Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572590

RESUMEN

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Exosomas , Células Madre Mesenquimatosas , Humanos , Ratas , Animales , Nefropatías Diabéticas/metabolismo , Exosomas/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrosis , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Diabetes Mellitus/metabolismo
2.
Exp Cell Res ; 436(2): 113960, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38311048

RESUMEN

PURPOSE: Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS: In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 µg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 µg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS: After being exposed to 150 µg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION: These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , Gangliósidos/metabolismo , Gangliósido G(M1)/metabolismo , Autofagia/fisiología , Células Madre Mesenquimatosas/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Cordón Umbilical
3.
Biochem Biophys Res Commun ; 692: 149321, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056156

RESUMEN

Spinal cord injury (SCI) can cause severe and permanent neurological damage, and neuronal apoptosis could inhibit functional recovery of damaged spinal cord greatly. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have great potential to repair SCI because of a series of advantages, including inhibition of neuronal apoptosis and multiple differentiation. The former may play an important role. However, the detailed regulatory mechanism associated with the inhibition of neuronal apoptosis after hUC-MSCs administration has not been elucidated. In this study, proteomics analysis of precious human cerebrospinal fluid (CSF) samples collected from SCI subjects receiving hUC-MSCs delivery indicated that hepatocyte growth factor (HGF) is largely involved in SCI repair. Furthermore, overexpression of HGF derived from hUC-MSCs could decrease reactive oxygen species to prevent neuron apoptosis to the maximum, and thus lead to significant recovery of spinal cord dysfunction. Moreover, HGF could promote phosphorylation of Akt/FoxO3a pathway to decrease reactive oxygen species to reduce neuron apoptosis. For the first time, our research revealed that HGF secreted by hUC-MSCs inhibits neuron apoptosis by phosphorylation of Akt/FoxO3a to repair SCI. This study provides important clues associated with drug selection for the effective treatment of SCI in humans.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Humanos , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Cordón Umbilical , Apoptosis , Traumatismos de la Médula Espinal/metabolismo
4.
Stem Cells ; 41(10): 928-943, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37419489

RESUMEN

This study was performed to determine the effect of human umbilical cord mesenchymal stem cells (hucMSCs) treatment on pulmonary fibrosis and investigate the circFOXP1-mediated autophagic mechanism of hucMSCs treatment. Pulmonary fibrosis models were established by spraying bleomycin in mice and TGF-ß1 treatment of MRC-5 cells. Results showed that hucMSCs were retained in lung and hucMSCs treatment alleviated pulmonary fibrosis. Morphological staining indicated that hucMSCs-treated mice had thinner alveolar walls, effectively improved alveolar structure, significantly reduced alveolar inflammation, and decreased collagen deposition than control mice. Fibrotic proteins, including vimentin, α-SMA, collagens I and III, and the differentiation-related protein S100 calcium-binding protein A4 was reduced considerably in the hucMSCs-treated group. The mechanistic study revealed that the inhibition of hucMSCs treatment on pulmonary fibrogenesis depended on downregulating circFOXP1, in which hucMSCs treatment promoted circFOXP1-mediated autophagy process via blocking the nuclear human antigen R (HuR) translocation and promoting the HuR degradation, leading to a marked decrease in autophagy negative regulators EZH2, STAT1, and FOXK1. In conclusion, hucMSCs treatment significantly improved pulmonary fibrosis by downregulating the circFOXP1-HuR-EZH2/STAT1/FOXK1 autophagic axis. hucMSCs can act as an effective treatment for pulmonary fibrosis.


Asunto(s)
Células Madre Mesenquimatosas , Fibrosis Pulmonar , Ratones , Humanos , Animales , Fibrosis Pulmonar/terapia , Fibrosis , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Autofagia , Cordón Umbilical , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Factor de Transcripción STAT1 , Factores de Transcripción Forkhead/metabolismo
5.
Mol Cell Biochem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967721

