Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2019): 20240040, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531398

RESUMEN

Interactions between environmental stressors may contribute to ongoing pollinator declines, but have not been extensively studied. Here, we examined the interaction between the agricultural fungicide Pristine (active ingredients: 25.2% boscalid, 12.8% pyraclostrobin) and high temperatures on critical honeybee behaviours. We have previously shown that consumption of field-realistic levels of this fungicide shortens worker lifespan in the field and impairs associative learning performance in a laboratory-based assay. We hypothesized that Pristine would also impair homing and foraging behaviours in the field, and that an interaction with hot weather would exacerbate this effect. Both field-relevant Pristine exposure and higher air temperatures reduced the probability of successful return on their own. Together, the two factors synergistically reduced the probability of return and increased the time required for bees to return to the hive. Pristine did not affect the masses of pollen or volumes of nectar or water brought back to the hive by foragers, and it did not affect the ratio of forager types in a colony. However, Pristine-fed bees brought more concentrated nectar back to the hive. As both agrochemical usage and heat waves increase, additive and synergistic negative effects may pose major threats to pollinators and sustainable agriculture.


Asunto(s)
Fungicidas Industriales , Abejas , Animales , Néctar de las Plantas , Fenómenos de Retorno al Lugar Habitual , Temperatura , Condicionamiento Clásico
2.
Insect Mol Biol ; 33(4): 312-322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38767730

RESUMEN

Bee venom serves as an essential defensive weapon for bees and also finds application as a medicinal drug. MicroRNAs (miRNAs) serve as critical regulators and have been demonstrated to perform a variety of biological functions. However, the presence of miRNAs in bee venom needs to be confirmed. Therefore, we conducted small RNA sequencing and identified 158 known miRNAs, 15 conserved miRNAs and 4 novel miRNAs. It is noteworthy that ame-miR-1-3p, the most abundant among them, accounted for over a quarter of all miRNA reads. To validate the function of ame-miR-1-3p, we screened 28 candidate target genes using transcriptome sequencing and three target gene prediction software (miRanda, PITA and TargetScan) for ame-miR-1-3p. Subsequently, we employed real-time quantitative reverse transcription PCR (qRT-PCR), Western blot and other technologies to confirm that ame-miR-1-3p inhibits the relative expression of antizyme inhibitor 1 (AZIN1) by targeting the 3' untranslated region (UTR) of AZIN1. This, in turn, caused ODC antizyme 1 (OAZ1) to bind to ornithine decarboxylase 1 (ODC1) and mark ODC1 for proteolytic destruction. The reduction in functional ODC1 ultimately resulted in a decrease in polyamine biosynthesis. Furthermore, we determined that ame-miR-1-3p accelerates cell death through the AZIN1/OAZ1-ODC1-polyamines pathway. Our studies demonstrate that ame-miR-1-3p diminishes cell viability and it may collaborate with sPLA2 to enhance the defence capabilities of honeybees (Apis mellifera L.). Collectively, these data further elucidate the defence mechanism of bee venom and expand the potential applications of bee venom in medical treatment.


Asunto(s)
Venenos de Abeja , Proteínas de Insectos , MicroARNs , Animales , Abejas/genética , Abejas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Venenos de Abeja/farmacología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Supervivencia Celular , Poliaminas/metabolismo , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/genética
3.
Arch Microbiol ; 206(5): 205, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573383

RESUMEN

Honeybees are vital for global crop pollination, making indispensable contributions to agricultural productivity. However, these vital insects are currently facing escalating colony losses on a global scale, primarily attributed to parasitic and pathogenic attacks. The prevalent response to combat these infections may involve the use of antibiotics. Nevertheless, the application of antibiotics raises concerns regarding potential adverse effects such as antibiotic resistance and imbalances in the gut microbiota of bees. In response to these challenges, this study reviews the utilization of a probiotic-supplemented pollen substitute diet to promote honeybee gut health, enhance immunity, and overall well-being. We systematically explore various probiotic strains and their impacts on critical parameters, including survival rate, colony strength, honey and royal jelly production, and the immune response of bees. By doing so, we emphasize the significance of maintaining a balanced gut microbial community in honeybees. The review also scrutinizes the factors influencing the gut microbial communities of bees, elucidates the consequences of dysbiosis, and evaluates the potential of probiotics to mitigate these challenges. Additionally, it delineates different delivery mechanisms for probiotic supplementation and elucidates their positive effects on diverse health parameters of honeybees. Given the alarming decline in honeybee populations and the consequential threat to global food security, this study provides valuable insights into sustainable practices aimed at supporting honeybee populations and enhancing agricultural productivity.


Asunto(s)
Apicultura , Probióticos , Abejas , Animales , Agricultura , Antibacterianos , Disbiosis
4.
J Exp Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092671

RESUMEN

In the context of slow-fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that interindividual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Bigger brains had lower mass-specific energy usage and those bees with bigger brains had a higher metabolic rate. These differences in brain respiration and brain mass were in turn associated with cognitive differences such that fast cognitive phenotypes were those bees with bigger brains while slow cognitive phenotypes were those with smaller brains. We discuss these results in the context of the role of energy in brain functioning and slow-fast decision making and speed accuracy tradeoff.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38661726

RESUMEN

A novel bifidobacterium (designated F753-1T) was isolated from the gut of honeybee (Apis mellifera). Strain F753-1T was characterized using a polyphasic taxonomic approach. Strain F753-1T was phylogenetically related to the type strains of Bifidobacterium mizhiensis, Bifidobacterium asteroides, Bifidobacterium choladohabitans, Bifidobacterium mellis, Bifidobacterium apousia and Bifidobacterium polysaccharolyticum, having 98.4-99.8 % 16S rRNA gene sequence similarities. The phylogenomic tree indicated that strain F753-1T was most closely related to the type strains of B. mellis and B. choladohabitans. Strain F753-1T had the highest average nucleotide identity (94.1-94.5 %) and digital DNA-DNA hybridization (56.3 %) values with B. mellis Bin7NT. Acid production from amygdalin, d-fructose, gentiobiose, d-mannose, maltose, sucrose and d-xylose, activity of α-galactosidase, pyruvate utilization and hydrolysis of hippurate could differentiate strain F753-1T from B. mellis CCUG 66113T and B. choladohabitans JCM 34586T. Based upon the data obtained in the present study, a novel species, Bifidobacterium apis sp. nov., is proposed, and the type strain is F753-1T (=CCTCC AB 2023227T=JCM 36562T=LMG 33388T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Bifidobacterium , ADN Bacteriano , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Abejas/microbiología , Animales , ARN Ribosómico 16S/genética , Bifidobacterium/aislamiento & purificación , Bifidobacterium/clasificación , Bifidobacterium/genética , ADN Bacteriano/genética , Ácidos Grasos , Composición de Base , Microbioma Gastrointestinal
6.
Artículo en Inglés | MEDLINE | ID: mdl-38420971

RESUMEN

Four lactic acid bacteria, designated F690T, F697, F790T and F769-2, were isolated from the gut of honeybee (Apis mellifera). Results of 16S rRNA gene sequence analysis indicated that strains F690T and F697 were phylogenetically related to the type strains of Lactobacillus kimbladii, Lactobacillus laiwuensis, Lactobacillus kullabergensis and Lactobacillus huangpiensis, having 99.1-99.6 % 16S rRNA gene sequence similarities; and that strains F790T and F769-2 were most closely related to the type strain of Lactobacillus melliventris, having 99.2-99.3 % 16S rRNA gene sequence similarities. The phylogenies based on concatenated pheS, rpoA, gyrB, hsp60, recA, rpoB and tuf sequences and based on whole genome sequences were identical to that based on 16S rRNA gene sequences. Strains F690T and F697 exhibited the highest average nucleotide identity (ANI; 92.1-93.2 %), digital DNA-DNA hybridization (dDDH; 50-50.1 %) and average amino acid identity (AAI; 94.9-95.1 %) values with L. kimbladii Hma2NT. Strains F790T and F769-2 had the highest ANI (93.1-94 %), dDDH (54.4 %) and AAI (94.4-94.7 %) values with L. melliventris Hma8NT. Based upon the data obtained in the present study, two novel species, Lactobacillus juensis sp. nov. and Lactobacillus rizhaonensis sp. nov., are proposed and the type strains are F690T (=JCM 36259T=CCTCC AB 2023131T) and F790T (=JCM 36260T=CCTCC AB 2023132T), respectively.


Asunto(s)
Alimentos Fermentados , Genes Bacterianos , Abejas , Animales , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Filogenia , Microbiología de Alimentos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alimentos Fermentados/microbiología , Lactobacillus
7.
Biol Lett ; 20(5): 20230600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715462

RESUMEN

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


Asunto(s)
Virus ARN , Varroidae , Animales , Abejas/virología , Varroidae/virología , Varroidae/fisiología , Virus ARN/fisiología , Virus ARN/genética , Francia/epidemiología , Especies Introducidas , Dicistroviridae/genética , Dicistroviridae/fisiología , Prevalencia
8.
J Toxicol Environ Health B Crit Rev ; 27(2): 73-90, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247328

RESUMEN

Africanized bees have spread across the Americas since 1956 and consequently resulted in human and animal deaths attributed to massive attacks related to exposure from Argentina to the USA. In Brazil, more than 100,000 accidents were registered in the last 5 years with a total of 303 deaths. To treat such massive attacks, Brazilian researchers developed the first specific antivenom against Africanized honey bee sting exposure. This unique product, the first of its kind in the world, has been safely tested in 20 patients during a Phase 2 clinical trial. To develop the antivenom, a standardized process was undertaken to extract primary venom antigens from the Africanized bees for immunization of serum-producing horses. This process involved extracting, purifying, fractionating, characterizing, and identifying the venom (apitoxin) employing mass spectrometry to generate standardized antigen for hyperimmunization of horses using the major toxins (melittin and its isoforms and phospholipase A2). The current guide describes standardization of the entire production chain of venom antigens in compliance with good manufacturing practices (GMP) required by regulatory agencies. Emphasis is placed upon the welfare of bees and horses during this process, as well as the development of a new biopharmaceutical to ultimately save lives.


Asunto(s)
Venenos de Abeja , Mordeduras y Picaduras de Insectos , Abejas , Humanos , Animales , Antivenenos/uso terapéutico , Mordeduras y Picaduras de Insectos/tratamiento farmacológico , Venenos de Abeja/análisis , Venenos de Abeja/química , Meliteno/análisis , Meliteno/química , Fosfolipasas A2 , Antígenos
9.
Environ Sci Technol ; 58(31): 13658-13667, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39056270

RESUMEN

The prevalence and distribution of chlorinated paraffins (CPs) have been extensively studied in various matrices and organisms; however, there is a lack of information about insects, particularly in honeybees. To address this gap, we studied young honeybee workers exposed to short- and medium-chain CPs (SCCPs and MCCPs) at an environmentally relevant concentration of 10 mg/L for 7 days, followed by a 7-day elimination period. Results indicated that CPs could transfer into the head after oral consumption and SCCPs and MCCPs exhibited clear bioaccumulation trends: midgut > hindgut > head. An evaluation of congener group distribution patterns demonstrated that the dominant congener groups in all target tissues were C11-13Cl7-8 and C14Cl7-8 for SCCPs and MCCPs, respectively, consistent with the treated CP standards. In honeybees, a significant negative relationship was observed for the log concentration of MCCP congener groups and their log KOW, but not with their log KOA. Conversely, no such correlation was found for SCCPs. These findings suggest that honeybees have a high potential to bioaccumulate MCCPs, particularly those with a low log KOW, and exhibit weak selectivity for SCCPs.


Asunto(s)
Parafina , Animales , Abejas , Parafina/metabolismo , Hidrocarburos Clorados/metabolismo , Administración Oral
10.
Cryobiology ; 114: 104849, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242276

RESUMEN

This study aimed to determine the effect of alpha-lipoic acid (ALA) on post-thaw quality of bee semen. In the study, semen from sexually mature drone were collected. A series of experiments were carried out in which the retrieved semen was diluted with diluents containing different ALA concentrations or without ALA supplement (control). Cryopreserved sperm were thawed, and evaluated for motility (phase-contrast microscope), plasma and acrosomal membrane integrity, mitochondrial membrane potential, and DNA fregmantation. The results obtained showed that the highest motility after thawing was observed in the groups containing ALA 0.25 mmol (P < 0.05). Likewise, plasma membrane integrity was found to be better preserved in the ALA 0.25 mmol-added group than in other groups. Acrosomal integrity were also higher in the ALA-containing groups than in the control group (P < 0.05). The results of this study show that ALA supplementation especially at 0.25 mmol improved post-thawed sperm motility, plasma membrane functionality, and mitochondrial membrane potantial quality of honeybee semen.


Asunto(s)
Preservación de Semen , Ácido Tióctico , Masculino , Animales , Abejas , Semen , Ácido Tióctico/farmacología , Dispositivos Aéreos No Tripulados , Motilidad Espermática , Criopreservación/métodos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Crioprotectores/farmacología , Espermatozoides , Análisis de Semen , Suplementos Dietéticos
11.
Pestic Biochem Physiol ; 200: 105843, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582603

RESUMEN

Isoxazoline is a novel structure with strong potential for controlling agricultural insect pests, but its high toxicity to honeybees limits its development in agriculture. Herein, a series of N-phenylamide isoxazoline derivatives with low honeybee toxicity were designed and synthesized using the intermediate derivatization method. Bioassay results showed that these compounds exhibited good insecticidal activity. Compounds 3b and 3f showed significant insecticidal effects against Plutella xylostella (P. xylostella) with median lethal concentrations (LC50) of 0.06 and 0.07 mg/L, respectively, comparable to that of fluralaner (LC50 = 0.02 mg/L) and exceeding that of commercial insecticide fluxametamide (LC50 = 0.52 mg/L). It is noteworthy that the acute honeybee toxicities of compounds 3b and 3f (LD50 = 1.43 and 1.63 µg/adult, respectively) were significantly reduced to 1/10 of that of fluralaner (LD50 = 0.14 µg/adult), and were adequate or lower than that of fluxametamide (LD50 = 1.14 µg/adult). Theoretical simulation using molecular docking indicates that compound 3b has similar binding modes with fluralaner and a similar optimal docking pose with fluxametamide when binding to the GABA receptor, which may contribute to its potent insecticidal activity and relatively low toxicity to honey bees. This study provides compounds 3b and 3f as potential new insecticide candidates and provides insights into the development of new isoxazoline insecticides exhibiting both high efficacy and environmental safety.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Abejas , Animales , Insecticidas/toxicidad , Insecticidas/química , Simulación del Acoplamiento Molecular , Insectos , Receptores de GABA/metabolismo , Amidas/toxicidad , Mariposas Nocturnas/metabolismo
12.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928075

RESUMEN

In most cases, the number of honeybee stings received by the body is generally small, but honeybee stings can still cause serious allergic reactions. This study fully simulated bee stings under natural conditions and used 1H Nuclear Magnetic Resonance (1H NMR) to analyze the changes in the serum metabolome of Sprague-Dawley (SD) rats stung once or twice by honeybees to verify the impact of this mild sting on the body and its underlying mechanism. The differentially abundant metabolites between the blank control rats and the rats stung by honeybees included four amino acids (aspartate, glutamate, glutamine, and valine) and four organic acids (ascorbic acid, lactate, malate, and pyruvate). There was no separation between the sting groups, indicating that the impact of stinging once or twice on the serum metabolome was similar. Using the Principal Component Discriminant Analysis ( PCA-DA) and Variable Importance in Projection (VIP) methods, glucose, lactate, and pyruvate were identified to help distinguish between sting groups and non-sting groups. Metabolic pathway analysis revealed that four metabolic pathways, namely, the tricarboxylic acid cycle, pyruvate metabolism, glutamate metabolism, and alanine, aspartate, and glutamate metabolism, were significantly affected by bee stings. The above results can provide a theoretical basis for future epidemiological studies of bee stings and medical treatment of patients stung by honeybees.


Asunto(s)
Mordeduras y Picaduras de Insectos , Metaboloma , Ratas Sprague-Dawley , Animales , Abejas/metabolismo , Ratas , Mordeduras y Picaduras de Insectos/sangre , Masculino , Redes y Vías Metabólicas , Análisis de Componente Principal
13.
Vet Med (Praha) ; 67(4): 179-189, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39170808

RESUMEN

The present study was undertaken to investigate the possible stimulating effects of Nigella sativa (N. sativa) honey, natural Saudi Sider honey, and honeybee pollen to the in vitro maturation (IVM) medium of sheep oocytes on their subsequent development. Hence, immature oocytes were exposed to various concentrations of natural Nigella sativa (N. sativa), and Saudi Sider honey (5, 10, and 20%), as well as honeybee pollen (1, 10, 50 µg/ml) during an in vitro maturation period (24 hours). After the exposure time, the maturation rate, glutathione (GSH) concentration, and candidate gene expression (GDF-9, MPF, CMOS, IGF-1, and BAX) were evaluated. Our results showed that the maturation rate was higher in the groups challenged with the lowest level of the bee products (5% and 1 µg/ml) when compared with that in the control group; where the mean number of oocytes in the metaphase II stage reached 0.360 for the honeybee pollen-treated group, 0.293 for the N. sativa-treated group, and 0.203 for the natural Saudi Sider honey-treated group. The glutathione level was significantly increased in the group exposed to N. sativa honey when compared with the other groups. Concerning the gene expression results, the Saudi Sider honey treatment showed the best results for all the genes except the CMOS gene, which was significantly higher than the GI and GII groups and lower than the GIV group and the BAX gene which did not show a significant difference when compared with the other groups. In conclusion, the addition of natural honey and honeybee pollen at a low concentration to an IVM medium improved the in vitro maturation rate, increased the glutathione level, and gene expression of the in vitro matured ovine oocytes.

14.
Microbiol Resour Announc ; 13(2): e0103923, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132847

RESUMEN

Here, we report draft genomic sequences from three Paenibacillus larvae isolates, the causative agent of American Foulbrood (AFB), obtained from honeybee colonies of Apis mellifera in Fiji, which allow both enterobacterial repetitive intergenic consensus and multilocus sequence typing genotypes to be elucidated for Fijian AFB.

15.
Microorganisms ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38399717

RESUMEN

In this article, we report the pathogenicity of a new strain of fungus, Rhizopus oryzae to honeybee larvae, isolated from the chalkbrood-diseased mummies of honeybee larvae and pupae collected from apiaries in China. Based on morphological observation and internal transcribed spacer (ITS) region analyses, the isolated pathogenic fungus was identified as R. oryzae. Koch's postulates were performed to determine the cause-and-effect pathogenicity of this isolate fungus. The in vitro pathogenicity of this virulent fungus in honeybees was tested by artificially inoculating worker larvae in the lab. The pathogenicity of this new fungus for honeybee larvae was both conidial-concentration and exposure-time dependent; its highly infectious and virulent effect against the larvae was observed at 1 × 105 conidia/larva in vitro after 96 h of challenge. Using probit regression analysis, the LT50 value against the larvae was 26.8 h at a conidial concentration of 1 × 105 conidia/larva, and the LC50 was 6.2 × 103 conidia/larva. These results indicate that the new isolate of R. oryzae has considerable pathogenicity in honeybee larvae. Additionally, this report suggests that pathogenic phytofungi may harm their associated pollinators. We recommend further research to quantify the levels, mechanisms, and pathways of the pathogenicity of this novel isolated pathogen for honeybee larvae at the colony level.

16.
Synth Syst Biotechnol ; 9(4): 853-860, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39139857

RESUMEN

Nosema ceranae, a parasite that parasitizes and reproduces in the gut of honeybees, has become a serious threat to the global apiculture industry. RNA interference (RNAi) technology can be used to inhibit N. ceranae growth by targeting silencing the thioredoxin reductase (TrxR) in N. ceranae. However, suitable carriers are one of the reasons limiting the application of RNAi due to the easy degradation of dsRNA in honeybees. As a vesicle composed of a lipid bilayer, liposomes are a good carrier for nucleic acid delivery, but studies in honeybees are lacking. In this study, liposomes were used for double-stranded RNA (dsRNA) dsTrxR delivery triggering RNAi to inhibit the N. ceranae growth in honeybees. Compared to naked dsTrxR, liposome-dsTrxR reduced N. ceranae numbers in the midgut and partially restored midgut morphology without affecting bee survival and gut microbial composition. The results of this study confirmed that liposomes could effectively protect dsRNA from entering the honeybee gut and provide a reference for using RNAi technology to suppress honeybee pests and diseases.

17.
Chemosphere ; 356: 141899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579952

RESUMEN

Although the neonicotinoid insecticides have good selectivity towards insects rather than vertebrates, they have severe effects on honeybee production and pollination activities. Therefore, the effects of imidacloprid (IMI), the most used neonicotinoid, on the two main bioreceptors, acetylcholinesterase (AChE) and nicotinic acetylcholine receptor alpha subunit (nAChRα1) of honeybees were examined to identify their roles in honeybee toxicity and possible binding sites which assist in selecting and designing neonicotinoids. In vivo, IMI showed a high inhibitory effect on AChE (IC50 5.63 mg/L); however, the effect was much lower in vitro experiment (IC50 719 mg/L). This result induced us to examine the IMI effect on AChE gene expression which revealed that the AChE-2 gene expression was severely affected by IMI explaining the observed high enzyme inhibition. In addition, although toxicity increased by increasing exposure to IMI (LC50 2.9 mg/L after 4h and 0.75 mg/L after 48h), AChE was not elevated (IC50 5.63 and 5.52 mg/L respectively). Besides, Despite resuming most enzyme activity (77% during 2 h and 84.14% after 4 h), a high mortality level was observed with LC50 2.9 mg/L. These results reinforced that the observed high toxicity is a multifactor process. Accordingly, Molecular modeling and docking of IMI into honeybee AChE and nAChRα1were also performed to examine their possible interactions and identify the important binding sites. Results models indicated that the first two binding sites in AChE were found in the esteratic subunit in the active site explaining the observed in vitro inhibition. In nAChRα1, four of the highest five free energy binding sites are located in the large TM3-TM4 loop and one in the extracellular loops. Consequently, the present work revealed that IMI toxicity is attributed to various factors including direct interaction with both AChE and nAChRα1 as well as downregulating AChE-2 gene expression.


Asunto(s)
Acetilcolinesterasa , Insecticidas , Neonicotinoides , Nitrocompuestos , Receptores Nicotínicos , Animales , Acetilcolinesterasa/metabolismo , Abejas/efectos de los fármacos , Neonicotinoides/toxicidad , Receptores Nicotínicos/metabolismo , Nitrocompuestos/toxicidad , Insecticidas/toxicidad , Simulación del Acoplamiento Molecular , Modelos Moleculares , Sitios de Unión , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética
18.
Environ Pollut ; 346: 123601, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373624

RESUMEN

The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.


Asunto(s)
Acrilonitrilo/análogos & derivados , Fragaria , Plaguicidas , Abejas , Animales , Pirazoles
19.
Sci Total Environ ; 926: 171846, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38513867

RESUMEN

Chlorinated paraffins (CPs) are industrial chemicals that have potential adverse effects in the environment and on human health. This study investigated CPs in apiary environment, honeybees, and bee products from two rural areas of Beijing, China. The median concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were 22 and 1.6 ng/m3 in the ambient air, 1350 and 708 ng/g dry mass (dw) in bees, 1050 and 427 ng/g dw in flowers, 37 and 54 ng/g in honey, 78 and 53 ng/g dw in bee pollen, 36 and 30 ng/g dw in soil, and 293 and 319 ng/g dw in bee wax. C10Cl6-7 and C14Cl7-8 dominated SCCPs and MCCPs in these samples, respectively. The concentrations and distributions of CPs in samples from apiaries located in the two regions varied. Long-range transportation of air masses was identified as an important source of CPs in apiaries. A close relationship between CPs in bees and the apiary environment indicated that bees could act as bioindicators for CP contamination in the environment. A human health risk assessment found that there were low risks for adults and children exposed to CPs through consumption of honey and pollen from the studied regions.


Asunto(s)
Hidrocarburos Clorados , Parafina , Niño , Abejas , Humanos , Animales , Parafina/análisis , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , China , Beijing
20.
J Agric Food Chem ; 72(18): 10596-10604, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619869

RESUMEN

Identification of chemical markers is important to ensure the authenticity of monofloral honey; however, the formation of chemical markers in honey has received little attention. Herein, using comparative metabolomics, we first identified chemical markers in chaste honey and then explored their formation and accumulation from nectar to mature honey. We identified agnuside and p-hydroxybenzoic acid glucosides as chemical markers for chaste honey. Besides, we developed an UHPLC-MS/MS method for quantifying these markers and found that their levels varied significantly across sample sources. We compared the presence of these compounds in chaste nectar and mature honey. The outcomes underscore that these characteristic compounds are not simply delivered from nectar to mature honey, and activities of honeybees (collecting and processing) play a pivotal role in their formation and accumulation. These observations shed light on how mature honey can form its unique qualities with a rich assortment of natural bioactive compounds, potentially supporting health benefits.


Asunto(s)
Miel , Metabolómica , Néctar de las Plantas , Espectrometría de Masas en Tándem , Miel/análisis , Abejas/metabolismo , Néctar de las Plantas/química , Néctar de las Plantas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Biomarcadores/análisis , Biomarcadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA