Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Fish Shellfish Immunol ; 132: 108466, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36462742

RESUMEN

Pesticides are extensively used in agricultural production, and their residues in soil, water, and agricultural products have become a threat to aquatic ecosystem. In this study, the toxicity of haloxyfop-p-methyl, an aryloxyphenoxypropionate herbicide was studied using the model animal zebrafish. The development of zebrafish larvae was affected by haloxyfop-p-methyl including spinal deformities, decreased body length, slow heart rate, and large yolk sac area. Behavior analysis revealed that behavior activity of larvae was weakened significantly including shortened displacement distance, reduced swimming speed, increased angular speed winding degrees, in accordance with higher AChE activity. Besides, exposure to haloxyfop-p-methyl could induce oxidative stress companied by the increased intents of ROS, MDA and increased activities of CAT and SOD. In immunotoxicity, haloxyfop-p-methyl not only reduced the innate immune cells such as neutrophils and macrophages, but also affected T cells mature in thymus. Furthermore, haloxyfop-p-methyl could induce neutrophils apoptosis, accompanied with the upregulation of the expression of proapoptotic protein such as Bax and P53 and the downregulation of the expression of antiapoptotic protein Bcl-2. In addition, haloxyfop-p-methyl could induce the expression of Jak, STAT and proinflammatory cytokine genes (IFN-γ, TNF-α, and IL-8). These results indicate that haloxyfop-p-methyl induces developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish, providing a perspective on the toxicological mechanism of haloxyfop-p-methyl in teleosts.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Ecosistema , Embrión no Mamífero , Estrés Oxidativo , Piridinas/farmacología , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
2.
Pestic Biochem Physiol ; 142: 170-175, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29107243

RESUMEN

Acanthospermum hispidum DC, an Asteraceae weed species, was very susceptible to fluazifop-P-butyl, but tolerant to other aryloxyphenoxypropionate herbicides, such as haloxyfop-P-methyl. However, other Asteraceae weeds including Bidens pilosa were all tolerant to fluazifop-P-butyl. Membrane lipid peroxidation by increasing the levels of reactive oxygen species (ROS) was proposed as an action mechanism of fluazifop-P-butyl in A. hispidum. To further clarify the primordial action site of fluazifop-P-butyl in this species, the effects on chlorophyll fluorescence characteristics and cytohistology of apical meristems were studied. Chlorophyll fluorescence characteristics (CFC) in sensitive A. hispidum seedlings were markedly affected by 10µM fluazifop-P-butyl, with the dark fluorescence yield (Fo), maximal fluorescence yield (Fm), maximal PS II quantum yield (Fv/Fm), effective photosystem II (PS II) quantum yield [Y(II)], and quantum yield of regulated energy dissipation [Y(NPQ)] declining, quantum yield of nonregulated energy dissipation [Y(NO)] rising, but these measures were not affected in Bidens pilosa. The effects of fluazifop-P-butyl on chlorophyll fluorescence properties were observed on the growing point before the mature leaves by about 4-6h. Haloxyfop-P-methyl, a control herbicide, had no effects on CFC of either A. hispidum or B. pilosa. In addition, damage to apical meristem cells of A. hispidum was observed at 6 HAT prior to changes in chlorophyll fluorescence parameters suggesting that the primary action site of fluazifop-P-butyl in this species is in the apical meristem and the effects on CFC may be the results of secondary action.


Asunto(s)
Asteraceae/efectos de los fármacos , Herbicidas/farmacología , Piridinas/farmacología , Asteraceae/química , Asteraceae/genética , Asteraceae/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescencia , Malezas/química , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo , Plantones/química , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo
3.
Environ Pollut ; 331(Pt 1): 121879, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230172

RESUMEN

Haloxyfop-P-methyl is widely used in controlling gramineous weeds, including the invasive plant Spartina alterniflora. However, the mechanism of its toxicity to crustaceans is unclear. In this study, we adopted transcriptome analysis combined with physiologic changes to investigate the response of estuarine crab (Chiromantes dehaani) to haloxyfop-P-methyl. The results showed that the median lethal concentration (LC50) of C. dehaani to haloxyfop-P-methyl at 96 h was 12.886 mg/L. Antioxidant system analysis indicated that MDA, CAT, GR, T-GSH, and GSSG might be sensitive biomarkers that characterize the oxidative defense response of the crab. In total, 782 differentially expressed genes were identified, including 489 up-regulated and 293 down-regulated genes. Glutathione metabolism, detoxification response and energy metabolism were significantly enriched, revealing the potential toxic mechanism of haloxyfop-P-methyl to C. dehaani. These results provide a theoretical foundation for further research on haloxyfop-P-methyl toxicity to crustaceans.


Asunto(s)
Braquiuros , Animales , Braquiuros/genética , Braquiuros/metabolismo , Perfilación de la Expresión Génica , Oxidación-Reducción , Metabolismo Energético , Transcriptoma
4.
Pest Manag Sci ; 79(10): 3950-3958, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37248658

RESUMEN

BACKGROUND: Haloxyfop-P-methyl, an acetyl-CoA carboxylase (ACCase)-inhibiting herbicide, has been extensively used to control grass weeds. Widespread use of haloxyfop-P-methyl in cotton fields in China has led to the development of glutathione transferase (GST)-mediated resistance in Digitaria sanguinalis. An RNA-seq analysis identified DsGSTU1, a tau class glutathione transferase from the D. sanguinalis transcriptome as a potential candidate. Here, we cloned DsGSTU1 from D. sanguinalis young leaf tissues and subsequently characterized DsGSTU1 by a combination of sequence analysis, as well as functional heterologous expression in rice. RESULTS: The full-length coding DNA sequence (CDS) of DsGSTU1 is 717 bp in length. Higher DsGSTU1 expression was observed in haloxyfop-P-methyl-resistant (HR) D. sanguinalis than in haloxyfop-P-methyl-susceptible (HS) plants. Overexpression of the DsGSTU1 gene was confirmed by transformation into the wild-type (WT) Nipponbare rice with pBWA(V)HS, a recombinant expression vector. GST activity in transgenic rice seedlings was 1.18-1.40-fold higher than the WT rice seedlings before and after haloxyfop-P-methyl treatment, respectively. Additionally, transgenic rice seedlings overexpressing DsGSTU1 were less sensitive to haloxyfop-P-methyl. CONCLUSION: Our combined findings suggest that DsGSTU1 is involved in metabolic resistance to haloxyfop-P-methyl in D. sanguinalis. A better understanding of the major genes contributing to herbicide-resistant D. sanguinalis facilitates the development of resistance management strategies for this global invasive grass weed. © 2023 Society of Chemical Industry.


Asunto(s)
Herbicidas , Oryza , Digitaria/genética , Glutatión Transferasa/genética , Resistencia a los Herbicidas/genética , Poaceae/genética , Oryza/genética , Herbicidas/farmacología , Clonación Molecular , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
5.
Environ Pollut ; 335: 122332, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37558200

RESUMEN

Haloxyfop-P-methyl is used extensively in agricultural production, and its metabolites in soil have potentially toxic effects on aquatic ecosystems. In this study, we explored the toxicity of haloxyfop-P-methyl on Chiromantes dehaani. The results of the 21-day toxicity test showed that haloxyfop-P-methyl decreased the weight gain (WG), specific growth rate (SGR) and hepatosomatic index (HSI). In glucose metabolism, haloxyfop-P-methyl reduced pyruvate, lactate, lactate dehydrogenase and succinate dehydrogenase, but enhanced glucose-6-phosphate dehydrogenase and hexokinase. Furthermore, expression of glucose metabolism-related genes was upregulated. We cloned the full-length CdG6PDH gene, which contains a 1587 bp ORF that encoded a 528 amino acid polypeptide. In antioxidant system, haloxyfop-P-methyl increased glutathione, thioredoxin reductase and thioredoxin peroxidase activities and activated the Nrf2/ARE pathway through upregulation of ERK, JNK, PKC and Nrf2. In immunity, low concentrations haloxyfop-P-methyl, or short-term exposure, upregulated the expression of immune-related genes and enhanced immune-related enzymes activity, while high concentrations or long-term exposure inhibited immune function. In summary, haloxyfop-P-methyl inhibited the growth performance, disrupted glucose metabolism, activated the antioxidant system, and led to immunotoxicity. The results deepen our understanding of the toxicity mechanism of haloxyfop-P-methyl and provide basic biological data for the comprehensive assessment of the risk of haloxyfop-P-methyl to the environment and humans.


Asunto(s)
Antioxidantes , Trastornos del Metabolismo de la Glucosa , Humanos , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ecosistema , Glucosa
6.
Artículo en Inglés | MEDLINE | ID: mdl-32289526

RESUMEN

Haloxyfop-P-methyl, an aryloxyphenoxypropionate herbicide, is widely used to eliminate unwanted plants by inhibiting lipid synthesis and inducing oxidative stress. Since haloxyfop-P-methyl targets are limited within plants, few negative side effects on non-target crops have been reported. However, dissolved haloxyfop-P-methyl in rain or groundwater contaminates aquatic environments and affects marine ecosystems. In the present study, treatment with haloxyfop-P-methyl for 48 h induced developmental deficiencies in the eyes and bodies of the zebrafish embryos as a whole and was also linked to increases in the incidence of pericardial edema. Additionally, haloxyfop-P-methyl treatment decreased hatching ratio, embryo viability, and heart rate, while simultaneously increasing the expression levels of apoptotic and inflammatory genes. Moreover, haloxyfop-P-methyl hampered vasculogenesis in the embryos through down-regulation of functional genes, and disruption of vessel formation caused neurodegeneration in the olig2-positive notochord. Collectively, this study newly discovered the oxidative stress-related toxic mechanism of haloxyfop-P-methyl during embryonic development through anti-vasculogenesis, which suppresses neurogenesis of the notochord. This toxicity assessment of haloxyfop-P-methyl on embryogenesis may contribute to establishment of safety profiling of herbicide and to support hazard control in aquatic environment.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Piridinas/toxicidad , Pez Cebra/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad
7.
Toxics ; 3(4): 373-389, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29051470

RESUMEN

Haloxyfop-p-methyl ester (HPME) ((R)-2-{4-[3-chloro-5-(trifluoromethyl)-2-pyridyloxy]phenoxy}propionic acid), is a selective aryloxyphenoxypropionate (AOPP) herbicide. It exerts phytotoxicity through inhibition of lipid metabolism and induction of oxidative stress in susceptible plants. This study investigated the toxicological potentials of HPME in rats. Twenty-four male Wistar rats (170-210 g) were randomized into four groups (I-IV). Group I (control) received 1 mL of distilled water, while animals in Groups II, III and IV received 6.75, 13.5 and 27 mg/kg body weight HPME, respectively, for 21 days. There was a significant (p < 0.05) increase in renal and hepatic function biomarkers (urea, creatinine, total bilirubin, ALP, ALT, AST) in the plasma of treated animals compared to control. Levels of testicular antioxidants, ascorbic acid and glutathione, and activities of glutathione-S-transferase, superoxide dismutase and catalase were reduced significantly after 21 days of HPME administration in a dose-dependent manner. The testicular malondialdehyde level increased significantly in the HPME-treated rats relative to the control. A significant decrease in testicular lactate dehydrogenase, acid phosphatase and γ-glutamyl transferase was also observed in HPME-treated animals. Testicular histology revealed severe interstitial edema and sections of seminiferous tubules with necrotic and eroded germinal epithelium in the HPME-treated rats. Overall, data from this study suggest that HPME altered hepatic and renal function and induced oxidative stress and morphological changes in the testis of rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA