RESUMEN
In this article, we develop CausalEGM, a deep learning framework for nonlinear dimension reduction and generative modeling of the dependency among covariate features affecting treatment and response. CausalEGM can be used for estimating causal effects in both binary and continuous treatment settings. By learning a bidirectional transformation between the high-dimensional covariate space and a low-dimensional latent space and then modeling the dependencies of different subsets of the latent variables on the treatment and response, CausalEGM can extract the latent covariate features that affect both treatment and response. By conditioning on these features, one can mitigate the confounding effect of the high dimensional covariate on the estimation of the causal relation between treatment and response. In a series of experiments, the proposed method is shown to achieve superior performance over existing methods in both binary and continuous treatment settings. The improvement is substantial when the sample size is large and the covariate is of high dimension. Finally, we established excess risk bounds and consistency results for our method, and discuss how our approach is related to and improves upon other dimension reduction approaches in causal inference.
RESUMEN
Discovering hit molecules with desired biological activity in a directed manner is a promising but profound task in computer-aided drug discovery. Inspired by recent generative AI approaches, particularly Diffusion Models (DM), we propose Graph Latent Diffusion Model (GLDM)-a latent DM that preserves both the effectiveness of autoencoders of compressing complex chemical data and the DM's capabilities of generating novel molecules. Specifically, we first develop an autoencoder to encode the molecular data into low-dimensional latent representations and then train the DM on the latent space to generate molecules inducing targeted biological activity defined by gene expression profiles. Manipulating DM in the latent space rather than the input space avoids complicated operations to map molecule decomposition and reconstruction to diffusion processes, and thus improves training efficiency. Experiments show that GLDM not only achieves outstanding performances on molecular generation benchmarks, but also generates samples with optimal chemical properties and potentials to induce desired biological activity.
Asunto(s)
Benchmarking , Descubrimiento de Drogas , DifusiónRESUMEN
Natural products (NPs) are indispensable in drug development, particularly in combating infections, cancer, and neurodegenerative diseases. However, their limited availability poses significant challenges. Template-free de novo biosynthetic pathway design provides a strategic solution for NP production, with deep learning standing out as a powerful tool in this domain. This review delves into state-of-the-art deep learning algorithms in NP biosynthesis pathway design. It provides an in-depth discussion of databases like Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and UniProt, which are essential for model training, along with chemical databases such as Reaxys, SciFinder, and PubChem for transfer learning to expand models' understanding of the broader chemical space. It evaluates the potential and challenges of sequence-to-sequence and graph-to-graph translation models for accurate single-step prediction. Additionally, it discusses search algorithms for multistep prediction and deep learning algorithms for predicting enzyme function. The review also highlights the pivotal role of deep learning in improving catalytic efficiency through enzyme engineering, which is essential for enhancing NP production. Moreover, it examines the application of large language models in pathway design, enzyme discovery, and enzyme engineering. Finally, it addresses the challenges and prospects associated with template-free approaches, offering insights into potential advancements in NP biosynthesis pathway design.
Asunto(s)
Productos Biológicos , Vías Biosintéticas , Aprendizaje Profundo , Productos Biológicos/metabolismo , Algoritmos , Biología Computacional/métodos , HumanosRESUMEN
With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.
Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Péptidos , Péptidos/química , Péptidos/uso terapéutico , Péptidos/farmacología , Descubrimiento de Drogas/métodos , Humanos , Diseño de Fármacos , Aprendizaje Automático , Biología Computacional/métodosRESUMEN
Understanding the mechanism by which cells coordinate their differentiation and migration is critical to our understanding of many fundamental processes such as wound healing, disease progression, and developmental biology. Mathematical models have been an essential tool for testing and developing our understanding, such as models of cells as soft spherical particles, reaction-diffusion systems that couple cell movement to environmental factors, and multi-scale multi-physics simulations that combine bottom-up rule-based models with continuum laws. However, mathematical models can often be loosely related to data or have so many parameters that model behaviour is weakly constrained. Recent methods in machine learning introduce new means by which models can be derived and deployed. In this review, we discuss examples of mathematical models of aspects of developmental biology, such as cell migration, and how these models can be combined with these recent machine learning methods.
Asunto(s)
Simulación por Computador , Biología Evolutiva , Modelos Biológicos , Morfogénesis , Biología Evolutiva/métodos , Biología Evolutiva/tendencias , Movimiento Celular , Simulación por Computador/tendencias , Aprendizaje Automático , Humanos , AnimalesRESUMEN
Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.
Asunto(s)
Modelos Estadísticos , Programas Informáticos , Cromatina , TecnologíaRESUMEN
Cryo-electron microscopy has become a powerful tool to determine three-dimensional (3D) structures of rigid biological macromolecules from noisy micrographs with single-particle reconstruction. Recently, deep neural networks, e.g., CryoDRGN, have demonstrated conformational and compositional heterogeneity of complexes. However, the lack of ground-truth conformations poses a challenge to assess the performance of heterogeneity analysis methods. In this work, variational autoencoders (VAE) with three types of deep generative priors were learned for latent variable inference and heterogeneous 3D reconstruction via Bayesian inference. More specifically, VAEs with "Variational Mixture of Posteriors" priors (VampPrior-SPR), non-parametric exemplar-based priors (ExemplarPrior-SPR) and priors from latent score-based generative models (LSGM-SPR) were quantitatively compared with CryoDRGN. We built four simulated datasets composed of hypothetical continuous conformation or discrete states of the hERG K + channel. Empirical and quantitative comparisons of inferred latent representations were performed with affine-transformation-based metrics. These models with more informative priors gave better regularized, interpretable factorized latent representations with better conserved pairwise distances, less deformed latent distributions and lower within-cluster variances. They were also tested on experimental datasets to resolve compositional and conformational heterogeneity (50S ribosome assembly, cowpea chlorotic mottle virus, and pre-catalytic spliceosome) with comparable high resolution. Codes and data are available: https://github.com/benjamin3344/DGP-SPR.
Asunto(s)
Teorema de Bayes , Microscopía por Crioelectrón , Imagenología Tridimensional , Microscopía por Crioelectrón/métodos , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Sustancias Macromoleculares/química , Sustancias Macromoleculares/ultraestructuraRESUMEN
PURPOSE: Due to various physical degradation factors and limited counts received, PET image quality needs further improvements. The denoising diffusion probabilistic model (DDPM) was a distribution learning-based model, which tried to transform a normal distribution into a specific data distribution based on iterative refinements. In this work, we proposed and evaluated different DDPM-based methods for PET image denoising. METHODS: Under the DDPM framework, one way to perform PET image denoising was to provide the PET image and/or the prior image as the input. Another way was to supply the prior image as the network input with the PET image included in the refinement steps, which could fit for scenarios of different noise levels. 150 brain [[Formula: see text]F]FDG datasets and 140 brain [[Formula: see text]F]MK-6240 (imaging neurofibrillary tangles deposition) datasets were utilized to evaluate the proposed DDPM-based methods. RESULTS: Quantification showed that the DDPM-based frameworks with PET information included generated better results than the nonlocal mean, Unet and generative adversarial network (GAN)-based denoising methods. Adding additional MR prior in the model helped achieved better performance and further reduced the uncertainty during image denoising. Solely relying on MR prior while ignoring the PET information resulted in large bias. Regional and surface quantification showed that employing MR prior as the network input while embedding PET image as a data-consistency constraint during inference achieved the best performance. CONCLUSION: DDPM-based PET image denoising is a flexible framework, which can efficiently utilize prior information and achieve better performance than the nonlocal mean, Unet and GAN-based denoising methods.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Relación Señal-Ruido , Modelos Estadísticos , AlgoritmosRESUMEN
There have been recent calls for wider application of generative modelling approaches in applied social network analysis. At present, however, it remains difficult for typical end users-for example, field researchers-to implement generative network models, as there is a dearth of openly available software packages that make application of such models as simple as other, permutation-based approaches. Here, we outline the STRAND R package, which provides a suite of generative models for Bayesian analysis of animal social network data that can be implemented using simple, base R syntax. To facilitate ease of use, we provide a tutorial demonstrating how STRAND can be used to model proportion, count or binary network data using stochastic block models, social relation models or a combination of the two modelling frameworks. STRAND facilitates the application of generative network models to a broad range of data found in the animal social networks literature.
Asunto(s)
Programas Informáticos , Animales , Teorema de BayesRESUMEN
The discovery of new drugs has important implications for human health. Traditional methods for drug discovery rely on experiments to optimize the structure of lead molecules, which are time-consuming and high-cost. Recently, artificial intelligence has exhibited promising and efficient performance for drug-like molecule generation. In particular, deep generative models achieve great success in de novo generation of drug-like molecules with desired properties, showing massive potential for novel drug discovery. In this study, we review the recent progress of molecule generation using deep generative models, mainly focusing on molecule representations, public databases, data processing tools, and advanced artificial intelligence based molecule generation frameworks. In particular, we present a comprehensive comparison of state-of-the-art deep generative models for molecule generation and a summary of commonly used molecular design strategies. We identify research gaps and challenges of molecule generation such as the need for better databases, missing 3D information in molecular representation, and the lack of high-precision evaluation metrics. We suggest future directions for molecular generation and drug discovery.
Asunto(s)
Inteligencia Artificial , Benchmarking , Humanos , Bases de Datos Factuales , Descubrimiento de Drogas , Diseño de FármacosRESUMEN
We propose a method for constructing generative models of 3D objects from a single 3D mesh and improving them through unsupervised low-shot learning from 2D images. Our method produces a 3D morphable model that represents shape and albedo in terms of Gaussian processes. Whereas previous approaches have typically built 3D morphable models from multiple high-quality 3D scans through principal component analysis, we build 3D morphable models from a single scan or template. As we demonstrate in the face domain, these models can be used to infer 3D reconstructions from 2D data (inverse graphics) or 3D data (registration). Specifically, we show that our approach can be used to perform face recognition using only a single 3D template (one scan total, not one per person). We extend our model to a preliminary unsupervised learning framework that enables the learning of the distribution of 3D faces using one 3D template and a small number of 2D images. Our approach is motivated as a potential model for the origins of face perception in human infants, who appear to start with an innate face template and subsequently develop a flexible system for perceiving the 3D structure of any novel face from experience with only 2D images of a relatively small number of familiar faces.
RESUMEN
Recent progress in artificial intelligence (AI) includes generative models, multimodal foundation models, and federated learning, which enable a wide spectrum of novel exciting applications and scenarios for cardiac image analysis and cardiovascular interventions. The disruptive nature of these novel technologies enables concurrent text and image analysis by so-called vision-language transformer models. They not only allow for automatic derivation of image reports, synthesis of novel images conditioned on certain textual properties, and visual questioning and answering in an oral or written dialogue style, but also for the retrieval of medical images from a large database based on a description of the pathology or specifics of the dataset of interest. Federated learning is an additional ingredient in these novel developments, facilitating multi-centric collaborative training of AI approaches and therefore access to large clinical cohorts. In this review paper, we provide an overview of the recent developments in the field of cardiovascular imaging and intervention and offer a future outlook.
Asunto(s)
Inteligencia Artificial , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Técnicas de Imagen Cardíaca/métodosRESUMEN
Semantic communication technology in the 6G wireless system focuses on semantic extraction in communication, that is, only the inherent meaning of the intention in the information. Existing technologies still have challenges in extracting emotional perception in the information, high compression rates, and privacy leakage due to knowledge sharing in communication. Large-scale generative-model technology could rapidly generate multimodal information according to user requirements. This paper proposes an approach that leverages large-scale generative models to create animated short films that are semantically and emotionally similar to real scenes and characters. The visual content of the data source is converted into text expression through semantic understanding technology; emotional clues from the data source media are added to the text form through reinforcement learning technology; and finally, a large-scale generative model is used to generate visual media, which is consistent with the semantics of the data source. This paper develops a semantic communication process with distinct modules and assesses the enhancements garnered from incorporating an emotion enhancement module. This approach facilitates the expedited generation of broad media forms and volumes according to the user's intention, thereby enabling the creation of generated multimodal media within applications in the metaverse and in intelligent driving systems.
RESUMEN
Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framework for a learning open-vocabulary predictive world model (OV-PWM) from sensor observations. The model is implemented through a hierarchical variational autoencoder (HVAE) capable of predicting diverse and accurate fully observed environments from accumulated partial observations. We show that the OV-PWM can model high-dimensional embedding maps of latent compositional embeddings representing sets of overlapping semantics inferable by sufficient similarity inference. The OV-PWM simplifies the prior two-stage closed-set PWM approach to the single-stage end-to-end learning method. CARLA simulator experiments show that the OV-PWM can learn compact latent representations and generate diverse and accurate worlds with fine details like road markings, achieving 69 mIoU over six query semantics on an urban evaluation sequence. We propose the OV-PWM as a versatile continual learning paradigm for providing spatio-semantic memory and learned internal simulation capabilities to future general-purpose mobile robots.
RESUMEN
Multimodal datasets are ubiquitous in modern applications, and multimodal Variational Autoencoders are a popular family of models that aim to learn a joint representation of different modalities. However, existing approaches suffer from a coherence-quality tradeoff in which models with good generation quality lack generative coherence across modalities and vice versa. In this paper, we discuss the limitations underlying the unsatisfactory performance of existing methods in order to motivate the need for a different approach. We propose a novel method that uses a set of independently trained and unimodal deterministic autoencoders. Individual latent variables are concatenated into a common latent space, which is then fed to a masked diffusion model to enable generative modeling. We introduce a new multi-time training method to learn the conditional score network for multimodal diffusion. Our methodology substantially outperforms competitors in both generation quality and coherence, as shown through an extensive experimental campaign.
RESUMEN
We have formulated a family of machine learning problems as the time evolution of parametric probabilistic models (PPMs), inherently rendering a thermodynamic process. Our primary motivation is to leverage the rich toolbox of thermodynamics of information to assess the information-theoretic content of learning a probabilistic model. We first introduce two information-theoretic metrics, memorized information (M-info) and learned information (L-info), which trace the flow of information during the learning process of PPMs. Then, we demonstrate that the accumulation of L-info during the learning process is associated with entropy production, and the parameters serve as a heat reservoir in this process, capturing learned information in the form of M-info.
RESUMEN
Brain-computer interfaces have seen extraordinary surges in developments in recent years, and a significant discrepancy now exists between the abundance of available data and the limited headway made in achieving a unified theoretical framework. This discrepancy becomes particularly pronounced when examining the collective neural activity at the micro and meso scale, where a coherent formalization that adequately describes neural interactions is still lacking. Here, we introduce a mathematical framework to analyze systems of natural neurons and interpret the related empirical observations in terms of lattice field theory, an established paradigm from theoretical particle physics and statistical mechanics. Our methods are tailored to interpret data from chronic neural interfaces, especially spike rasters from measurements of single neuron activity, and generalize the maximum entropy model for neural networks so that the time evolution of the system is also taken into account. This is obtained by bridging particle physics and neuroscience, paving the way for particle physics-inspired models of the neocortex.
RESUMEN
This research introduces the Variational Graph Attention Dynamics (VarGATDyn), addressing the complexities of dynamic graph representation learning, where existing models, tailored for static graphs, prove inadequate. VarGATDyn melds attention mechanisms with a Markovian assumption to surpass the challenges of maintaining temporal consistency and the extensive dataset requirements typical of RNN-based frameworks. It harnesses the strengths of the Variational Graph Auto-Encoder (VGAE) framework, Graph Attention Networks (GAT), and Gaussian Mixture Models (GMM) to adeptly navigate the temporal and structural intricacies of dynamic graphs. Through the strategic application of GMMs, the model handles multimodal patterns, thereby rectifying misalignments between prior and estimated posterior distributions. An innovative multiple-learning methodology bolsters the model's adaptability, leading to an encompassing and effective learning process. Empirical tests underscore VarGATDyn's dominance in dynamic link prediction across various datasets, highlighting its proficiency in capturing multimodal distributions and temporal dynamics.
RESUMEN
The flourishment of machine learning and deep learning methods has boosted the development of cheminformatics, especially regarding the application of drug discovery and new material exploration. Lower time and space expenses make it possible for scientists to search the enormous chemical space. Recently, some work combined reinforcement learning strategies with recurrent neural network (RNN)-based models to optimize the property of generated small molecules, which notably improved a batch of critical factors for these candidates. However, a common problem among these RNN-based methods is that several generated molecules have difficulty in synthesizing despite owning higher desired properties such as binding affinity. However, RNN-based framework better reproduces the molecule distribution among the training set than other categories of models during molecule exploration tasks. Thus, to optimize the whole exploration process and make it contribute to the optimization of specified molecules, we devised a light-weighted pipeline called Magicmol; this pipeline has a re-mastered RNN network and utilize SELFIES presentation instead of SMILES. Our backbone model achieved extraordinary performance while reducing the training cost; moreover, we devised reward truncate strategies to eliminate the model collapse problem. Additionally, adopting SELFIES presentation made it possible to combine STONED-SELFIES as a post-processing procedure for specified molecule optimization and quick chemical space exploration.
Asunto(s)
Aprendizaje Profundo , Diseño de Fármacos , Redes Neurales de la Computación , Aprendizaje Automático , Descubrimiento de Drogas/métodosRESUMEN
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.