Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(8): 1216-1236.e12, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36944333

RESUMEN

Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes. Notably, perturbation of mSWI/SNF complexes using genetic and clinically relevant chemical strategies enhances the persistence of T cells with attenuated exhaustion hallmarks and increased memory features in vitro and in vivo. Finally, pharmacologic mSWI/SNF inhibition improves CAR-T expansion and results in improved anti-tumor control in vivo. These findings reveal the central role of mSWI/SNF complexes in the coordination of T cell activation and exhaustion and nominate small-molecule-based strategies for the improvement of current immunotherapy protocols.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Cromatina/genética , Activación Transcripcional
2.
Am J Hum Genet ; 109(11): 2018-2028, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36257325

RESUMEN

The true prevalence and penetrance of monogenic disease variants are often not known because of clinical-referral ascertainment bias. We comprehensively assess the penetrance and prevalence of pathogenic variants in HNF1A, HNF4A, and GCK that account for >80% of monogenic diabetes. We analyzed clinical and genetic data from 1,742 clinically referred probands, 2,194 family members, clinically unselected individuals from a US health system-based cohort (n = 132,194), and a UK population-based cohort (n = 198,748). We show that one in 1,500 individuals harbor a pathogenic variant in one of these genes. The penetrance of diabetes for HNF1A and HNF4A pathogenic variants was substantially lower in the clinically unselected individuals compared to clinically referred probands and was dependent on the setting (32% in the population, 49% in the health system cohort, 86% in a family member, and 98% in probands for HNF1A). The relative risk of diabetes was similar across the clinically unselected cohorts highlighting the role of environment/other genetic factors. Surprisingly, the penetrance of pathogenic GCK variants was similar across all cohorts (89%-97%). We highlight that pathogenic variants in HNF1A, HNF4A, and GCK are not ultra-rare in the population. For HNF1A and HNF4A, we need to tailor genetic interpretation and counseling based on the setting in which a pathogenic monogenic variant was identified. GCK is an exception with near-complete penetrance in all settings. This along with the clinical implication of diagnosis makes it an excellent candidate for the American College of Medical Genetics secondary gene list.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Penetrancia , Diabetes Mellitus Tipo 2/diagnóstico , Estudios de Cohortes , Prevalencia , Mutación , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética
3.
EMBO J ; 39(9): e102808, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32154941

RESUMEN

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Histona Demetilasas/genética , Neoplasias Pancreáticas/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Histona Demetilasas/metabolismo , Humanos , Ratones , Mutación , Especificidad de Órganos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
4.
Biochem Biophys Res Commun ; 736: 150803, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39490151

RESUMEN

Maturity onset diabetes of the young type 5(MODY5) is typically attributed to mutations in the HNF1B gene, which encodes transcription factors that play a significant role in kidney development and function maintenance. In this study, we identified a novel HNF1B gene mutation (c.445C > A) in a young male MODY5 patient exhibiting elevated serum creatinine levels and albuminuria. Through transfection of wild type and mutant HNF1B plasmids into mouse mesangial cells (MMCs), we investigated the impact on molecular indicators related to proliferation, fibrosis and oxidative stress. The results revealed that the HNF1B novel mutation promoted the expression of fibronectin, type 1 collagen, and CyclinD1, as well as increasing cellular oxidative stress and susceptibility to ferroptosis in MMCs. Our findings established a novel association between HNF1B mutant diseases and mesangial cell proliferation and fibrosis, suggesting that mutations of HNF1B may contribute to the progression of renal function in MODY5 patients. Additionally, our results implicate potential therapeutic targets for restraining fibrosis.

5.
Diabet Med ; 41(5): e15265, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38093550

RESUMEN

AIMS: The aim is to identify people with HNF1A-MODY among individuals in diabetic cohort solely based on low hs-CRP serum level and early diabetes onset. METHODS: In 3537 participants, we analyzed the hs-CRP levels. We analyzed the HNF1A gene in 50 participants (1.4% of the cohort) with type 1 or type 2 diabetes who had hs-CRP ≤0.25 mg/L and were diagnosed with diabetes mellitus (DM) at the age of 8-40 years. We functionally characterized two identified missense variants. RESULTS: Three participants had a rare variant in the HNF1A gene, two of which we classified as likely pathogenic: c.1369_1384dup (p.Val462Aspfs*92) and c.737T>G (p.Val246Gly), and one as likely benign: c.1573A>T (p.Thr525Ser). Our functional studies revealed that p.Val246Gly decreased HNF1α transactivation activity to ~59% and the DNA binding ability to ~16% of the wild-type, while p.Thr525Ser variant showed no effect on transactivation activity, DNA binding, nor nuclear localization. Based on the two identified HNF1A-MODY patients among 3537 people with diabetes, we estimate 0.057% as the minimal HNF1A-MODY prevalence in Slovakia. A positive predictive value of hs-CRP ≤0.25 mg/L for finding HNF1A-MODY individuals was 4.0% (95% CI 0.7%, 13.5%). CONCLUSIONS: Hs-CRP value and age of DM onset could be an alternative approach to current diagnostic criteria with a potential to increase the diagnostic rate of HNF1A-MODY.


Asunto(s)
Proteína C-Reactiva , Diabetes Mellitus Tipo 2 , Humanos , Niño , Adolescente , Adulto Joven , Adulto , Proteína C-Reactiva/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Biomarcadores , Edad de Inicio , Factor Nuclear 1-alfa del Hepatocito/genética , ADN , Mutación
6.
Pediatr Nephrol ; 39(6): 1847-1858, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196016

RESUMEN

BACKGROUND: We aimed to develop a tool for predicting HNF1B mutations in children with congenital abnormalities of the kidneys and urinary tract (CAKUT). METHODS: The clinical and laboratory data from 234 children and young adults with known HNF1B mutation status were collected and analyzed retrospectively. All subjects were randomly divided into a training (70%) and a validation set (30%). A random forest model was constructed to predict HNF1B mutations. The recursive feature elimination algorithm was used for feature selection for the model, and receiver operating characteristic curve statistics was used to verify its predictive effect. RESULTS: A total of 213 patients were analyzed, including HNF1B-positive (mut + , n = 109) and HNF1B-negative (mut - , n = 104) subjects. The majority of patients had mild chronic kidney disease. Kidney phenotype was similar between groups, but bilateral kidney anomalies were more frequent in the mut + group. Hypomagnesemia and hypermagnesuria were the most common abnormalities in mut + patients and were highly selective of HNF1B. Hypomagnesemia based on age-appropriate norms had a better discriminatory value than the age-independent cutoff of 0.7 mmol/l. Pancreatic anomalies were almost exclusively found in mut + patients. No subjects had hypokalemia; the mean serum potassium level was lower in the HNF1B cohort. The abovementioned, discriminative parameters were selected for the model, which showed a good performance (area under the curve: 0.85; sensitivity of 93.67%, specificity of 73.57%). A corresponding calculator was developed for use and validation. CONCLUSIONS: This study developed a simple tool for predicting HNF1B mutations in children and young adults with CAKUT.


Asunto(s)
Enfermedades Renales , Sistema Urinario , Anomalías Urogenitales , Reflujo Vesicoureteral , Niño , Humanos , Adulto Joven , Estudios Retrospectivos , Riñón/anomalías , Sistema Urinario/anomalías , Mutación , Enfermedades Renales/genética , Magnesio , Factor Nuclear 1-beta del Hepatocito/genética
7.
Acta Pharmacol Sin ; 45(5): 1060-1076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38228910

RESUMEN

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Diterpenos , Resistencia a Antineoplásicos , Compuestos Epoxi , Proteínas Hedgehog , Factor Nuclear 1-alfa del Hepatocito , Neoplasias Pulmonares , Paclitaxel , Fenantrenos , Compuestos Epoxi/farmacología , Compuestos Epoxi/uso terapéutico , Humanos , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Diterpenos/farmacología , Diterpenos/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Hedgehog/metabolismo , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Animales , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Ratones , Ratones Endogámicos BALB C , Células A549
8.
Int J Mol Sci ; 25(19)2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39408812

RESUMEN

Hepatocellular adenomas (HAs) are tumors that can develop under different conditions, including in patients harboring a germline mutation in HNF1A. However, little is known about the pathogenesis of such disease. This work aims to better define what mechanisms lie under the development of this condition. Six HAs were sampled from the liver of a 17-year-old male affected by diabetes and multiple hepatic adenomatosis harboring the heterozygous pathogenic germline variant c.815G>A, p.(Arg272His) in HNF1A, which has a dominant negative effect. All HAs were molecularly characterized. Four of them were shown to harbor a second somatic HNF1A variant and one had a mutation in the ARID1A gene, while no additional somatic changes were found in the remaining HA and normal parenchyma. A transcriptomic profile of the same HA samples was also performed. HNF1A biallelic mutations were associated with the up-regulation of several pathways including the tricarboxylic acid cycle, the metabolism of fatty acids, and mTOR signaling while angiogenesis, endothelial and vascular proliferation, cell migration/adhesion, and immune response were down-regulated. Contrariwise, in the tumor harboring the ARID1A variant, angiogenesis was up-modulated while fatty acid metabolism was down-modulated. Histological analyses confirmed the molecular data. Independently of the second mutation, energetic processes and cholesterol metabolism were up-modulated, while the immune response was down-modulated. This work provides a complete molecular signature of HNF1A-associated HAs, analyzing the association between specific HNF1A variants and the development of HA while identifying potential new therapeutic targets for non-surgical treatment.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito , Neoplasias Hepáticas , Transcriptoma , Humanos , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Masculino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Adolescente , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patología , Adenoma de Células Hepáticas/metabolismo , Mutación , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genómica/métodos , Proteínas de Unión al ADN
9.
Int J Mol Sci ; 25(19)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39408938

RESUMEN

The HNF1B gene, located on chromosome 17q12, encodes a transcription factor essential for the development of several organs. It regulates the expression of multiple genes in renal, pancreatic, hepatic, neurological, and genitourinary tissues during prenatal and postnatal development, influencing processes such as nephrogenesis, cellular polarity, tight junction formation, cilia development, ion transport in the renal tubule, and renal metabolism. Mutations that alter the function of Hnf1b deregulate those processes, leading to various pathologies characterized by both renal and extrarenal manifestations. The main renal diseases that develop are polycystic kidney disease, hypoplastic or dysplastic kidneys, structural abnormalities, Congenital Anomalies of the Kidney and Urinary Tract (CAKUT), and electrolyte imbalances such as hyperuricemia and hypomagnesemia. Extrarenal manifestations include Maturity-Onset Diabetes of the Young (MODY), hypertransaminasemia, genital and urinary tract malformations, Autism Spectrum Disorder (ASD), and other neurodevelopmental disorders. Patients with HNF1B alterations typically carry either punctual mutations or a monoallelic microdeletion in the 17q12 region. Future research on the molecular mechanisms and genotype-phenotype correlations in HNF1B-related conditions will enhance our understanding, leading to improved clinical management, genetic counseling, monitoring, and patient care.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito , Riñón , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Humanos , Animales , Riñón/metabolismo , Riñón/patología , Mutación , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/patología
10.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674137

RESUMEN

The evolving landscape of clinical genetics is becoming increasingly relevant in the field of nephrology. HNF1B-associated renal disease presents with a diverse array of renal and extrarenal manifestations, prominently featuring cystic kidney disease and diabetes mellitus. For the genetic analyses, whole exome sequencing (WES) and multiplex ligation-dependent probe amplification (MLPA) were performed. Bioinformatics analysis was performed with Ingenuity Clinical Insights software (Qiagen). The patient's electronic record was utilized after receiving informed consent. In this report, we present seven cases of HNF1B-associated kidney disease, each featuring distinct genetic abnormalities and displaying diverse extrarenal manifestations. Over 12 years, the mean decline in eGFR averaged -2.22 ± 0.7 mL/min/1.73 m2. Diabetes mellitus was present in five patients, kidney dysplastic lesions in six patients, pancreatic dysplasia, hypomagnesemia and abnormal liver function tests in three patients each. This case series emphasizes the phenotypic variability and the fast decline in kidney function associated with HNF-1B-related disease. Additionally, it underscores that complex clinical presentations may have a retrospectively straightforward explanation through the use of diverse genetic analytical tools.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito , Fenotipo , Humanos , Factor Nuclear 1-beta del Hepatocito/genética , Masculino , Femenino , Adulto , Secuenciación del Exoma , Adolescente , Persona de Mediana Edad , Niño , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/diagnóstico , Mutación , Adulto Joven , Diabetes Mellitus/genética , Diabetes Mellitus/diagnóstico
11.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39337310

RESUMEN

Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient's clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 1-beta del Hepatocito , Enfermedades Renales Quísticas , Linaje , Adulto , Femenino , Humanos , Masculino , Diabetes Mellitus Tipo 2/genética , Secuenciación del Exoma , Factor Nuclear 1-beta del Hepatocito/genética , Enfermedades Renales Quísticas/genética , República de Corea , Eliminación de Secuencia , Adolescente , Adulto Joven , Persona de Mediana Edad
12.
Diabetologia ; 66(1): 116-126, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36216889

RESUMEN

AIMS/HYPOTHESIS: We examined the contribution of rare HNF1A variants to type 2 diabetes risk and age of diagnosis, and the extent to which their impact is affected by overall genetic susceptibility, across three ancestry groups. METHODS: Using exome sequencing data of 160,615 individuals of the UK Biobank and 18,797 individuals of the BioMe Biobank, we identified 746 carriers of rare functional HNF1A variants (minor allele frequency ≤1%), of which 507 carry variants in the functional domains. We calculated polygenic risk scores (PRSs) based on genome-wide association study summary statistics for type 2 diabetes, and examined the association of HNF1A variants and PRS with risk of type 2 diabetes and age of diagnosis. We also tested whether the PRS affects the association between HNF1A variants and type 2 diabetes risk by including an interaction term. RESULTS: Rare HNF1A variants that are predicted to impair protein function are associated with increased risk of type 2 diabetes in individuals of European ancestry (OR 1.46, p=0.049), particularly when the variants are located in the functional domains (OR 1.89, p=0.002). No association was observed for individuals of African ancestry (OR 1.10, p=0.60) or Hispanic-Latino ancestry (OR 1.00, p=1.00). Rare functional HNF1A variants were associated with an earlier age at diagnosis in the Hispanic-Latino population (ß=-5.0 years, p=0.03), and this association was marginally more pronounced for variants in the functional domains (ß=-5.59 years, p=0.03). No associations were observed for other ancestries (African ancestry ß=-2.7 years, p=0.13; European ancestry ß=-3.5 years, p=0.20). A higher PRS was associated with increased odds of type 2 diabetes in all ancestries (OR 1.61-2.11, p<10-5) and an earlier age at diagnosis in individuals of African ancestry (ß=-1.4 years, p=3.7 × 10-6) and Hispanic-Latino ancestry (ß=-2.4 years, p<2 × 10-16). Furthermore, a higher PRS exacerbated the effect of the functional HNF1A variants on type 2 diabetes in the European ancestry population (pinteraction=0.037). CONCLUSIONS/INTERPRETATION: We show that rare functional HNF1A variants, in particular those located in the functional domains, increase the risk of type 2 diabetes, at least among individuals of European ancestry. Their effect is even more pronounced in individuals with a high polygenic susceptibility. Our analyses highlight the importance of the location of functional variants within a gene and an individual's overall polygenic susceptibility, and emphasise the need for more genetic data in non-European populations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Factor Nuclear 1-alfa del Hepatocito/genética
13.
Diabetologia ; 66(12): 2226-2237, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37798422

RESUMEN

AIMS/HYPOTHESIS: Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes. METHODS: We extended our previous screening of the Norwegian Childhood Diabetes Registry by 830 additional samples and comprehensively genotyped HNF1A variants in autoantibody-negative participants using next-generation sequencing. Carriers of pathogenic variants were treated by local healthcare providers, and participants with novel likely pathogenic variants and variants of uncertain significance were enrolled in an investigator-initiated, non-randomised, open-label pilot study (ClinicalTrials.gov registration no. NCT04239586). To identify variants associated with HNF1A-MODY, we functionally characterised their pathogenicity and assessed the carriers' phenotype and treatment response to sulfonylurea. RESULTS: In total, 615 autoantibody-negative participants among 4712 cases of paediatric diabetes underwent genetic sequencing, revealing 19 with HNF1A variants. We identified nine carriers with novel variants classified as variants of uncertain significance or likely to be pathogenic, while the remaining ten participants carried five pathogenic variants previously reported. Of the nine carriers with novel variants, six responded favourably to sulfonylurea. Functional investigations revealed their variants to be dysfunctional and demonstrated a correlation with the resulting phenotype, providing evidence for reclassifying these variants as pathogenic. CONCLUSIONS/INTERPRETATION: Based on this robust classification, we estimate that the prevalence of HNF1A-MODY is 0.3% in paediatric diabetes. Clinical phenotyping is challenging and functional investigations provide a strong complementary line of evidence. We demonstrate here that combining clinical phenotyping with functional protein studies provides a powerful tool to obtain a precise diagnosis of HNF1A-MODY.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Niño , Proyectos Piloto , Diabetes Mellitus Tipo 2/metabolismo , Fenotipo , Autoanticuerpos/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Noruega/epidemiología , Compuestos de Sulfonilurea , Mutación
14.
J Biol Chem ; 298(4): 101803, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35257744

RESUMEN

Hepatocyte nuclear factor 1A (HNF-1A) is a transcription factor expressed in several embryonic and adult tissues, modulating the expression of numerous target genes. Pathogenic variants in the HNF1A gene are known to cause maturity-onset diabetes of the young 3 (MODY3 or HNF1A MODY), a disease characterized by dominant inheritance, age of onset before 25 to 35 years of age, and pancreatic ß-cell dysfunction. A precise diagnosis can alter management of this disease, as insulin can be exchanged with sulfonylurea tablets and genetic counseling differs from polygenic forms of diabetes. Therefore, more knowledge on the mechanisms of HNF-1A function and the level of pathogenicity of the numerous HNF1A variants is required for precise diagnostics. Here, we structurally and biophysically characterized an HNF-1A protein containing both the DNA-binding domain and the dimerization domain, and determined the folding and DNA-binding capacity of two established MODY3 HNF-1A variant proteins (P112L, R263C) and one variant of unknown significance (N266S). All three variants showed reduced functionality compared to the WT protein. Furthermore, while the R263C and N266S variants displayed reduced binding to an HNF-1A target promoter, we found the P112L variant was unstable in vitro and in cells. Our results support and mechanistically explain disease causality for these investigated variants and present a novel approach for the dissection of structurally unstable and DNA-binding defective variants. This study indicates that structural and biochemical investigation of HNF-1A is a valuable tool in reliable variant classification needed for precision diabetes diagnostics and management.


Asunto(s)
Diabetes Mellitus Tipo 2 , Factor Nuclear 1-alfa del Hepatocito , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Variación Genética , Factor Nuclear 1-alfa del Hepatocito/química , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Unión Proteica , Dominios Proteicos
15.
Cancer Sci ; 114(4): 1672-1685, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36511816

RESUMEN

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.


Asunto(s)
Carcinoma de Células Escamosas , Genoma , Humanos , Cromatina/genética , Factores de Transcripción/genética , Epigénesis Genética , Carcinoma de Células Escamosas/genética , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo
16.
Am J Hum Genet ; 107(4): 670-682, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32910913

RESUMEN

Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Factor Nuclear 1-alfa del Hepatocito/genética , Mutación Missense , Sistema de Registros , Aprendizaje Automático no Supervisado , Adolescente , Adulto , Alelos , Niño , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/patología , Femenino , Expresión Génica , Humanos , Masculino , Noruega/epidemiología , Fenotipo , Análisis de Componente Principal , Reino Unido/epidemiología , Secuenciación del Exoma , Adulto Joven
17.
Gastroenterology ; 162(4): 1272-1287.e16, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34953915

RESUMEN

BACKGROUND & AIMS: Chromatin architecture governs cell lineages by regulating the specific gene expression; however, its role in the diversity of cancer development remains unknown. Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMN) with an associated invasive carcinoma (IPMNinv) arise from 2 distinct precursors, and their fundamental differences remain obscure. Here, we aimed to assess the difference of chromatin architecture regulating the transcriptional signatures or biological features in pancreatic cancers. METHODS: We established 28 human organoids from distinct subtypes of pancreatic tumors, including IPMN, IPMNinv, and PDAC. We performed exome sequencing (seq), RNA-seq, assay for transposase-accessible chromatin-seq, chromatin immunoprecipitation-seq, high-throughput chromosome conformation capture, and phenotypic analyses with short hairpin RNA or clustered regularly interspaced short palindromic repeats interference. RESULTS: Established organoids successfully reproduced the histology of primary tumors. IPMN and IPMNinv organoids harbored GNAS, RNF43, or KLF4 mutations and showed the distinct expression profiles compared with PDAC. Chromatin accessibility profiles revealed the gain of stomach-specific open regions in IPMN and the pattern of diverse gastrointestinal tissues in IPMNinv. In contrast, PDAC presented an impressive loss of accessible regions compared with normal pancreatic ducts. Transcription factor footprint analysis and functional assays identified that MNX1 and HNF1B were biologically indispensable for IPMN lineages. The upregulation of MNX1 was specifically marked in the human IPMN lineage tissues. The MNX1-HNF1B axis governed a set of genes, including MYC, SOX9, and OLFM4, which are known to be essential for gastrointestinal stem cells. High-throughput chromosome conformation capture analysis suggested the HNF1B target genes to be 3-dimensionally connected in the genome of IPMNinv. CONCLUSIONS: Our organoid analyses identified the MNX1-HNF1B axis to be biologically significant in IPMN lineages.


Asunto(s)
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Factor Nuclear 1-beta del Hepatocito , Proteínas de Homeodominio , Neoplasias Intraductales Pancreáticas , Factores de Transcripción , Adenocarcinoma Mucinoso/genética , Carcinoma Ductal Pancreático/patología , Cromatina , Factor Nuclear 1-beta del Hepatocito/genética , Proteínas de Homeodominio/genética , Humanos , Neoplasias Intraductales Pancreáticas/genética , Factores de Transcripción/genética , Neoplasias Pancreáticas
18.
J Med Virol ; 95(12): e29254, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38018242

RESUMEN

Hepatitis B virus (HBV) infection remains a significant public health burden worldwide. The persistence of covalently closed circular DNA (cccDNA) within the nucleus of infected hepatocytes is responsible for the failure of antiviral treatments. The ubiquitin proteasome system (UPS) has emerged as a promising antiviral target, as it can regulate HBV replication by promoting critical protein degradation in steps of viral life cycle. Speckle-type POZ protein (SPOP) is a critical adaptor for Cul3-RBX1 E3 ubiquitin ligase complex, but the effect of SPOP on HBV replication is less known. Here, we identified SPOP as a novel host antiviral factor against HBV infection. SPOP overexpression significantly inhibited the transcriptional activity of HBV cccDNA without affecting cccDNA level in HBV-infected HepG2-NTCP and primary human hepatocyte cells. Mechanism studies showed that SPOP interacted with hepatocyte nuclear factor 1α (HNF1α), and induced HNF1α degradation through host UPS pathway. Moreover, the antiviral role of SPOP was also confirmed in vivo. Together, our findings reveal that SPOP is a novel host factor which inhibits HBV transcription and replication by ubiquitination and degradation of HNF1α, providing a potential therapeutic strategy for the treatment of HBV infection.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Antivirales/farmacología , ADN Circular , ADN Viral/genética , Hepatitis B/genética , Virus de la Hepatitis B/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Ubiquitinación , Replicación Viral
19.
Toxicol Appl Pharmacol ; 467: 116509, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37028458

RESUMEN

Oleanolic acid (OA) is a pentacyclic triterpenoid compound used clinically for acute and chronic hepatitis. However, high dose or long-term use of OA causes hepatotoxicity, which limits its clinical application. Hepatic Sirtuin (SIRT1) participates in the regulation of FXR signaling and maintains hepatic metabolic homeostasis. This study was designed to determine whether SIRT1/FXR signaling pathway contributes to the hepatotoxicity caused by OA. C57BL/6J mice were administered with OA for 4 consecutive days to induce hepatotoxicity. The results showed that OA suppressed the expression of FXR and its downstream targets CYP7A1, CYP8B1, BSEP and MRP2 at both mRNA and protein levels, breaking the homeostasis of bile acid leading to hepatotoxicity. However, treatment with FXR agonist GW4064 noticeably attenuated hepatotoxicity caused by OA. Furthermore, it was found that OA inhibited protein expression of SIRT1. Activation of SIRT1 by its agonist SRT1720 significantly improved OA-induced hepatotoxicity. Meanwhile, SRT1720 significantly reduced the inhibition of protein expression of FXR and FXR-downstream proteins. These results suggested that OA may cause hepatotoxicity through SIRT1 dependent suppression of FXR signaling pathway. In vitro experiments confirmed that OA suppressed protein expressions of FXR and its targets through inhibition of SIRT1. It was further revealed that silencing of HNF1α with siRNA significantly weakened regulatory effects of SIRT1 on the expression of FXR as well as its target genes. In conclusion, our study reveals that SIRT1/FXR pathway is crucial in OA-induced hepatotoxicity. Activation of SIRT1/HNF1α/FXR axis may represent a novel therapeutic target for ameliorating OA and other herb-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ácido Oleanólico , Sirtuinas , Ratones , Animales , Sirtuina 1/genética , Sirtuina 1/metabolismo , Ácido Oleanólico/farmacología , Sirtuinas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Ratones Endogámicos C57BL , Hígado , Transducción de Señal , Ácidos y Sales Biliares/metabolismo
20.
Pediatr Dev Pathol ; 26(4): 394-403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334553

RESUMEN

BACKGROUND: Hepatocellular adenoma (HCA) in the pediatric population is very rare and there are only limited studies, especially with molecular characterization of the tumors. Main HCA subtypes recognized in the current WHO classification include HNF1A-inactivated HCA (H-HCA), inflammatory HCA (IHCA), ß-catenin-activated HCA (b-HCA), and ß-catenin-activated IHCA (b-IHCA) and sonic hedgehog HCA (shHCA) is reported as an emerging subtype. METHODS: Clinical history, pathological information, and molecular studies for a series of 2 cases of pediatric HCA were reviewed. RESULTS: Case 1 was a b-HCA characterized by somatic CTNNB1 S45 mutation in a 11-year-old male with Abernethy malformation. Case 2 was a H-HCA characterized by germline HNF1A variant (c.526+1G>A) in a 15-year-old male associated with maturity-onset diabetes of the young type 3 (MODY3). CONCLUSION: Our findings highlight the rarity of these 2 cases associated with adenomatosis, and the contribution of molecular/genetic analysis for proper sub-typing, prognosis and family surveillance.


Asunto(s)
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Niño , Adolescente , Adenoma de Células Hepáticas/diagnóstico , Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patología , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , beta Catenina/genética , Proteínas Hedgehog , Fenotipo , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA