Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125966

RESUMEN

Glioblastoma (GBM) is one of the most aggressive cancers, characterized by a decrease in antioxidant levels. Evidence has demonstrated that ferulic acid (FA), a natural antioxidant particularly abundant in vegetables and fruits, could be a promising candidate for GBM treatment. Since FA shows a high instability that compromises its therapeutic application, it has been encapsulated into Nanostructured Lipid Carriers (NLCs) to improve its bioavailability in the brain. It has been demonstrated that tissue transglutaminase (TG2) is a multi-functional protein implicated in many physiological and pathological processes, including cancer. TG2 is also involved in GBM correlated with metastasis formation and drug resistance. Therefore, the evaluation of TG2 expression levels and its cellular localization are important to assess the anti-cancer effect of FA against GBM cancer. Our results have demonstrated that treatment with free FA and FA-NLCs in the U87-MG cancer cell line differently modified TG2 localization and expression levels. In the cells treated with free FA, TG2 appeared expressed both in the cytosol and in the nucleus, while the treatment with FA-NLCs showed that the protein is exclusively localized in the cytosol, exerting its pro-apoptotic effect. Therefore, our data suggest that FA loaded in NLCs could represent a promising natural agent for supplementing the current anti-cancer drugs used for the treatment of GBM.


Asunto(s)
Ácidos Cumáricos , Proteínas de Unión al GTP , Glioblastoma , Nanopartículas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Ácidos Cumáricos/farmacología , Humanos , Transglutaminasas/metabolismo , Transglutaminasas/genética , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo , Línea Celular Tumoral , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Nanopartículas/química , Portadores de Fármacos/química , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
2.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108565

RESUMEN

Neuroblastoma can be accessed with compounds of larger sizes and wider polarities, which do not usually cross the blood-brain barrier. Clinical data indicate cases of spontaneous regression of neuroblastoma, suggesting a reversible point in the course of cell brain tumorigenesis. Dual specificity tyrosine-phosphorylation-regulated kinase2 (DYRK2) is a major molecular target in tumorigenesis, while curcumin was revealed to be a strong inhibitor of DYRK2 (PBD ID: 5ZTN). Methods: in silico studies by CLC Drug Discovery Workbench (CLC) and Molegro Virtual Docker (MVD) Software on 20 vegetal compounds from the human diet tested on 5ZTN against the native ligand curcumin, in comparison with anemonin. In vitro studies were conducted on two ethanolic extracts from Anemone nemorosa tested on normal and tumor human brain cell lines NHA and U87, compared with four phenolic acids (caffeic, ferulic, gentisic, and para-aminobenzoic/PABA). Conclusions: in silico studies revealed five dietary compounds (verbascoside, lariciresinol, pinoresinol, medioresinol, matairesinol) acting as stronger inhibitors of 5ZTN compared to the native ligand curcumin. In vitro studies indicated that caffeic acid has certain anti-proliferative effects on U87 and small benefits on NHA viability. A. nemorosa extracts indicated potential benefits on NHA viability, and likely dangerous effects on U87.


Asunto(s)
Curcumina , Neuroblastoma , Humanos , Curcumina/farmacología , Ligandos , Línea Celular Tumoral , Dieta , Encéfalo , Carcinogénesis
3.
Cancer Cell Int ; 20: 469, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33005102

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are important regulators for cancer cell proliferation. miR-585 has been shown to inhibit the proliferation of several types of cancer, however, little is known about its role in human glioma cells. METHODS: miR-585 levels in human glioma clinical samples and cell lines were examined by quantitative real-time PCR (qRT-PCR) analysis. Cell proliferation was measured by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays in vitro. For in vivo investigations, U251 cells were intracranially inoculated in BALB/c nude mice and xenografted tumors were visualized by magnetic resonance imaging (MRI). RESULTS: miR-585 expression is downregulated in human glioma tissues and cell lines compared with non-cancerous counterparts. Additionally, miR-585 overexpression inhibits and its knockdown promotes human glioma cell proliferation in vitro. Moreover, miR-585 overexpression also inhibits the growth of glioma xenografts in vivo, suggesting that miR-585 may act as a tumor suppressor to inhibit the proliferation of human glioma. Furthermore, miR-585 directly targets and decreases the expression of oncoprotein murine double minute 2 (MDM2). More importantly, the restoration of MDM2 via enforced overexpression markedly rescues miR-585 inhibitory effect on human glioma cell proliferation, thus demonstrating that targeting MDM2 is a critical mechanism by which miR-585 inhibits human glioma cell proliferation. CONCLUSIONS: Our study unveils the anti-proliferative role of miR-585 in human glioma cells, and also implicates its potential application in clinical therapy.

4.
Biochem Biophys Res Commun ; 444(1): 6-12, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24393844

RESUMEN

BACKGROUND: MicroRNA is a type of non-coding small RNA involved in regulating genes and signaling pathways through incomplete complementation with target genes. Recent research supports key roles of miRNA in the formation and development of human glioma. METHODS: The relative quantity of miR-34a was initially determined in human glioma A172 cells and glioma tissues. Next, we analyzed the impact of miR-34a on A172 cell viability with the MTT assay. The effects of miR-34a overexpression on apoptosis were confirmed with flow cytometry and Hoechst staining experiments. We further defined the target genes of miR-34a using immunofluorescence and Western blot. RESULTS: MiR-34a expression was significantly reduced in human glioma A172 cells and glioma tissue, compared with normal glial cells and tissue samples. Our MTT data suggest that up-regulation of miR-34a inhibits cell viability while suppression of miR-34a enhances cell viability. Flow cytometry and Hoechst staining results revealed increased rates of apoptosis in A172 human glioma cells overexpressing miR-34a. Using immunofluorescence and Western blot analyses, we identified NOX2 as a target of miR-34a in A172 cells. CONCLUSION: MiR-34a serves as a tumor suppressor in human glioma mainly by decreasing NOX2 expression.


Asunto(s)
Apoptosis/genética , Glioma/genética , Glioma/metabolismo , Glicoproteínas de Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , NADPH Oxidasas/metabolismo , Apoptosis/fisiología , Línea Celular Tumoral , Supervivencia Celular , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Regulación hacia Abajo , Glioma/patología , Humanos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , NADPH Oxidasa 2 , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Neuroglía/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo
5.
Front Microbiol ; 13: 958385, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147849

RESUMEN

Echovirus 30 (E30) causes various diseases, such as viral encephalitis; aseptic meningitis; hand, foot, and mouth diseases; and acute flaccid paralysis. Related neurological infections are most concerning. However, the molecular mechanisms of E30 pathogenesis are not fully understood. There is a growing research interest in E30 as a cause of neurological disease. The aim of this study was to describe E30 infection, especially the changes in differential factor expressions after infection, in human glioma (U251) cells and mice brains using transcriptome sequencing analysis. Clear changes in the gene expression of factors associated with the defense response to viruses, inflammation-related signaling pathways, and neurological complication-related pathways were observed. Our results suggest that after E30 infection, the genes related to immune response were induced in the human glioma cells and mice brains, whereas genes functioning in the development and function of neural tissue were inhibited. Overall, this study successfully established E30 infection of U251 and mouse brain tissue, profiled the infection-induced changes in cellular and organizational transcriptomes, and revealed the molecular level changes during E30 infection.

6.
Photodiagnosis Photodyn Ther ; 21: 50-54, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29126958

RESUMEN

Photodynamic therapy (PDT) has received high attention in cancer treatment due to its minimal side effects, specific cancer-targeting, non-invasion and low cost. It utilizes a specific group of anti-cancer drugs called photosensitizers (PS), which can be only activated under a certain wavelength light illumination and kills cancer cells. To screen the potential of PS and setup of PDT treatment protocol, it is essential to assess the PDT efficacy in vitro. In this study, a light-emitting diode- (LED-) based illumination system at two wavelengths (red & blue) with homogeneous and stable irradiation, and constant temperature conditions in 96-well plates was provided. The photodynamic effect of curcumin (CUR) and methyl ester of 5-aminolevulinic acid (MAL) using LED light on human glioma cell line was investigated. The obtained results indicate that this homemade LED-based illumination system is a favorable light source for in vitro PDT in 96-well plates. The PDT using CUR and MAL was efficient at final concentrations of 25µM and 2mM, and light doses of 60J/cm2 and 40J/cm2 respectively. The blue PDT efficiency was dependent on the light and PS doses. MAL-PDT and CUR-PDT using blue LED significantly decreased cell viability in the treatment groups compared with control groups. Furthermore, MAL-PDT using blue LEDs was more effective in comparison with conventional red LEDs on the human glioma cell line.


Asunto(s)
Ácido Aminolevulínico/farmacología , Curcumina/farmacología , Glioma/tratamiento farmacológico , Luz , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Supervivencia Celular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
7.
Int J Pharm ; 524(1-2): 77-90, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28359811

RESUMEN

The paramount problem in the therapy of brain tumors is the inability of most drugs to cross the blood-brain barrier. PLGA nanoparticles overcoated with poloxamer 188 could overcome this problem and enabled a high anti-tumoral effect against the very aggressive intracranial 101.8 glioblastoma in rats that closely resembles human grade IV glioblastomas. The basis for the transport of these particles across the blood-brain barrier appears to be adsorption of blood apolipoproteins (ApoE or ApoA-I) on the nanoparticle surface caused by the poloxamer 188-coating, followed by receptor-mediated transcytosis of the nanoparticles. The objective of the present study is the elucidation of the mechanism by which the poloxamer 188-coated nanoparticles then enter the brain tumor cells. Their intracellular fate, therefore, was investigated using the U87 human glioma cell line. The main mechanism of the PLGA nanoparticle internalization by U87 cells was clathrin-mediated endocytosis. Within 1h free doxorubicin was released from late endosomes and could reach its target site, i.e. the DNA in the nuclei without degradation, whereas the PLGA nanoparticles, which were labeled with Cy5.5, still were observed in the endo-lysosomal compartment. These results demonstrate that the underlying mechanism of action in the brain cells is by diffusive doxorubicin release from the nanoparticles rather than by their intracellular degradation.


Asunto(s)
Doxorrubicina/administración & dosificación , Glioblastoma/tratamiento farmacológico , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Barrera Hematoencefálica , Línea Celular Tumoral , Liberación de Fármacos , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
8.
Asian Pac J Trop Med ; 7(7): 552-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25063285

RESUMEN

OBJECTIVE: To explore the suppressing effect of γ-secretase inhibitor DAPT on proliferation of human glioma cell line SHG-44 in vitro and its mechanism. METHODS: The SHG-44 cell was treated by DAPT with different concentration. The proliferation of cells was detected by MTT assay; cell cycle and TSC of CD133(+) were determined by flow cytometry analysis technique; the key factor in Notch signaling pathway (Notch-1, Delta-1, Hes-1) was measured by reverse transcriptase-polymerase chain reaction and western blotting. RESULTS: DAPT inhibited the growth and proliferation of SHG-44 cells significantly(P<0.05). And the inhibiting effect on SHG-44 cells produced by DAPT showed a dose-dependent manner. DAPT increased the rate of cells in G0/G1 phase of SHG-44 cells, while it decreased the rate of cells in S phase. TSC of CD133(+) was significantly reduced after DAPT treated SHG-44 cells. The expression of protein and mRNA of Notch-1, Delta-1 and Hes-1 were gradually downregulated with the increase of DAPT doses. CONCLUSIONS: DAPT can downregulate these key factor in Notch signaling pathway, reduce the TSC of CD133+ and inhibit the proliferation of SHG-44 cells.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Dipéptidos/farmacología , Glioma , Transducción de Señal/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Forma de la Célula/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA