoms in mice with both T1DM and T2DM. Given that most phenotypic studies on islet dysfunction have focused on mice with T2DM rather than T1DM, we specifically aimed to investigate the role of endoplasmic reticulum stress (ERS) and autophagy in T2DM KO islets. To accomplish this, we performed RNA sequence analysis to gain comprehensive insight into the molecular mechanisms associated with ERS and autophagy in T2DM KO islets. The results showed that the islets from mice with MKP-5 KO triggered 5' adenosine monophosphate-activated protein kinase (AMPK)-mediated autophagy inhibition and glucose-regulated protein 78 (GRP-78)-dominated ERS. Hence, we concluded that the autophagy impairment, resulting in islet dysfunction in mice with MKP-5 KO, is mediated through GRP-78 involvement. These findings provide valuable insights into the molecular pathogenesis of diabetes and highlight the significant role of MKP-5. Moreover, this knowledge holds promise for novel therapeutic strategies targeting MKP-5 for diabetes management.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratones , Animales , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Fosfatos/metabolismo , Islotes Pancreáticos/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046017

RESUMEN

Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Pulmón/patología , Macrófagos Alveolares/metabolismo , Células Epiteliales Alveolares/metabolismo , Animales , Apoptosis/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico/fisiología , Femenino , Homeostasis , Inflamación , Péptidos y Proteínas de Señalización Intercelular/fisiología , Pulmón/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Fagocitosis/fisiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Humo/efectos adversos , Fumar/efectos adversos , Nicotiana/efectos adversos
8.
Biochem Biophys Res Commun ; 701: 149612, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316091

RESUMEN

Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.


Asunto(s)
Estrés del Retículo Endoplásmico , Daño por Reperfusión , Humanos , Respuesta de Proteína Desplegada , Intestinos , Apoptosis
9.
Biochem Biophys Res Commun ; 692: 149347, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056158

RESUMEN

Endothelial cell inflammation and oxidative stress are critical to developing diabetic vascular complications. GRP78 translocation to the cell surface has been observed in different types of endothelial cells, but the potential role of cell surface GRP78 in modulating endothelial inflammation and oxidative stress remains uncertain. In this study, we investigated whether inhibiting cell surface GRP78 function using a novel anti-GRP78 monoclonal antibody (MAb159) could suppress high glucose (HG)-induced endothelial inflammation and oxidative stress. Our findings demonstrated that the expression of cell surface GRP78 was increased in HG-treated HUVECs. Inhibition of cell surface GRP78 using MAb159 attenuated HG-induced endothelial injury, inflammation and oxidative stress, while activation of GRP78 by recombinant GRP78 further amplified HG-induced endothelial damage, inflammation and oxidative stress. Additionally, we discovered that cell surface GRP78 promoted HG-induced inflammation and oxidative stress by activating the TLR4/NF-κB signalling pathway. Moreover, HG-induced GRP78 translocation to the cell surface is dependent on ER stress. Our data demonstrate that targeting cell surface GRP78 could be a promising therapeutic strategy for mitigating endothelial injury, inflammation and oxidative stress.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Glucosa/farmacología , Glucosa/metabolismo
10.
Chembiochem ; 25(12): e202300789, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38613462

RESUMEN

The human glucose-regulated protein GRP78 is a human chaperone that translocactes to the cell surface when cells are under stress. Theoretical studies suggested it could be involved in SARS-CoV-2 virus entry to cells. In this work, we used in vitro surface plasmon resonance-based assays to show that human GRP78 indeed binds to SARS-CoV-2 spike protein. We have designed and synthesised cyclic peptides based on the loop structure of amino acids 480-488 of the SARS-CoV-2 spike protein S1 domain from the Wuhan and Omicron variants and showed that both peptides bind to GRP78. Consistent with the greater infectiousness of the Omicron variant, the Omicron-derived peptide displays slower dissociation from the target protein. Both peptides significantly inhibit the binding of wild-type S1 protein to the human protein GRP78 suggesting that further development of these cyclic peptide motifs may provide a viable route to novel anti-SARS-CoV-2 agents.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Péptidos Cíclicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Unión Proteica , COVID-19/virología , COVID-19/metabolismo
11.
Mol Carcinog ; 63(3): 494-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38085107

RESUMEN

Bone metastasis is the leading cause of tumor-related deaths in patients with prostate cancer (PCa). The interactions between PCa and the bone microenvironment form a vicious cycle. However, the complex molecular mechanism by which PCa regulates the bone microenvironment remains unclear. To determine the role of glucose-regulated protein (GRP78) in bone metastasis and growth, we established intracardiac injection and tibial injection models, and performed their histological staining. To assess the effect of GRP78 on the differentiation of osteoblasts and osteoclasts, we performed cell co-culture, enzyme-linked immunosorbent assay, alizarin red staining, and tartrate-resistant acid phosphatase staining. We found that GRP78 is upregulated in PCa tissues and that its upregulation is associated with PCa progression in patients. Functional experiments showed that GRP78 overexpression in PCa cells considerably promotes bone metastasis and induces bone microstructure changes. Silencing GRP78 substantially inhibits the migration and invasion of PCa cells in vitro and bone metastasis and tumor growth in vivo. Mechanistically, GRP78 promotes the migration and invasion of PCa cells via the Sonic hedgehog (Shh) signaling pathway. Cell co-culture showed that GRP78 promotes the differentiation of osteoblasts and osteoclasts through Shh signaling. Our findings suggest that tumor-bone matrix interactions owing to GRP78-activated paracrine Shh signaling by PCa cells regulate the differentiation of osteoblasts and osteoclasts. This process promotes bone metastasis and the proliferation of PCa cells in the bone microenvironment. Targeting the GRP78/Shh axis can serve as a therapeutic strategy to prevent bone metastasis and improve the quality of life of patients with PCa.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias Óseas/secundario , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias de la Próstata/patología , Calidad de Vida , Transducción de Señal/fisiología , Microambiente Tumoral
12.
J Virol ; 97(12): e0118323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37991381

RESUMEN

IMPORTANCE: Central nervous system infection by flaviviruses such as Japanese encephalitis virus, Dengue virus, and West Nile virus results in neuroinflammation and neuronal damage. However, little is known about the role of long non-coding RNAs (lncRNAs) in flavivirus-induced neuroinflammation and neuronal cell death. Here, we characterized the role of a flavivirus-induced lncRNA named JINR1 during the infection of neuronal cells. Depletion of JINR1 during virus infection reduces viral replication and cell death. An increase in GRP78 expression by JINR1 is responsible for promoting virus replication. Flavivirus infection induces the expression of a cellular protein RBM10, which interacts with JINR1. RBM10 and JINR1 promote the proinflammatory transcription factor NF-κB activity, which is detrimental to cell survival.


Asunto(s)
Muerte Celular , Virus de la Encefalitis Japonesa (Especie) , FN-kappa B , Neuronas , ARN Largo no Codificante , Proteínas de Unión al ARN , Humanos , Virus de la Encefalitis Japonesa (Especie)/crecimiento & desarrollo , Virus de la Encefalitis Japonesa (Especie)/patogenicidad , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/virología , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/metabolismo , Neuronas/patología , Neuronas/virología , Replicación Viral
13.
Histochem Cell Biol ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997526

RESUMEN

Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats. To investigate role of ERS in mediating RFR effects on rat testis, we established five experimental groups in male rats: control, short-term 2100-megahertz (MHz) RFR (1-week), short-term sham (sham/1-week), long-term 2100-MHz RFR (10-week), and long-term sham (sham/10-week). ERS markers Grp78 and phosphorylated PERK (p-Perk) levels and ERS-related apoptosis markers Chop and caspase 12 were investigated by immunohistochemistry, immunoblotting, and quantitative real-time polymerase chain reaction (qPCR). Long-term RFR exposure increased Grp78, p-Perk, and Chop levels, while short-term RFR exposure elevated Chop and caspase 12 levels. Chop expression was not observed in spermatogonia and primary spermatocytes, which may protect spermatogonia and primary spermatocytes against RFR-induced ERS-mediated apoptosis, thereby allowing transmission of genetic material to next generations. While short and long-term RFR exposures trigger ERS and ERS-related apoptotic pathways, further functional analyses are needed to elucidate whether this RFR-induced apoptosis has long-term male infertility effects.

14.
FASEB J ; 37(12): e23274, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37917004

RESUMEN

Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 µM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Receptor de Melanocortina Tipo 4 , Femenino , Embarazo , Porcinos , Animales , Desarrollo Embrionario , Partenogénesis , AMP Cíclico , Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas de Unión al GTP
15.
Cell Commun Signal ; 22(1): 140, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378560

RESUMEN

Hostile microenvironment of cancer cells provoke a stressful condition for endoplasmic reticulum (ER) and stimulate the expression and secretion of ER chaperones, leading to tumorigenic effects. However, the molecular mechanism underlying these effects is largely unknown. In this study, we reveal that the last four residues of ER chaperones, which are recognized by KDEL receptor (KDELR), is required for cell proliferation and migration induced by secreted chaperones. By combining proximity-based mass spectrometry analysis, split venus imaging and membrane yeast two hybrid assay, we present that EGF receptor (EGFR) may be a co-receptor for KDELR on the surface. Prior to ligand addition, KDELR spontaneously oligomerizes and constantly undergoes recycling near the plasma membrane. Upon KDEL ligand binding, the interactions of KDELR with itself and with EGFR increase rapidly, leading to augmented internalization of KDELR and tyrosine phosphorylation in the C-terminus of EGFR. STAT3, which binds the phosphorylated tyrosine motif on EGFR, is subsequently activated by EGFR and mediates cell growth and migration. Taken together, our results suggest that KDELR serves as a bona fide cell surface receptor for secreted ER chaperones and transactivates EGFR-STAT3 signaling pathway.


Asunto(s)
Receptores ErbB , Receptores de Péptidos , Transducción de Señal , Humanos , Ligandos , Receptores ErbB/metabolismo , Chaperonas Moleculares/metabolismo , Proliferación Celular , Tirosina , Factor de Transcripción STAT3/metabolismo
16.
Mol Pharm ; 21(5): 2425-2434, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38554143

RESUMEN

GRP78, a member of the HSP70 superfamily, is an endoplasmic reticulum chaperone protein overexpressed in various cancers, making it a promising target for cancer imaging and therapy. Positron emission tomography (PET) imaging offers unique advantages in real time, noninvasive tumor imaging, rendering it a suitable tool for targeting GRP78 in tumor imaging to guide targeted therapy. Several studies have reported successful tumor imaging using PET probes targeting GRP78. However, existing PET probes face challenges such as low tumor uptake, inadequate in vivo distribution, and high abdominal background signal. Therefore, this study introduces a novel peptide PET probe, [18F]AlF-NOTA-c-DVAP, for targeted tumor imaging of GRP78. [18F]AlF-NOTA-c-DVAP was radiolabeled with fluoride-18 using the aluminum-[18F]fluoride ([18F]AlF) method. The study assessed the partition coefficients, stability in vitro, and metabolic stability of [18F]AlF-NOTA-c-DVAP. Micro-PET imaging, pharmacokinetic analysis, and biodistribution studies were carried out in tumor-bearing mice to evaluate the probe's performance. Docking studies and pharmacokinetic analyses of [18F]AlF-NOTA-c-DVAP were also performed. Immunohistochemical and immunofluorescence analyses were conducted to confirm GRP78 expression in tumor tissues. The probe's binding affinity to GRP78 was analyzed by molecular docking simulation. [18F]AlF-NOTA-c-DVAP was radiolabeled in just 25 min with a high yield of 51 ± 16%, a radiochemical purity of 99%, and molar activity within the range of 20-50 GBq/µmol. [18F]AlF-NOTA-c-DVAP demonstrated high stability in vitro and in vivo, with a logD value of -3.41 ± 0.03. Dynamic PET imaging of [18F]AlF-NOTA-c-DVAP in tumors showed rapid uptake and sustained retention, with minimal background uptake. Biodistribution studies revealed rapid blood clearance and excretion through the kidneys following a single-compartment reversible metabolic model. In PET imaging, the T/M ratios for A549 tumors (high GRP78 expression), MDA-MB-231 tumors (medium expression), and HepG2 tumors (low expression) at 60 min postintravenous injection were 10.48 ± 1.39, 6.25 ± 0.47, and 3.15 ± 1.15% ID/g, respectively, indicating a positive correlation with GRP78 expression. This study demonstrates the feasibility of using [18F]AlF-NOTA-c-DVAP as a PET tracer for imaging GRP78 in tumors. The probe shows promising results in terms of stability, specificity, and tumor targeting. Further research may explore the clinical utility and potential therapeutic applications of this PET tracer for cancer diagnosis.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Radioisótopos de Flúor , Proteínas de Choque Térmico , Tomografía de Emisión de Positrones , Radiofármacos , Animales , Ratones , Humanos , Tomografía de Emisión de Positrones/métodos , Radioisótopos de Flúor/farmacocinética , Distribución Tisular , Proteínas de Choque Térmico/metabolismo , Radiofármacos/farmacocinética , Radiofármacos/administración & dosificación , Línea Celular Tumoral , Ratones Desnudos , Femenino , Ratones Endogámicos BALB C , Compuestos Heterocíclicos con 1 Anillo/química , Compuestos Heterocíclicos con 1 Anillo/farmacocinética , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacocinética
17.
Acta Biochim Biophys Sin (Shanghai) ; 56(1): 96-105, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38105649

RESUMEN

Cardiomyocyte apoptosis is an important cause of trauma-induced secondary cardiac injury (TISCI), in which the endoplasmic reticulum stress (ERS)-mediated apoptosis signaling pathway is known to be first activated, but the mechanism remains unclear. In this study, rat models of traumatic injury are established by using the Noble-Collip trauma device. The expression of glucose-regulating protein 78 (GRP78, a molecular chaperone of the cardiomyocyte ER), acetylation modification of GRP78 and apoptosis of cardiomyocytes are determined. The results show that ERS-induced GRP78 elevation does not induce cardiomyocyte apoptosis in the early stage of trauma. However, with prolonged ERS, the GRP78 acetylation level is elevated, and the apoptosis of cardiomyocytes also increases significantly. In addition, in the early stage of trauma, the expression of histone acetyl-transferase (HAT) P300 is increased and that of histone deacetylase 6 (HDAC6) is decreased in cardiomyocytes. Inhibition of HDAC function could induce the apoptosis of traumatic cardiomyocytes by increasing the acetylation level of GRP78. Our present study demonstrates for the first time that post-traumatic protracted ERS can promote cardiomyocyte apoptosis by increasing the acetylation level of GRP78, which may provide an experimental basis for seeking early molecular events of TISCI.


Asunto(s)
Lesiones Cardíacas , Miocitos Cardíacos , Animales , Ratas , Acetilación , Apoptosis , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Proteínas de Choque Térmico/metabolismo , Miocitos Cardíacos/metabolismo
18.
Immunopharmacol Immunotoxicol ; 46(2): 192-198, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38147028

RESUMEN

OBJECTIVE: Endoplasmic reticulum stress (ERS) and Toll-like receptor 2 (TLR2) signaling play an important role in inflammatory bowel disease (IBD); however, the link between TLR2 and ERS in IBD is unclear. This study investigated whether Thapsigargin (TG) -induced ER protein expression levels contributed to TLR2-mediated inflammatory response. METHODS: The THP-1 cells were treated with TLR2 agonist (Pam3CSK4), ERS inducer Thapsigargin (TG) or inhibitor (TUDCA). The mRNA expressions of TLR1-TLR10 were detected by qPCR. The production and secretion of inflammatory factors were detected by PCR and ELISA. Immunohistochemistry was used to detect the expressions of GRP78 and TLR2 in the intestinal mucosa of patients with Crohn's disease (CD). The IBD mouse model was established by TNBS in the modeling group. ERS inhibitor (TUDCA) was used in the treatment group. RESULTS: The expression of TLRs was detected via polymerase chain reaction (PCR) in THP-1 cells treated by ERS agonist Thapsigargin (TG). According to the findings, TG could promote TLR2 and TLR5 expression. Subsequently, in TLR2 agonist Pam3CSK4 induced THP-1 cells, TG could lead to increased expression of the inflammatory factors such as TNF-α, IL-1ß and IL-8, and ERS inhibitor (TUDCA) could block this effect. However, Pam3CSK4 did not significantly impact the GRP78 and CHOP expression. Based upon the immunohistochemical results, TLR2 and GRP78 expression were significantly increased in the intestinal mucosa of patients with Crohn's disease (CD). For in vivo experiments, TUDCA displayed the ability to inhibit intestinal mucosal inflammation and reduce GRP78 and TLR2 proteins. CONCLUSIONS: ERS and TLR2 is upregulated in inflammatory bowel disease, ERS may promote TLR2 pathway-mediated inflammatory response. Moreover, ERS and TLR2 signaling could be novel therapeutic targets for IBD.


Asunto(s)
Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Ácido Tauroquenodesoxicólico , Ratones , Animales , Humanos , Receptor Toll-Like 2/metabolismo , Chaperón BiP del Retículo Endoplásmico , Tapsigargina/farmacología , Estrés del Retículo Endoplásmico
19.
Environ Toxicol ; 39(5): 2961-2969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308464

RESUMEN

Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.


Asunto(s)
Chalconas , Neoplasias Endometriales , Chaperón BiP del Retículo Endoplásmico , Femenino , Humanos , Transducción de Señal , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Regulación hacia Arriba , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Estrés del Retículo Endoplásmico , Factor de Transcripción CHOP/metabolismo
20.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38612761

RESUMEN

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Asunto(s)
Acetilcisteína/análogos & derivados , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Animales , Ratas , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , alfa-Sinucleína/genética , Chaperón BiP del Retículo Endoplásmico , Administración Intranasal , Neuroprotección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA