Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(6): 100560, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119972

RESUMEN

Heat shock proteins are chaperones, and they are responsible for protein folding in cells. Heat shock protein 90 (HSP90) is one of the most important chaperones in human cells, and its inhibition is promising for cancer therapy. However, despite the development of multiple HSP90 inhibitors, none of them has been approved for disease treatment due to unexpected cellular toxicity and side effects. Hence, a more comprehensive investigation of cellular response to HSP90 inhibitors can aid in a better understanding of the molecular mechanisms of the cytotoxicity and side effects of these inhibitors. The thermal stability shifts of proteins, which represent protein structure and interaction alterations, can provide valuable information complementary to the results obtained from commonly used abundance-based proteomics analysis. Here, we systematically investigated cell response to different HSP90 inhibitors through global quantification of protein thermal stability changes using thermal proteome profiling, together with the measurement of protein abundance changes. Besides the targets and potential off-targets of the drugs, proteins with significant thermal stability changes under the HSP90 inhibition are found to be involved in cell stress responses and the translation process. Moreover, proteins with thermal stability shifts under the inhibition are upstream of those with altered expression. These findings indicate that the HSP90 inhibition perturbs cell transcription and translation processes. The current study provides a different perspective for achieving a better understanding of cellular response to chaperone inhibition.


Asunto(s)
Antineoplásicos , Proteoma , Humanos , Proteoma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas de Choque Térmico , Antineoplásicos/farmacología
2.
Future Oncol ; 20(9): 507-519, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050698

RESUMEN

Pimitespib (TAS-116) is the first heat shock protein 90 (HSP90) inhibitor approved in Japan, and it is indicated for the treatment of gastrointestinal stromal tumors (GIST) that have progressed after treatment with imatinib, sunitinib and regorafenib. This review describes the preclinical and clinical research with pimitespib, including its mechanism of action, pharmacokinetics, clinical antitumour activity and safety. In a phase III study, pimitespib significantly prolonged progression-free survival compared with placebo (median 2.8 vs 1.4 months; hazard ratio 0.51; 95% CI 0.30-0.87; p = 0.006). Common treatment-related adverse events were diarrhoea, decreased appetite, increase in serum creatinine, malaise, nausea and eye disorders. The efficacy and safety of pimitespib are being investigated in other tumour types and in combination with other anticancer therapies.


What is this article about? This article provides information about pimitespib, a drug that recently became available in Japan for the treatment of advanced gastrointestinal stromal tumors, or 'GISTs'. GISTs are a type of cancer found in the gastrointestinal tract, and those that are considered 'advanced' have stopped responding to other treatments and have spread to other parts of the body. What have studies shown? Pimitespib works in a way unlike other drug treatments for cancer ­ it inhibits a protein called heat shock protein 90, and this stops cancer cells from developing and growing. Pimitespib is taken by mouth. Studies in Japanese patients with advanced GISTs showed an increase in the time taken for the cancer to progress further and in the length of time that patients survived among those treated with pimitespib, compared with patients who did not receive the drug. These studies also found that pimitespib was not associated with serious side effects, although diarrhoea occurred frequently. Eye disorders developed in some patients, but they could be managed by interrupting or stopping treatment with pimitespib. Pimitespib is also being studied for the treatment of other cancers, alone and in combination with other anticancer drugs. What conclusions can be made from these studies? There are very few treatments available for patients with advanced GISTs and, therefore, pimitespib is an important new option for such patients in Japan. If the results of ongoing studies are positive, pimitespib may become a treatment option for a wider range of cancer patients in the future.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Humanos , Tumores del Estroma Gastrointestinal/patología , Antineoplásicos/efectos adversos , Mesilato de Imatinib/uso terapéutico , Sunitinib/uso terapéutico , Japón , Inhibidores de Proteínas Quinasas/efectos adversos , Neoplasias Gastrointestinales/patología
3.
Subcell Biochem ; 101: 319-350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520312

RESUMEN

Posttranslational modifications (PTMs) regulate myriad cellular processes by modulating protein function and protein-protein interaction. Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone whose activity is responsible for the stabilization and maturation of more than 300 client proteins. Hsp90 is a substrate for numerous PTMs, which have diverse effects on Hsp90 function. Interestingly, many Hsp90 clients are enzymes that catalyze PTM, demonstrating one of the several modes of regulation of Hsp90 activity. Approximately 25 co-chaperone regulatory proteins of Hsp90 impact structural rearrangements, ATP hydrolysis, and client interaction, representing a second layer of influence on Hsp90 activity. A growing body of literature has also established that PTM of these co-chaperones fine-tune their activity toward Hsp90; however, many of the identified PTMs remain uncharacterized. Given the critical role of Hsp90 in supporting signaling in cancer, clinical evaluation of Hsp90 inhibitors is an area of great interest. Interestingly, differential PTM and co-chaperone interaction have been shown to impact Hsp90 binding to its inhibitors. Therefore, understanding these layers of Hsp90 regulation will provide a more complete understanding of the chaperone code, facilitating the development of new biomarkers and combination therapies.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Neoplasias , Humanos , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Procesamiento Proteico-Postraduccional , Neoplasias/tratamiento farmacológico , Adenosina Trifosfato/metabolismo
4.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791506

RESUMEN

Breast cancer, the most invasive cancer in women globally, necessitates novel treatments due to prevailing limitations of therapeutics. Search of news anticancer targets is more necessary than ever to tackle this pathology. Heat-Shock Protein 90 (HSP90), a chaperone protein, is implicated in breast cancer pathogenesis, rendering it an appealing target. Looking for alternative approach such as Plant-based compounds and natural HSP90 inhibitors offer promising prospects for innovative therapeutic strategies. This study aims to identify plant-based compounds with anticancer effects on breast cancer models and elucidate their mechanism of action in inhibiting the HSP90 protein. A systematic review was conducted and completed in January 2024 and included in vitro, in vivo, and in silico studies that investigated the effectiveness of plant-based HSP90 inhibitors tested on breast cancer models. Eleven studies were included in the review. Six plants and 24 compounds from six different classes were identified and proved to be effective against HSP90 in breast cancer models. The studied plant extracts showed a dose- and time-dependent decrease in cell viability. Variable IC50 values showed antiproliferative effects, with the plant Tubocapsicum anomalum demonstrating the lowest value. Withanolides was the most studied class. Fennel, Trianthema portulacastrum, and Spatholobus suberectus extracts were shown to inhibit tumor growth and angiogenesis and modulate HSP90 expression as well as its cochaperone interactions in breast cancer mouse models. The identified plant extracts and compounds were proven effective against HSP90 in breast cancer models, and this inhibition showed promising effects on breast cancer biology. Collectively, these results urge the need of further studies to better understand the mechanism of action of HSP90 inhibitors using comparable methods for preclinical observations.


Asunto(s)
Neoplasias de la Mama , Proteínas HSP90 de Choque Térmico , Animales , Femenino , Humanos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Extractos Vegetales/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología
5.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339194

RESUMEN

Exposure to hydrochloric acid (HCl) can provoke acute and chronic lung injury. Because of its extensive production for industrial use, frequent accidental exposures occur, making HCl one of the top five chemicals causing inhalation injuries. There are no Food and Drug Administration (FDA)-approved treatments for HCl exposure. Heat shock protein 90 (HSP90) inhibitors modulate transforming growth factor-ß (TGF-ß) signaling and the development of chemical-induced pulmonary fibrosis. However, little is known on the role of Heat Shock Protein 70 (HSP70) during injury and treatment with HSP90 inhibitors. We hypothesized that administration of geranylgeranyl-acetone (GGA), an HSP70 inducer, or gefitinib (GFT), an HSP70 suppressant, alone or in combination with the HSP90 inhibitor, TAS-116, would improve or worsen, respectively, HCl-induced chronic lung injury in vivo and endothelial barrier dysfunction in vitro. GGA, alone, improved HCl-induced human lung microvascular endothelial cells (HLMVEC) barrier dysfunction and, in combination with TAS-116, improved the protective effect of TAS-116. In mice, GGA reduced HCl toxicity and while TAS-116 alone blocked HCl-induced chronic lung injury, co-administration with GGA, resulted in further improvement. Conversely, GFT potentiated HCl-induced barrier dysfunction and impaired the antidotal effects of TAS-116. We conclude that combined treatments with HSP90 inhibitors and HSP70 inducers may represent a novel therapeutic approach to manage HCl-induced chronic lung injury and pulmonary fibrosis.


Asunto(s)
Antineoplásicos , Benzamidas , Lesión Pulmonar , Fibrosis Pulmonar , Pirazoles , Ratones , Humanos , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Ácido Clorhídrico/toxicidad , Proteínas HSP70 de Choque Térmico/metabolismo , Células Endoteliales/metabolismo , Antineoplásicos/efectos adversos , Gefitinib/efectos adversos , Proteínas HSP90 de Choque Térmico/metabolismo
6.
Mol Divers ; 27(1): 239-248, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35429283

RESUMEN

Heat shock protein 90 (HSP90) is a promising anticancer drug target, which could be employed to construct HSP90 inhibitors-based drug conjugates for selective tumor therapy. Herein, a series of 4-(1H-1,2,3-triazol-1-yl)benzamides were rationally designed, synthesized as HSP90 inhibitors, and their structures were characterized by 1H NMR, 13C NMR, and HR-MS. Preliminary HSP90 binding assay showed that compounds 6b, 6l, 6m, 6n, 6t, and 6u exhibited significant HSP90α binding affinity. Among these selected compounds, 6u displayed the most potent anti-proliferative activities and particularly in Capan-1 cell line. Molecular modeling studies also confirmed possible mode of interaction between 6u and the binding sites of HSP90 by hydrogen bond and hydrophobic interactions. Above all, these encouraging data indicated that 6u could be used as a HSP90 inhibitor for further study and helped the recognition of the 4-(1H-1,2,3-triazol-1-yl)benzamide motif as a new scaffold for HSP90 inhibitors.


Asunto(s)
Antineoplásicos , Línea Celular Tumoral , Modelos Moleculares , Antineoplásicos/química , Sitios de Unión , Benzamidas/farmacología , Benzamidas/química , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/farmacología , Diseño de Fármacos , Relación Estructura-Actividad , Proliferación Celular
7.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762133

RESUMEN

The use of 90 kDa heat shock protein (HSP90) inhibition as a therapy in lung adenocarcinoma remains limited due to moderate drug efficacy, the emergence of drug resistance, and early tumor recurrence. The main objective of this research is to maximize treatment efficacy in lung adenocarcinoma by identifying key proteins underlying HSP90 inhibition according to molecular background, and to search for potential biomarkers of response to this therapeutic strategy. Inhibition of the HSP90 chaperone was evaluated in different lung adenocarcinoma cell lines representing the most relevant molecular alterations (EGFR mutations, KRAS mutations, or EML4-ALK translocation) and wild-type genes found in each tumor subtype. The proteomic technique iTRAQ was used to identify proteomic profiles and determine which biological pathways are involved in the response to HSP90 inhibition in lung adenocarcinoma. We corroborated the greater efficacy of HSP90 inhibition in EGFR mutated or EML4-ALK translocated cell lines. We identified proteins specifically and significantly deregulated after HSP90 inhibition for each molecular alteration. Two proteins, ADI1 and RRP1, showed independently deregulated molecular patterns. Functional annotation of the altered proteins suggested that apoptosis was the only pathway affected by HSP90 inhibition across all molecular subgroups. The expression of ADI1 and RRP1 could be used to monitor the correct inhibition of HSP90 in lung adenocarcinoma. In addition, proteins such as ASS1, ITCH, or UBE2L3 involved in pathways related to the inhibition of a particular molecular background could be used as potential response biomarkers, thereby improving the efficacy of this therapeutic approach to combat lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Proteómica , Receptores ErbB/genética , Receptores ErbB/metabolismo , Recurrencia Local de Neoplasia/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Proteínas Tirosina Quinasas Receptoras/genética , Oncogenes , Mutación , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo
8.
Biochem Biophys Res Commun ; 534: 461-467, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33246559

RESUMEN

Treatment relapse due to clonal evolution was shown to be an independent factor for poor prognosis in advanced stages of chronic myeloid leukemia. Overcoming secondary resistance arising due to clonal evolution is still an unmet need and lack of adequate pre-clinical models hampers the identification of underlying mechanisms and testing of alternate treatment strategies. The current study thus aimed to create cellular models to study molecular mechanisms underlying clonal evolution and identify strategies to overcome the secondary drug resistance. Analysis of cell lines derived from three independent cell-based screens revealed the co-evolution specifically of imatinib and HSP90 inhibitor (HSP90i) resistances despite their exposure to a single inhibitor alone. Molecular and biochemical characterization of these cell lines revealed additional cytogenetic abnormalities, differential activation of pro-survival signaling molecules and over expression of ABL kinase and HSP90 genes. Importantly, all the imatinib-HSP90i dual resistant cell lines remained sensitive to sorafenib and vorinostat suggesting their utility in treating patients who relapse upon imatinib treatment due to clonal evolution. In addition, we cite similar examples of dual resistance towards various kinase inhibitors and HSP90i in some cell lines that represent solid cancers suggesting co-evolution leading to secondary drug resistance as a pan-cancer phenomenon. Taken together, our results suggest the efficacy of HSP90i in overcoming drug resistance caused by point mutations in the target kinase but not in cases of clonal evolution.


Asunto(s)
Antineoplásicos/farmacología , Evolución Clonal/efectos de los fármacos , Resistencia a Antineoplásicos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Línea Celular Tumoral , Aberraciones Cromosómicas/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Transcriptoma/efectos de los fármacos
9.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802597

RESUMEN

Heat shock protein 90 (HSP90) plays an essential role in lung adenocarcinoma, acting as a key chaperone involved in the correct functioning of numerous highly relevant protein drivers of this disease. To this end, HSP90 inhibitors have emerged as promising therapeutic strategies, even though responses to them have been limited to date. Given the need to maximize treatment efficacy, the objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic techniques to identify proteins in human lung adenocarcinoma cell lines whose basal abundances were correlated with response to HSP90 inhibitors (geldanamycin and radicicol derivatives). From the protein profiles identified according to response, the relationship between lactate dehydrogenase B (LDHB) and DNA topoisomerase 1 (TOP1) with respect to sensitivity and resistance, respectively, to geldanamycin derivatives is noteworthy. Likewise, rhotekin (RTKN) and decaprenyl diphosphate synthase subunit 2 (PDSS2) were correlated with sensitivity and resistance to radicicol derivatives. We also identified a relationship between resistance to HSP90 inhibition and the p53 pathway by glucose deprivation. In contrast, arginine biosynthesis was correlated with sensitivity to HSP90 inhibitors. Further study of these outcomes could enable the development of strategies to improve the clinical efficacy of HSP90 inhibition in patients with lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Antineoplásicos/farmacología , Benzoquinonas/farmacología , Línea Celular Tumoral , Humanos , Lactamas Macrocíclicas/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Chaperonas Moleculares/metabolismo , Proteómica/métodos
10.
Apoptosis ; 25(1-2): 12-28, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31659567

RESUMEN

HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Melanoma/metabolismo , Animales , Antineoplásicos/química , Proteínas del Choque Térmico HSP72/genética , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Dominios Proteicos
11.
Mol Cell Proteomics ; 17(8): 1470-1486, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632047

RESUMEN

Inhibition of the heat shock protein 90 (Hsp90) chaperone is a promising therapeutic strategy to target expression of the androgen receptor (AR) and other oncogenic drivers in prostate cancer cells. However, identification of clinically-relevant responses and predictive biomarkers is essential to maximize efficacy and treatment personalization. Here, we combined mass spectrometry (MS)-based proteomic analyses with a unique patient-derived explant (PDE) model that retains the complex microenvironment of primary prostate tumors. Independent discovery and validation cohorts of PDEs (n = 16 and 30, respectively) were cultured in the absence or presence of Hsp90 inhibitors AUY922 or 17-AAG. PDEs were analyzed by LC-MS/MS with a hyper-reaction monitoring data independent acquisition (HRM-DIA) workflow, and differentially expressed proteins identified using repeated measure analysis of variance (ANOVA; raw p value <0.01). Using gene set enrichment, we found striking conservation of the most significantly AUY922-altered gene pathways between the discovery and validation cohorts, indicating that our experimental and analysis workflows were robust. Eight proteins were selectively altered across both cohorts by the most potent inhibitor, AUY922, including TIMP1, SERPINA3 and CYP51A (adjusted p < 0.01). The AUY922-mediated decrease in secretory TIMP1 was validated by ELISA of the PDE culture medium. We next exploited the heterogeneous response of PDEs to 17-AAG in order to detect predictive biomarkers of response and identified PCBP3 as a marker with increased expression in PDEs that had no response or increased in proliferation. Also, 17-AAG treatment led to increased expression of DNAJA1 in PDEs that exhibited a cytostatic response, revealing potential drug resistance mechanisms. This selective regulation of DNAJA1 was validated by Western blot analysis. Our study establishes "proof-of-principle" that proteomic profiling of drug-treated PDEs represents an effective and clinically-relevant strategy for identification of biomarkers that associate with certain tumor-specific responses.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias de la Próstata/metabolismo , Proteómica/métodos , Benzoquinonas/farmacología , Proliferación Celular/efectos de los fármacos , Estudios de Cohortes , Resistencia a Antineoplásicos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Isoxazoles/farmacología , Lactamas Macrocíclicas/farmacología , Masculino , Proteínas de Neoplasias/metabolismo , Análisis de Componente Principal , Neoplasias de la Próstata/patología , Proteoma/metabolismo , Reproducibilidad de los Resultados , Resorcinoles/farmacología
12.
Adv Exp Med Biol ; 1243: 87-99, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32297213

RESUMEN

The chaperome is a large family of proteins composed of chaperones, co-chaperones and a multitude of other factors. Elegant studies in yeast and other organisms have paved the road to how we currently understand the complex organization of this large family into protein networks. The goal of this chapter is to provide an overview of chaperome networks in cancer cells, with a focus on two cellular states defined by chaperome network organization. One state characterized by chaperome networks working in isolation and with little overlap, contains global chaperome networks resembling those of normal, non-transformed, cells. We propose that in this state, redundancy in chaperome networks results in a tumor type unamenable for single-agent chaperome therapy. The second state comprises chaperome networks interconnected in response to cellular stress, such as MYC hyperactivation. This is a state where no redundant pathways can be deployed, and is a state of vulnerability, amenable for chaperome therapy. We conclude by proposing a change in how we discover and implement chaperome inhibitor strategies, and suggest an approach to chaperome therapy where the properties of chaperome networks, rather than genetics or client proteins, are used in chaperome inhibitor implementation.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Neoplasias/patología
13.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317068

RESUMEN

Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π-π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.


Asunto(s)
Antineoplásicos/síntesis química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Adenina/análogos & derivados , Adenina/química , Adenina/farmacología , Animales , Antineoplásicos/farmacología , Sitios de Unión , Células HCT116 , Proteínas HSP90 de Choque Térmico/química , Humanos , Isoxazoles/química , Células MCF-7 , Ratones , Unión Proteica , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad
14.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167494

RESUMEN

Ovarian cancer is the fifth leading cause of cancer deaths. Chemoresistance, particularly against platinum compounds, contributes to a poor prognosis. Histone deacetylase inhibitors (HDACi) and heat shock protein 90 inhibitors (HSP90i) are known to modulate pathways involved in chemoresistance. This study investigated the effects of HDACi (panobinostat, LMK235) and HSP90i (luminespib, HSP990) on the potency of cisplatin in ovarian cancer cell lines (A2780, CaOV3, OVCAR3 and cisplatin-resistant sub-clones). Preincubation with HDACi increased the cytotoxic potency of HSP90i, whereas preincubation with HSP90i had no effect. Preincubation with HSP90i or HDACi 48h prior to cisplatin enhanced the cisplatin potency significantly in all cell lines via apoptosis induction and affected the expression of apoptosis-relevant genes and proteins. For CaOV3CisR and A2780CisR, a preincubation with HDACi for 48-72 h led to complete reversal of cisplatin resistance. Furthermore, permanent presence of HDACi in sub-cytotoxic concentrations prevented the development of cisplatin resistance in A2780. However, triple combinations of HDACi, HSP90i and cisplatin were not superior to dual combinations. Overall, priming with HDACi sensitizes ovarian cancer cells to treatment with HSP90i or cisplatin and has an influence on the development of cisplatin resistance, both of which may contribute to an improved ovarian cancer treatment.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Ováricas/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/fisiología , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Humanos , Isoxazoles/farmacología , Panobinostat/farmacología , Piridonas/farmacología , Pirimidinas/farmacología , Resorcinoles/farmacología
15.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635192

RESUMEN

Increased levels of heat shock protein 90 (HSP90) have been recently implicated in the pathogenesis of pulmonary fibrosis and the use of HSP90 inhibitors constitutes a potential therapeutic approach. Similarly, acute exposure to nitrogen mustard (NM) is related to the development of chronic lung injury driven by TNF-α, TGF-ß, ERK and HSP90. Thus, we developed a murine model of NM-induced pulmonary fibrosis by instilling C57BI/6J mice with 0.625 mg/kg mechlorethamine hydrochloride. After 24 h, mice began receiving AUY-922, a second generation HSP90 inhibitor, at 1 mg/kg 2 times per week or 2 mg/kg 3 times per week, for either 10 or 30 days. AUY-922 suppressed the NM-induced sustained inflammation, as reflected in the reduction of leukocyte and protein concentrations in bronchoalveolar lavage fluid (BALF), and inhibited the activation of pro-fibrotic biomarkers, ERK and HSP90. Furthermore, AUY-922 maintained normal lung function, decreased the overexpression and accumulation of extracellular matrix proteins, and dramatically reduced histologic evidence of fibrosis in the lungs of mice exposed to NM. The HSP90 inhibitor, AUY-922, successfully blocked the adverse effects associated with acute exposures to NM, representing a promising approach against NM-induced pulmonary fibrosis.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Isoxazoles/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/prevención & control , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/prevención & control , Resorcinoles/farmacología , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiopatología , Lesión Pulmonar/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Mecloretamina/antagonistas & inhibidores , Mecloretamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Fibrosis Pulmonar/patología
16.
Apoptosis ; 24(7-8): 596-611, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30989459

RESUMEN

Outcomes of melanoma patient treatment remain unsatisfactory despite accessibility of oncoprotein-targeting drugs and immunotherapy. Here, we reported that 17-aminogeldanamycin more potently activated caspase-3/7 in BRAFV600E melanoma cells than geldanamycin, another inhibitor of heat shock protein 90 (HSP90). 17-aminogeldanamycin alleviated self-triggered compensatory increase in HSP70 mRNA level and induced endoplasmic reticulum (ER) stress, which was followed by selective diminution of cytoprotective IRE1α-XBP1s pathway activity of unfolded protein response (UPR), inhibition of ERK1/2 activity and induction of apoptosis. Concomitantly, ATF6/p50 level and expression of PERK-dependent genes, CHOP and BIM, remained unaltered. This might result from an inframe deletion in EIF2AK3 leading to a PERKL21del variant revealed by whole-exome sequencing in melanoma cell lines. 17-aminogeldanamycin exhibited similar activity in NRASQ61R melanoma cells that harbored a heterozygous inactivating variant of NAD(P)H:quinone oxidoreductase 1 (NQO1P187S). In addition, 17-aminogeldanamycin acted cooperatively with trametinib (an inhibitor of MEK1/2) and vemurafenib (an inhibitor of BRAFV600E) in induction of apoptosis in melanoma cell lines as evidenced by in-cell caspase-3/7 activation and PARP cleavage that occurred earlier compared with either drug used alone. As trametinib and vemurafenib did not significantly affect HSP70 and GRP78 transcript levels, cooperation of MEK/BRAFV600E inhibitors and 17-aminogeldanamycin might result from a concurrent inhibition of the RAS/RAF/MEK/ERK cascade and IRE1α-dependent signaling, and cell-intrinsic ER homeostasis can determine the extent of the drug cooperation. Our study indicates that 17-aminogeldanamycin takes several advantages compared with other HSP90-targeting compounds, and can complement activity of BRAF/MEK inhibitors in melanoma cells of different genetic subtypes.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzoquinonas/farmacología , Endorribonucleasas/metabolismo , Lactamas Macrocíclicas/farmacología , Melanoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Benzoquinonas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , GTP Fosfohidrolasas/genética , Proteínas de Choque Térmico/genética , Humanos , Lactamas Macrocíclicas/química , MAP Quinasa Quinasa 1/antagonistas & inhibidores , MAP Quinasa Quinasa 2/antagonistas & inhibidores , Melanoma/metabolismo , Melanoma/patología , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo
17.
Cytokine ; 113: 427-432, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30420201

RESUMEN

P53 has been recently involved in the defense against inflammation. The "guardian of the genome" appears to orchestrate cellular responses against bacterial toxins, by regulating crucial pathways that orchestrate the vascular barrier functions. Indeed, an emerging body of evidence suggests that this tumor suppressor is involved in the mediation of the beneficial effects of Hsp90 inhibition in the inflamed endothelium. Interestingly, those compounds augment the abundance of P53 in the intracellular niche, while LPS dramatically reduces it. The current study focuses on the outcome of LPS and Hsp90 inhibition on P53 phosphorylation, since this modification negatively affects P53 stability. In an in "vitro" model of LPS - induced vascular leak in bovine pulmonary arterial endothelial cells, LPS induced P53 phosphorylation in four distinct residues, namely Ser. 6, Ser. 15, Ser. 33 and Ser. 392. Furthermore, LPS triggered the activation of the myosin light chain 2, which produces endothelial barrier dysfunction by cellular retraction and intercellular gap formation. Indeed, mice exposed to the toxin demonstrated elevated levels of the pro - inflammatory cytokines IL-2 and IL-10 in the bronchoalveolar lavage fluid. In bold contrast, the HSP90 inhibitor 17-DMAG, counteracted the LPS - induced effects both in vivo and in vitro. Specifically, this hsp90 inhibitor reduced phosphorylated P53 levels and lessened the activation of myosin light chain 2 (phosphorylation) in the bovine endothelium. Moreover, 17 - DMAG suppressed inflammation in mouse lungs, as reflected in reduced IL-2 and IL-10 BALF levels. In summary, the present results support previous observations on the protective role of P53 against inflammation and clarify mechanisms that govern vascular barrier function.


Asunto(s)
Benzoquinonas/farmacología , Endotelio/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Lactamas Macrocíclicas/farmacología , Lipopolisacáridos/toxicidad , Arteria Pulmonar , Proteína p53 Supresora de Tumor/metabolismo , Animales , Bovinos , Endotelio/patología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Masculino , Ratones , Fosforilación/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología
18.
Arch Pharm (Weinheim) ; 352(10): e1900063, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31411362

RESUMEN

A series of novel pyrazolyl 2-aminopyrimidine derivatives (7a-t) were designed based on scaffold hopping techniques, synthesized and biologically evaluated for their HSP90 inhibition and anticancer activity. Several compounds exhibited potent HSP90 inhibition with IC50 values less than that of the reference standard 17-AAG (1.25 µM). The most potent compound 7t displayed excellent HSP90 inhibition with an IC50 of 20 nM and in vitro antiproliferative potential against three cancer cell lines (IC50 < 5 µM). 7t also induced dose dependent degradation of client proteins (pHER2 and pERK1/2) in Western blot analysis. Several structural features of 7p-t oriented the molecules to retain all the essential binding interactions with HSP90, as observed by rationalized docking studies. Therefore, the para-nitrophenyl ring on the central pyrazole ring along with the 2-amino group on the pyrimidine ring are the crucial features in the development of novel HSP90 inhibitors based on this scaffold for targeted anticancer therapy.


Asunto(s)
Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Pirazoles/química , Pirimidinas/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirimidinas/química , Pirimidinas/farmacología , Relación Estructura-Actividad
19.
Int J Mol Sci ; 20(18)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527404

RESUMEN

Heat Shock Protein 90 (Hsp90) chaperone interacts with a broad range of client proteins involved in cancerogenesis and cancer progression. However, Hsp90 inhibitors were unsuccessful as anticancer agents due to their high toxicity, lack of selectivity against cancer cells and extrusion by membrane transporters responsible for multidrug resistance (MDR) such as P-glycoprotein (P-gp). Recognizing the potential of new compounds to inhibit P-gp function and/or expression is essential in the search for effective anticancer drugs. Eleven Hsp90 inhibitors containing an isoxazolonaphtoquinone core were synthesized and evaluated in two MDR models comprised of sensitive and corresponding resistant cancer cells with P-gp overexpression (human non-small cell lung carcinoma and colorectal adenocarcinoma). We investigated the effect of Hsp90 inhibitors on cell growth inhibition, P-gp activity and P-gp expression. Structure-activity relationship analysis was performed in respect to cell growth and P-gp inhibition. Compounds 5, 7, and 9 directly interacted with P-gp and inhibited its ATPase activity. Their potential P-gp binding site was identified by molecular docking studies. In addition, these compounds downregulated P-gp expression in MDR colorectal carcinoma cells, showed good relative selectivity towards cancer cells, while compound 5 reversed resistance to doxorubicin and paclitaxel in concentration-dependent manner. Therefore, compounds 5, 7 and 9 could be promising candidates for treating cancers with P-gp overexpression.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Relación Estructura-Actividad
20.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600883

RESUMEN

Proper folding is crucial for proteins to achieve functional activity in the cell. However, it often occurs that proteins are improperly folded (misfolded) and form aggregates, which are the main hallmark of many diseases including cancers, neurodegenerative diseases and many others. Proteins that assist other proteins in proper folding into three-dimensional structures are chaperones and co-chaperones. The key role of chaperones/co-chaperones is to prevent protein aggregation, especially under stress. An imbalance between chaperone/co-chaperone levels has been documented in neurons, and suggested to contribute to protein misfolding. An essential protein and a major regulator of protein folding in all eukaryotic cells is the heat shock protein 90 (Hsp90). The function of Hsp90 is tightly regulated by many factors, including co-chaperones. In this review we summarize results regarding the role of Hsp90 and its co-chaperones in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and prionopathies.


Asunto(s)
Susceptibilidad a Enfermedades , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Animales , Biomarcadores , Regulación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Humanos , Chaperonas Moleculares/genética , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA