RESUMEN
The unprecedented worldwide spread of the Citrus greening disorder, called Huanglongbing (HLB), has urged researchers for rapid interventions. HLB poses a considerable threat to global citriculture owing to its devastating impact on citrus species. This disease is caused by Candidatus Liberibacter species (CLs), primarily transferred through psyllid insects, such as Trioza erytreae and Diaphorina citri. It results in phloem malfunction, root decline, and altered plant source-sink relationships, leading to a deficient plant with minimal yield before it dies. Thus, many various techniques have been employed to eliminate HLB and control vector populations through the application of insecticides and antimicrobials. The latter have evidenced short-term efficiency. While nucleic acid-based analyses and symptom-based identification of the disease have been used for detection, they suffer from limitations such as false negatives, complex sample preparation, and high costs. To address these challenges, secreted protein-based biomarkers offer a promising solution for accurate, rapid, and cost-effective disease detection. This paper presents an overview of HLB symptoms in citrus plants, including leaf and fruit symptoms, as well as whole tree symptoms. The differentiation between HLB symptoms and those of nutrient deficiencies is discussed, emphasizing the importance of precise identification for effective disease management. The elusive nature of CLs and the challenges in culturing them in axenic cultures have hindered the understanding of their pathogenic mechanisms. However, genome sequencing has provided insights into CLs strains' metabolic traits and potential virulence factors. Efforts to identify potential host target genes for resistance are discussed, and a high-throughput antimicrobial testing method using Citrus hairy roots is introduced as a promising tool for rapid assessment of potential treatments. This review summarizes current challenges and novel therapies for HLB disease. It highlights the urgency of developing accurate and efficient detection methods and identifying the complex relations between CLs and their host plants. Transgenic citrus in conjunction with secreted protein-based biomarkers and innovative testing methodologies could revolutionize HLB management strategies toward achieving a sustainable citrus cultivation. It offers more reliable and practical solutions to combat this devastating disease and safeguard the global citriculture industry.
Asunto(s)
Citrus , Enfermedades de las Plantas , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Animales , Hemípteros/microbiología , Rhizobiaceae/genética , Rhizobiaceae/patogenicidad , Liberibacter/genética , Hojas de la Planta/microbiología , Frutas/microbiología , Biomarcadores , Insectos Vectores/microbiologíaRESUMEN
Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and ß-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.
Asunto(s)
Bacterias , Citrus , Microbiota , Floema , Enfermedades de las Plantas , Rizosfera , Microbiología del Suelo , Floema/microbiología , Floema/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Plantas Modificadas Genéticamente/microbiología , Plantas Modificadas Genéticamente/genética , Filogenia , Metagenómica , Muramidasa/metabolismo , Muramidasa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta-Defensinas/genética , ARN Ribosómico 16S/genética , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Citrus sinensis/microbiología , Raíces de Plantas/microbiologíaRESUMEN
Porous ß-tricalcium phosphate (Ca3(PO4)2; ß-TCP) was prepared via freeze-drying and the effects of this process on pore shapes and sizes were investigated. Various samples were prepared by freezing ß-TCP slurries above a liquid nitrogen surface at -180 °C with subsequent immersion in liquid nitrogen at -196 °C. These materials were then dried under reduced pressure in a freeze-dryer, after which they were sintered with heating. Compared with conventional heat-based drying, the resulting pores were more spherical, which increased both the mechanical strength and porosity of the ß-TCP. These materials had a wide range of pore sizes from 50 to 200 µm, with the mean and median values both approximately 100 µm regardless of the freeze-drying conditions. Mercury porosimetry data showed that the samples contained small, interconnected pores with sizes of 1.24 ± 0.25 µm and macroscopic, interconnected pores of 25.8 ± 4.7 µm in size. The effects of nonionic surfactants having different hydrophilic/lipophilic balance (HLB) values on foaming and pore size were also investigated. Materials made with surfactants having lower HLB values exhibited smaller pores and lower porosity, whereas higher HLB surfactants gave higher porosity and slightly larger macropores. Even so, the pore diameter could not be readily controlled solely by adjusting the HLB value. The findings of this work indicated that high porosity (>75%) and good compressive strength (>2 MPa) can both be obtained in the same porous material and that foaming agents with HLB values between 12.0 and 13.5 were optimal.
Asunto(s)
Fosfatos de Calcio , Cerámica , Liofilización , Liofilización/métodos , Fosfatos de Calcio/química , Porosidad , Cerámica/química , Tensoactivos/química , Ensayo de Materiales , Difracción de Rayos XRESUMEN
Huanglongbing is a severe citrus disease that causes significant tree and crop losses worldwide. It is caused by three Candidatus liberibacter species and spread by psyllids and infected budwood. Various methods have been used to diagnose and understand HLB, including recent advances in molecular and biochemical assays that explore the pathogen's mode of action and its impact on the host plant. Characterization is essential for developing sustainable HLB management strategies. Nanotechnology, particularly nano sensors and metal nanoparticles, shows potential for precise disease diagnosis and control. Additionally, antibiotics, nanomaterials, and genetic engineering techniques like transgenesis offer promising avenues for mitigating HLB. These diverse approaches, from conventional to cutting-edge, contribute to developing integrated HLB management strategies for sustainable citrus cultivation. The review highlights the significant advancements in conventional and advanced molecular and biochemical characterization of HLB, aiding in early detection and understanding of the infection mechanism. It emphasizes the multidimensional efforts required to characterize disease and devise innovative management strategies. As the citrus industry faces unprecedented challenges, exploring new frontiers in HLB research provides hope for sustainable solutions and a resilient future for global citrus cultivation.
Asunto(s)
Citrus , Liberibacter , Enfermedades de las Plantas , Citrus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Liberibacter/genética , Nanotecnología/métodos , Animales , Ingeniería Genética , Hemípteros/microbiología , Rhizobiaceae/genéticaRESUMEN
Membrane protein purification by means of detergents is key to isolating membrane-bound therapeutic targets. The role of the detergent structure in this process, however, is not well understood. Detergents are optimized empirically, leading to failed preparations, and thereby raising costs. Here we evaluate the utility of the hydrophilic-lipophilic balance (HLB) concept, which was introduced by Griffin in 1949, for guiding the optimization of the hydrophobic tail in first-generation, dendritic oligoglycerol detergents ([G1] OGDs). Our findings deliver qualitative HLB guidelines for rationalizing the optimization of detergents. Moreover, [G1] OGDs exhibit strongly delipidating properties, regardless of the structure of the hydrophobic tail, which delivers a methodological enabling step for investigating binding strengths of endogenous lipids and their role for membrane protein oligomerization. Our findings will facilitate the analysis of challenging drug targets in the future.
Asunto(s)
Detergentes , Proteínas de la Membrana , Detergentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/química , alfa-SinucleínaRESUMEN
Analysis of biofluids, such as plasma, can be used to investigate occupational pesticide exposure in the agricultural industry. Considering the chemical complexity and variability of plasma samples, any protocol for pesticide analysis should achieve efficient sample cleanup to minimize matrix effects and enhance method sensitivity through analyte pre-concentration. In this work, a high-throughput method was developed for analysis of 79 pesticides, commonly used in agricultural practices, in human plasma, using biocompatible solid-phase microextraction (SPME) coupled to liquid chromatography-tandem mass spectrometry. An SPME method was developed using a biocompatible hydrophilic-lipophilic balance/polyacrylonitrile (HLB/PAN) extraction phase and demonstrated negligible matrix effects. The performance of the developed SPME method was compared to a QuEChERS -Quick, Easy, Cheap, Effective, Rugged, and Safe- method, the most common sample preparation and cleanup approach for pesticide analysis in complex matrices. Comparable accuracy and precision were achieved for both methods, with accuracy values within 70-120% and relative standard deviation < 15%. Overall, the developed SPME and QuEChERS methods extracted 79 out of 82 monitored pesticides in human plasma. The SPME protocol demonstrated higher sensitivity than the QuEChERS method and a drastic reduction of matrix effects.
Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Humanos , Plaguicidas/análisis , Cromatografía Liquida/métodos , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Residuos de Plaguicidas/análisis , Extracción en Fase Sólida/métodosRESUMEN
'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves of HLB-positive trees after CLas infection, consistent with CLas-triggered callose deposition. RNA-seq-based global expression analysis of young leaves of HLB-positive sweet orange with (CLas-Pos) and without (CLas-Neg) detectable CLas demonstrated a significant impact on gene expression in young leaves, including on the expression of genes involved in host immunity, stress response, and plant hormone biosynthesis and signaling. CLas-Pos and CLas-Neg expression data displayed distinct patterns. The number of upregulated genes was higher than that of the downregulated genes in CLas-Pos for plant-pathogen interactions, glutathione metabolism, peroxisome, and calcium signaling, which are commonly associated with pathogen infections, compared with the healthy control. On the contrary, the number of upregulated genes was lower than that of the downregulated genes in CLas-Neg for genes involved in plant-pathogen interactions and peroxisome biogenesis/metabolism. Additionally, a time-course quantitative reverse transcription-PCR-based expression analysis visualized the induced expression of companion cell-specific genes, phloem protein 2 genes, and sucrose transport genes in young flushes triggered by CLas. This study advances our understanding of early events during CLas infection of citrus young flushes.
Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Liberibacter/genética , Rhizobiaceae/genética , Árboles , Citrus/genética , Transcriptoma , Enfermedades de las PlantasRESUMEN
Citrus huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. Most commercial citrus cultivars are susceptible to HLB, with a few more tolerant exceptions such as 'LB8-9' Sugar Belle mandarin. Transcriptomic analyses have been widely used to investigate the potential mechanisms for disease susceptibility, resistance, or tolerance. Previous transcriptomic studies related to HLB mostly focused on single time point data collection. We hypothesize that changes in day length and temperature throughout the seasons have profound effects on citrus-CLas interactions. Here, we conducted RNA-seq analyses on HLB-susceptible Valencia sweet orange and HLB-tolerant mandarin 'LB8-9' in winter, spring, summer, and fall. Significant variations in differentially expressed genes (DEGs) related to HLB were observed among the four seasons. For both cultivars, the highest number of DEGs were found in the spring. CLas infection stimulates the expression of immune-related genes such as NBS-LRR, RLK, RLCK, CDPK, MAPK pathway, reactive oxygen species (ROS), and PR genes in both cultivars, consistent with the model that HLB is a pathogen-triggered immune disease. HLB-positive mandarin 'LB8-9' trees contained higher concentrations of maltose and sucrose, which are known to scavenge ROS. In addition, mandarin 'LB8-9' showed higher expression of genes involved in phloem regeneration, which might contribute to its HLB tolerance. This study shed light on the pathogenicity mechanism of the HLB pathosystem and the tolerance mechanism against HLB, providing valuable insights into HLB management.
Asunto(s)
Citrus sinensis , Citrus , Rhizobiaceae , Citrus/genética , Citrus/metabolismo , Susceptibilidad a Enfermedades , Rhizobiaceae/genética , Estaciones del Año , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Plantas , Perfilación de la Expresión GénicaRESUMEN
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Asunto(s)
Citrus , Rhizobiaceae , Transcriptoma , Rhizobiaceae/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Citrus/microbiología , ÁrbolesRESUMEN
Citrus production is harmed worldwide by yellow dragon disease, also known as Huanglongbing (HLB), or citrus greening. As a result, it has negative effects and a significant impact on the agro-industrial sector. There is still no viable biocompatible treatment for Huanglongbing, despite enormous efforts to combat this disease and decrease its detrimental effects on citrus production. Nowadays, green-synthesized nanoparticles are gaining attention for their use in controlling various crop diseases. This research is the first scientific approach to examine the potential of phylogenic silver nanoparticles (AgNPs) to restore the health of Huanglongbing-diseased 'Kinnow' mandarin plants in a biocompatible manner. AgNPs were synthesized using Moringa oleifera as a reducing, capping, and stabilizing agent and characterized using different characterization techniques, i.e., UV-visible spectroscopy with a maximum average peak at 418 nm, scanning electron microscopy (SEM) with a size of 74 nm, and energy-dispersive spectroscopy (EDX), which confirmed the presence of silver ions along with different elements, and Fourier transform infrared spectroscopy served to confirm different functional groups of elements. Exogenously, AgNPs at various concentrations, i.e., 25, 50, 75, and 100 mgL-1, were applied against Huanglongbing-diseased plants to evaluate the physiological, biochemical, and fruit parameters. The findings of the current study revealed that 75 mgL-1 AgNPs were most effective in boosting the plants' physiological profiles, i.e., chl a, chl b, total chl, carotenoid content, MSI, and RWC up to 92.87%, 93.36%, 66.72%, 80.95%, 59.61%, and 79.55%, respectively; biochemical parameters, i.e., 75 mgL-1 concentration decreased the proline content by up to 40.98%, and increased the SSC, SOD, POD, CAT, TPC, and TFC content by 74.75%, 72.86%, 93.76%, 76.41%, 73.98%, and 92.85%, respectively; and fruit parameters, i.e., 75 mgL-1 concentration increased the average fruit weight, peel diameter, peel weight, juice weight, rag weight, juice pH, total soluble solids, and total sugarby up to 90.78%, 8.65%, 68.06%, 84.74%, 74.66%, 52.58%, 72.94%, and 69.69%, respectively. These findings enable us to develop the AgNP formulation as a potential citrus Huanglongbing disease management method.
Asunto(s)
Citrus , Nanopartículas del Metal , Moringa oleifera , Antioxidantes/química , Plata/química , Nanopartículas del Metal/química , Frutas/química , Moringa oleifera/química , Citrus/químicaRESUMEN
Under tropical and subtropical environments, citrus leaves are exposed to excess sunlight, inducing photoinhibition. Huanglongbing (HLB, citrus greening), a devastating phloem-limited disease putatively caused by Candidatus Liberibacter asiaticus, exacerbates this challenge with additional photosynthetic loss and excessive starch accumulation. A combined metabolomics and physiological approach was used to elucidate whether shade alleviates the deleterious effects of HLB in field-grown citrus trees, and to understand the underlying metabolic mechanisms related to shade-induced morpho-physiological changes in citrus. Using metabolite profiling and multinomial logistic regression, we identified pivotal metabolites altered in response to shade. A core metabolic network associated with shade conditions was identified through pathway enrichment analysis and metabolite mapping. We measured physio-biochemical responses and growth and yield characteristics. With these, the relationships between metabolic network and the variables measured above were investigated. We found that moderate-shade alleviates sink limitation by preventing excessive starch accumulation and increasing foliar sucrose levels. Increased growth and fruit yield in shaded compared with non-shaded trees were associated with increased photosystem II efficiency and leaf carbon fixation pathway metabolites. Our study also shows that, in HLB-affected trees under shade, the signaling of plant hormones (auxins and cytokinins) and nitrogen supply were downregulated with reducing new shoot production likely due to diminished needs of cell damage repair and tissue regeneration under shade. Overall, our findings provide the first glimpse of the complex dynamics between cellular metabolites and leaf physiological functions in citrus HLB pathosystem under shade, and reveal the mechanistic basis of how shade ameliorates HLB disease.
Asunto(s)
Citrus/metabolismo , Citrus/microbiología , Enfermedades de las Plantas , Hojas de la Planta/metabolismo , Citrus/crecimiento & desarrollo , Florida , Frutas/crecimiento & desarrollo , Liberibacter , Luz , Redes y Vías Metabólicas , Metabolómica/métodos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Brotes de la Planta/crecimiento & desarrollo , Almidón/metabolismoRESUMEN
Amorphous formulations, increasingly employed to deliver poorly soluble drugs, generally contain surfactants to improve wetting and dissolution. These surfactants are often liquids and can potentially increase the mobility of the drug and reduce its stability, but little is known about this effect. Here we investigate the effect of four common nonionic surfactants (Tween 80, Span 80, Triton X-100, and Poloxamer 407) on the crystallization of amorphous nifedipine (NIF). We find that the surfactants significantly enhance the rates of crystal nucleation and growth even at low concentrations, by up to 2 orders of magnitude at 10 wt %. The surfactants tested show similar enhancement effects independent of their structural details and hydrophilic-lipophilic balance (HLB), suggesting that surfactant adsorption at solid/liquid interfaces does not play a major role in crystal nucleation and growth. Importantly, the surfactants accelerate crystal nucleation and growth by a similar factor. This result mirrors the previous finding that a polymer dopant in a molecular glass-former causes similar slowdown of nucleation and growth. These results indicate that nucleation and growth in a deeply supercooled liquid are both mobility-limited, and a dopant mainly functions as a mobility modifier (enhancer or suppressor depending on the dopant). The common surfactants tested are all mobility enhancers and destabilize the amorphous drug, and this negative effect must be managed using stabilizers such as polymers. The effect of surfactants on nucleation can be predicted from the effect on crystal growth and the crystallization kinetics of the pure system, using the same principle previously established for drug-polymer systems. We show how the independently measured nucleation and growth rates enable predictions of the overall crystallization rates.
Asunto(s)
Nifedipino , Tensoactivos , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Nifedipino/química , Polímeros/química , Solubilidad , Tensoactivos/químicaRESUMEN
Citrus Huanglongbing (HLB) is nowadays one of the most fatal citrus diseases worldwide. Once the citrus tree is infected by the HLB disease, the biochemistry of the phloem region in midribs would change. In order to investigate the carbohydrate changes in phloem region of citrus midrib, the semi-quantification models were established to predict the carbohydrate concentration in it based on Fourier transform infrared microscopy (micro-FTIR) spectroscopy coupled with chemometrics. Healthy, asymptomatic-HLB, symptomatic-HLB, and nutrient-deficient citrus midribs were collected in this study. The results showed that the intensity of the characteristic peak varied with the carbohydrate (starch and soluble sugar) concentration in citrus midrib, especially at the fingerprint regions of 1175-900 cm-1, 1500-1175 cm-1, and 1800-1500 cm-1. Furthermore, semi-quantitative prediction models of starch and soluble sugar were established using the full micro-FTIR spectra and selected characteristic wavebands. The least squares support vector machine regression (LS-SVR) model combined with the random frog (RF) algorithm achieved the best prediction result with the determination coefficient of prediction ([Formula: see text]) of 0.85, the root mean square error of prediction (RMSEP) of 0.36%, residual predictive deviation (RPD) of 2.54, and [Formula: see text] of 0.87, RMSEP of 0.37%, RPD of 2.76, for starch and soluble sugar concentration prediction, respectively. In addition, multi-layer perceptron (MLP) classification models were established to identify HLB disease, achieving the overall classification accuracy of 94% and 87%, based on the full-range spectra and the optimal wavenumbers selected by the random frog (RF) algorithm, respectively. The results demonstrated that micro-FTIR spectroscopy can be a valuable tool for the prediction of carbohydrate concentration in citrus midribs and the detection of HLB disease, which would provide useful guidelines to detect citrus HLB disease.
Asunto(s)
Citrus , Carbohidratos/análisis , Citrus/química , Enfermedades de las Plantas , Hojas de la Planta/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/análisis , Azúcares/análisisRESUMEN
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Asunto(s)
Citrus , Rhizobiaceae , Inmunidad , Liberibacter , Enfermedades de las Plantas , ProteómicaRESUMEN
Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citriCa L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.
Asunto(s)
Antibacterianos , Proteínas Bacterianas/antagonistas & inhibidores , Rhizobiaceae/metabolismo , Transactivadores/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrus/microbiología , Evaluación Preclínica de Medicamentos , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genética , Transactivadores/genética , Transactivadores/metabolismoRESUMEN
Huanglongbing (HLB) is a destructive citrus disease that affects citrus production worldwide. 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium, is the associated causal agent of HLB. The current standard for detection of CLas is real-time quantitative polymerase chain reaction (qPCR) using either the CLas 16S rRNA gene or the ribonucleotide reductase (RNR) gene-specific primers/probe. qPCR requires well-equipped laboratories and trained personnel, which is not convenient for rapid field detection of CLas-infected trees. Recombinase polymerase amplification (RPA) assay is a fast, portable alternative to PCR-based diagnostic methods. In this study, an RPA assay was developed to detect CLas in crude citrus extracts utilizing isothermal amplification, without the need for DNA purification. Primers were designed to amplify a region of the CLas RNR gene, and a fluorescent labeled probe allowed for detection of the amplicon in real-time within 8 mins at 39°C. The assay was specific to CLas, and the sensitivity was comparable to qPCR, with a detection limit cycle threshold of 34. Additionally, the RPA assay was combined with a lateral flow device for a point-of-use assay that is field deployable. Both assays were 100% accurate in detecting CLas in fresh citrus crude extracts from leaf midribs and roots from five California strains of CLas tested in the Contained Research Facility in Davis, California. This assay will be important for distinguishing CLas-infected trees in California from those infected by other pathogens that cause similar disease symptoms and can help control HLB spread.
Asunto(s)
Citrus , Rhizobiaceae , Liberibacter/genética , Recombinasas , ARN Ribosómico 16S/genética , Enfermedades de las Plantas/microbiología , Citrus/microbiología , Cartilla de ADN/genética , ÁrbolesRESUMEN
Huanglongbing (otherwise known as HLB or greening) is currently the most devastating citrus disease worldwide. HLB is primarily associated with the phloem-inhabiting bacterium 'Candidatus Liberibacter asiaticus' (CLas). Currently, there are no citrus species resistant to CLas. Genetic transformation is one of the most effective approaches used to induce resistance against plant diseases. Antimicrobial peptides (AMPs) have shown potential breakthroughs to improve resistance to bacterial diseases in plants. In this paper, we confirm the Agrobacterium-mediated transformation of Pera sweet orange expressing the AMP sarcotoxin IA (stx IA) gene isolated from the flesh fly Sarcophaga peregrina and its reaction to CLas, involving plant performance and fruit quality assessments. Four independent transgenic lines, STX-5, STX-11, STX-12, and STX-13, and a non-transgenic control, were graft-inoculated with CLas. Based on our findings, none of the transgenic plants were immune to CLas. However, the STX-5 and STX-11 lines showed reduced susceptibility to HLB with mild disease symptoms and low incidence of plants with the presence of CLas. Fruit and juice quality were not affected by the genetic transformation. Further, no residues of the sarcotoxin IA protein were found in the juice of the STX-11 and STX-12 fruits, though detected in the juice of the STX-5 and STX-13 lines, as revealed by the immunoblotting test. However, juices from all transgenic lines showed low traces of sarcotoxin IA peptide in its composition. The accumulation of this peptide did not cause any deleterious effects on plants or in fruit/juice. Our findings reinforce the challenges of identifying novel approaches to managing HLB.
Asunto(s)
Citrus sinensis , Citrus , Rhizobiaceae , Citrus/microbiología , Citrus sinensis/metabolismo , Frutas , Liberibacter , Péptidos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rhizobiaceae/genéticaRESUMEN
Citrus greening, also known as Huanglongbing (HLB), is caused by the unculturable bacterium Candidatus Liberibacter spp. (e.g., CLas), and has caused a devastating decline in citrus production in many areas of the world. As of yet, there are no definitive treatments for controlling the disease. Antimicrobial peptides (AMPs) that have the potential to block secretion-dependent effector proteins at the outer-membrane domains were screened in silico. Predictions of drug-receptor interactions were built using multiple in silico techniques, including molecular docking analysis, molecular dynamics, molecular mechanics generalized Born surface area analysis, and principal component analysis. The efflux pump TolC of the Type 1 secretion system interacted with natural bacteriocin plantaricin JLA-9, blocking the ß barrel. The trajectory-based principal component analysis revealed the possible binding mechanism of the peptides. Furthermore, in vitro assays using two closely related culturable surrogates of CLas (Liberibacter crescens and Rhizobium spp.) showed that Plantaricin JLA-9 and two other screened AMPs inhibited bacterial growth and caused mortality. The findings contribute to designing effective therapies to manage plant diseases associated with Candidatus Liberibacter spp.
Asunto(s)
Citrus , Hemípteros , Rhizobiaceae , Animales , Liberibacter , Péptidos Antimicrobianos , Simulación del Acoplamiento Molecular , Claritromicina/farmacología , Citrus/microbiología , Enfermedades de las Plantas/microbiologíaRESUMEN
Fucoxanthin is a natural marine xanthophyll and exhibits a broad range of biological activities. In the present study, a simple and efficient two-step method was used to purify fucoxanthin from the diatom, Phaeodactylum tricornutum. The crude pigment extract of fucoxanthin was separated by silica gel column chromatography (SGCC). Then, the fucoxanthin-rich fraction was purified using a hydrophile-lipophile balance (HLB) solid-phase extraction column. The identification and quantification of fucoxanthin were determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). This two-step method can obtain 92.03% pure fucoxanthin and a 76.67% recovery rate. In addition, 1H and 13C NMR spectrums were adopted to confirm the identity of fucoxanthin. Finally, the purified fucoxanthin exhibited strong antioxidant properties in vitro with the effective concentration for 50% of maximal scavenging (EC50) of 1,1-Dihpenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radicals being 0.14 mg·mL-1 and 0.05 mg·mL-1, respectively.
Asunto(s)
Diatomeas , Cromatografía Líquida de Alta Presión , Diatomeas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Xantófilas/químicaRESUMEN
'Candidatus Liberibacter asiaticus' (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to citrus cells in local tissues have not been addressed previously. The total CLas population size for 2.5-year-old 'Valencia' sweet orange on 'Kuharske' citrange rootstock trees was quantified using quantitative PCR to be approximately 1.74 × 109 cells/tree, whereas 7- and 20-year-old sweet orange trees were estimated to be 4.3 × 1010 cells/tree, and 6.0 × 1010 cells/tree, respectively. The majority of CLas cells were distributed in leaf tissues (55.58%), followed by those in branch (36.78%), feeder root (4.75%), trunk (2.39%), and structural root (0.51%) tissues. The ratios of citrus cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples were within approximately 39 to 79, 44 to 124, 153 to 1,355, 191 to 1,054, and 561 to 3,760, respectively, representing the metabolic burden of CLas in different organs. It was estimated that the ratios of phloem cells to CLas cells for branch, leaf, trunk, feeder root, and structural root samples are approximately 0.39 to 0.79, 0.44 to 1.24, 1.53 to 13.55, 1.91 to 10.54, and 5.61 to 37.60, respectively. Approximately 0.01% of the total citrus phloem volume was estimated to be occupied by CLas, explaining the difficulty to observe CLas in most tissues under transmission electron microscopy. The CLas titer inside the leaf was estimated to be approximately 1.64 × 106 cells/leaf or 9.2 × 104 cells cm-2 in leaves, approximately 104 times less than that of typical apoplastic bacterial pathogens. This study provides quantitative estimates of phloem colonization by bacterial pathogens and furthers the understanding of the biology and virulence mechanisms of CLas.