RESUMEN

Extracellular vesicles (EVs) produced from MSCs were currently considered as a novel therapeutic agent for skin tissue regeneration and repair. Preconditioning stem cells may activate more molecular pathways and release more bioactive agents. In this study, we obtained EVs from normal (N-EVs) and serum- and glucose-deprived (SGD-EVs) human umbilical cord mesenchymal stem cells (HUCMSCs), and showed that SGD-EVs promoted the migration, proliferation, and tube formation of HUVECs in vitro. In vivo experiments utilizing a rat model show that both N-EVs and SGD-EVs boosted angiogenesis of skin defects and accelerated skin wound healing, while treating wounds with SGD-EVs led to faster skin healing and enhanced angiogenesis. miRNA sequencing showed that miR-29a-3p was abundant in SGD-EVs, and overexpressing miR-29a-3p enhanced the angiogenic ability of HUVECs, while inhibiting miR-29a-3p presented the opposite effect. Further studies demonstrated that miR-29a-3p directly targeted CTNNBIP1, which mediated angiogenesis of HUCMSCs-derived EVs through inhibiting CTNNBIP1 to activate Wnt/ß-catenin signaling pathway. Taken together, these findings suggested that SGD-EVs promote angiogenesis via transferring miR-29a-3p, and activation of Wnt/ß-catenin signaling pathway played a crucial role in SGD-EVs-induced VEGFA production during wound angiogenesis. Our results offered a new avenue for modifying EVs to enhance tissue angiogenesis and augment its role in skin repair.

6.
Mol Cell Biochem ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459276

RESUMEN

Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-ex) have become a hopeful substitute for whole-cell therapy due to their minimal immunogenicity and tumorigenicity. The present study aimed to investigate the hypothesis that hUCMSC-ex can alleviate excessive inflammation resulting from intracerebral hemorrhage (ICH) and facilitate the rehabilitation of the nervous system in rats. In vivo, hemorrhagic stroke was induced by injecting collagenase IV into the striatum of rats using stereotactic techniques. hUCMSC-ex were injected via the tail vein at 6 h after ICH model establishment at a dosage of 200 µg. In vitro, astrocytes were pretreated with hUCMSC-ex and then stimulated with hemin (20 µmol/mL) to establish an ICH cell model. The expression of TLR4/NF-κB signaling pathway proteins and inflammatory factors, including TNF-α, IL-1ß, and IL-10, was assessed both in vivo and in vitro to investigate the impact of hUCMSC-ex on inflammation. The neurological function of the ICH rats was evaluated using the corner turn test, forelimb placement test, Longa score, and Bederson score on the 1st, 3rd, and 5th day. Additionally, RT-PCR was employed to examine the mRNA expression of TLR4 following hUCMSC-ex treatment. The findings demonstrated that hUCMSC-ex downregulated the protein expression of TLR4, NF-κB/P65, and p-P65, reduced the levels of pro-inflammatory cytokines TNF-α and IL-1ß, and increased the expression of the anti-inflammatory cytokine IL-10. Ultimately, the administration of hUCMSC-ex improved the behavioral performance of the ICH rats. However, the results of PT-PCR indicated that hUCMSC-ex did not affect the expression of TLR4 mRNA induced by ICH, suggesting that hUCMSCs-ex may inhibit TLR4 translation rather than transcription, thereby suppressing the TLR4/NF-κB signaling pathway. We can conclude that hUCMSC-ex mitigates hyperinflammation following ICH by inhibiting the TLR4/NF-κB signaling pathway. This study provides preclinical evidence for the potential future application of hUCMSC-ex in the treatment of cerebral injury.

7.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611748

RESUMEN

Stem cell-derived exosomes (SC-Exos) are used as a source of regenerative medicine, but certain limitations hinder their uses. The effect of hydrolyzed collagen oligopeptides (HCOPs), a functional ingredient of SC-Exos is not widely known to the general public. We herein evaluated the combined anti-aging effects of HCOPs and exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exos) using a senescence model established on human skin fibroblasts (HSFs). This study discovered that cells treated with HucMSC-Exos + HCOPs enhanced their proliferative and migratory capabilities; reduced both reactive oxygen species production and senescence-associated ß-galactosidase activity; augmented type I and type III collagen expression; attenuated the expression of matrix-degrading metalloproteinases (MMP-1, MMP-3, and MMP-9), interleukin 1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α); and decreased the expression of p16, p21, and p53 as compared with the cells treated with HucMSC-Exos or HCOPs alone. These results suggest a possible strategy for enhancing the skin anti-aging ability of HucMSC-Exos with HCOPs.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , Fibroblastos , Envejecimiento , Colágeno Tipo III , Cordón Umbilical
8.
J Cell Mol Med ; 27(15): 2165-2182, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386746

RESUMEN

Sulfur mustard (SM) is a blister-producing chemical warfare agent which could lead to a cascade of systemic damage, especially severe acute lung injury. Oxidative stress is considered to be vital processes for the SM toxicity mechanism. We previously proved the therapeutic effect of exosomes derived from bone marrow mesenchymal stromal cells in promoting the repair of alveolar epithelial barrier and inhibiting apoptosis. However, the key functional components in exosomes and the underlying mechanisms have not been fully elaborated. This research shed light on the function of the key components of human umbilical cord mesenchymal stem cell-derived exosomes (HMSCs-Ex). We noted that HMSCs-Ex-derived miR-199a-5p played a vital role in reducing pneumonocyte oxidative stress and apoptosis by reducing reactive oxygen species, lipid peroxidation products and increasing the activities of antioxidant enzymes in BEAS-2B cells and mouse models after exposure to SM for 24 h. Furthermore, we demonstrated that the overexpression of miR-199a-5p in HMSCs-Ex treatment induced a further decrease of Caveolin1 and the activation of the mRNA and protein level of NRF2, HO1 and NQO1, compared with HMSCs-Ex administration. In summary, miR-199a-5p was one of the key molecules in HMSCs-Ex that attenuated SM-associated oxidative stress via regulating CAV1/NRF2 signalling pathway.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Gas Mostaza , Animales , Humanos , Ratones , Exosomas/genética , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Gas Mostaza/toxicidad , Gas Mostaza/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética
9.
Apoptosis ; 28(3-4): 549-565, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36652132

RESUMEN

microRNA-1827 (miR-1827) is proposed to be enriched in exosomes from mesenchymal stem cells (MSCs-Exos). A recent study has addressed the suppressive effect of exosomes from human umbilical cord mesenchymal stem cells (hUC-MSCs-Exos) on colorectal cancer (CRC) metastasis. Hence, our study aims at investigating whether hUC-MSCs-Exos can modulate the liver metastasis in CRC by mediating miR-1827. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were used to identify hUC-MSCs-Exos. Using gain- and loss-of-function approaches, the expression of miR-1827 and succinate receptor 1 (SUCNR1) was altered. Consequently, the biological functions of CRC cells were assessed by CCK-8 and Transwell assays and macrophage M2 polarization was assayed by flow cytometry. Dual-luciferase reporter assay was applied to clarify interaction between miR-1827 and SUCNR1. CRC cells were incubated with hUC-MSCs-Exos and tumor-bearing mice were injected with hUC-MSCs-Exos to examine the effects on CRC cell growth and metastasis. SUCNR1, lowly expressed in CRC, could promote CRC cell growth and macrophage M2 polarization. miR-1827 could target SUCNR1 and hence suppress the progression and metastasis of CRC. hUC-MSCs-Exos carried miR-1827 to inhibit M2 macrophage polarization by downregulating SUCNR1 expression, and inhibited proliferating, migrating and invading properties of CRC cells. Furthermore, hUC-MSCs-Exos carrying miR-1827 blocked CRC liver metastasis in vivo. These findings indicate hUC-MSCs-Exos as an inhibitor of M2 macrophage polarization and liver metastasis in CRC through inducing miR-1827-targeted inhibition of SUCNR1. This provides a theoretical basis for understanding the mechanisms underlying Exos-based target therapy for CRC.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Neoplasias Hepáticas , Células Madre Mesenquimatosas , MicroARNs , Animales , Humanos , Ratones , Apoptosis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Exosomas/genética , Exosomas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cordón Umbilical
10.
BMC Med ; 21(1): 215, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337188

RESUMEN

BACKGROUND: Articular injection of mesenchymal stem cells (MSCs) has been applied to treat knee osteoarthritis (kOA), but its clinical outcomes are controversial. This study investigated whether an articular inflammatory microenvironment (AIM) impacts MSC-based therapy in a rat model of kOA. METHODS: The biological change of MSCs and the functional change of MSCs on chondrocytes were evaluated under AIM. The key mediator and mechanism for the AIM impact on MSC therapy were explored via gain- and loss-of-function approaches. RESULTS: The results showed that MSCs exerted potent anti-kOA effects in vivo and in vitro, but that this therapy become chondrodestructive if a chronic AIM was present. Mechanistically, the overexpression of MMP13 in the injected MSCs via a MAPKs-AP1 signaling axis was revealed as the underlying mechanism for the detriment outcome. CONCLUSIONS: This study thus clarifies recent clinical findings while also suggesting a means to overcome any detrimental effects of MSC-based therapy while improving its efficacy.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Ratas , Animales , Osteoartritis de la Rodilla/terapia , Inyecciones Intraarticulares , Modelos Animales de Enfermedad
11.
BMC Infect Dis ; 23(1): 620, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735363

RESUMEN

BACKGROUND: COVID-19 is a global pandemic. Understanding the immune responses in pregnant women recovering from COVID-19 may suggest new therapeutic approaches. METHODS: We performed a cross-sectional study between March 1, 2020, and September 1, 2020. Participants were assigned into the convalescent COVID-19 group if they had a previous COVID-19 infection during pregnancy or the healthy control group. RNA-Seq was performed on human umbilical cord mesenchymal stem cells (hUMSCs) and human amniotic mesenchymal stem cells (hAMSCs). Immunohistochemical staining, cytokine testing, lymphocyte subset analysis, RNA-Seq, and functional analyses were performed on the placental and umbilical cord blood (UCB) and compared between the two groups. RESULTS: A total of 40 pregnant women were enrolled, with 13 in the convalescent group and 27 in the control group. There were 1024, 46, and 32 differentially expressed genes (DEGs) identified in the placental tissue, hUMSCs, and hAMSCs between the convalescent and control groups, respectively. Enrichment analysis showed those DEGs were associated with immune homeostasis, antiviral activity, cell proliferation, and tissue repair. Levels of IL-6, TNF-α, total lymphocyte counts, B lymphocytes, Tregs percentages, and IFN-γ expressing CD4+ and CD8+ T cells were statistically different between two groups (p ≤ 0.05). ACE2 and TMPRSS2 expressed on the placenta were not different between the two groups (p > 0.05). CONCLUSION: Multiple changes in immune responses occurred in the placental tissue, hUMSCs, and hAMSCs after maternal recovery from COVID-19, which might imply their protective roles against COVID-19 infection.


Asunto(s)
COVID-19 , Citocinas , Embarazo , Femenino , Humanos , Linfocitos T CD8-positivos , Estudios Transversales , Mujeres Embarazadas , Placenta , ARN
12.
Exp Cell Res ; 414(2): 113098, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288170

RESUMEN

BACKGROUND: Choriocarcinoma (CC) is a highly aggressive malignant tumor that mostly occurs in women of childbearing age. Chemotherapy is the main treatment for CC, but it has side effects and causes drug resistance, which can lead to treatment failure. Extracellular vesicles (EVs) that deliver microRNAs (miRNAs) have emerged as a novel and promising therapeutic tool for inhibiting tumor progression and metastasis. This research aimed to study the effects of miR-127-3p-enriched EVs (EV-miR-127-3p) on CC and underlying mechanisms. METHODS: Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the miR-127-3p and integrin subunit alpha-6 (ITGA6) expression levels. The interaction between miR-127-3p and ITGA6 was confirmed by a dual-luciferase reporter assay. Human umbilical cord mesenchymal stem cells (hUCMSCs) were identified using flow cytometry and multilineage differentiation. Uptake of labeled EVs was demonstrated using immunofluorescence staining and flow cytometry assays. EV-miR-127-3p were isolated from the culture medium of hUCMSCs and co-cultured with JEG-3 or JAR cells to evaluate their effects on cell proliferation, invasion, migration, and apoptosis, using the cell counting kit-8, Transwell, and flow cytometry assays. Epithelial-mesenchymal transition (EMT) and the transforming growth factor (TGF)-ß1/Smad pathway were investigated using qRT-PCR and western blotting. RESULTS: The expression of miR-127-3p was downregulated, while that of ITGA6 was upregulated in CC cell lines. ITGA6 was identified as a target gene of miR-127-3p. EV-miR-127-3p could inhibit the proliferation, invasion, migration, and promote the apoptosis of CC cells. We observed that EV-miR-127-3p suppressed EMT of CC cells by targeting ITGA6. In addition, the knockdown of ITGA6 inhibited the TGF-ß1/Smad pathway and reversed the EMT-promoting effect. CONCLUSION: These results indicate that EV-miR-127-3p from hUCMSCs exhibits anti-tumor effects by targeting ITGA6, which may be used as a novel therapeutic strategy for CC treatment.


Asunto(s)
Coriocarcinoma , Vesículas Extracelulares , MicroARNs , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Coriocarcinoma/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Integrina alfa6/genética , MicroARNs/genética , MicroARNs/metabolismo
13.
Cell Mol Biol Lett ; 28(1): 12, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750776

RESUMEN

BACKGROUND: Kidney insults due to various pathogenic factors, such as trauma, infection, and inflammation, can cause tubular epithelial cell injury and death, leading to acute kidney injury and the transformation of acute kidney injury to chronic kidney disease. There is no definitive treatment available. In previous studies, human umbilical cord mesenchymal stem cells have been shown to promote kidney injury. In this preclinical study, we investigate the role and mechanism of human umbilical cord mesenchymal stem cell exosomes (HucMSC-Exos) on the repair of renal tubular epithelial cells after injury. METHODS: C57BL/6 mice underwent unilateral ureteral obstruction, and epithelial cell injury was induced in HK-2 cells by cisplatin. HucMSC-Exos were assessed in vivo and in vitro. The extent of renal cell injury, activation of necroptosis pathway, and mitochondrial quality-control-related factors were determined in different groups. We also analyzed the possible regulatory effector molecules in HucMSC-Exos by transcriptomics. RESULTS: HucMSC-Exo inhibited necroptosis after renal tubular epithelial cell injury and promoted the dephosphorylation of the S637 site of the Drp1 gene by reducing the expression of PGAM5. This subsequently inhibited mitochondrial fission and maintained mitochondrial functional homeostasis, mitigating renal injury and promoting repair. In addition, HucMSC-Exo displayed a regulatory role by targeting RIPK1 through miR-874-3p. CONCLUSION: The collective findings of the present study demonstrate that HucMSC-Exos can regulate necroptosis through miR-874-3p to attenuate renal tubular epithelial cell injury and enhance repair, providing new therapeutic modalities and ideas for the treatment of AKI and the process of AKI to CKD transformation to mitigate renal damage.


Asunto(s)
Lesión Renal Aguda , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Ratones , Animales , Humanos , Exosomas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , Riñón/metabolismo , Cordón Umbilical , Lesión Renal Aguda/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Epiteliales/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo
14.
Artif Organs ; 47(8): 1298-1308, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37032529

RESUMEN

BACKGROUND: Islet cell transplantation is an emerging therapy in the treatment of diabetes mellitus. Differentiation of islet cells from mesenchymal stem cells (MSCs) is a potential solution to the challenge of insufficient donor sources. This study investigated whether human umbilical cord-derived MSCs could effectively differentiate into insulin-producing cells (IPCs) and evaluated the therapeutic efficacy of IPCs in treating diabetes. METHODS: IPCs were induced from MSCs by a two-step protocol. IPC expression products were evaluated by western blot and real-time PCR. IPC insulin secretion was evaluated by ELISA. The viability of IPCs was measured by FDA/PI and dithizone staining. The non-human primate tree shrew was used as a diabetes model. After a single STZ induction into a diabetes model, a single intraportal transplantation of IPCs, MSCs, or normal saline was performed (n = 6 per group). Blood glucose was monitored for 3 weeks, then the animals were euthanized and the distribution of IPCs in the liver was examined pathologically. RESULTS: After about 3 weeks of in vitro induction, IPCs formed microspheres of 100-200 µm, with >95% viable cells that were dithizone stain positive. IPCs expressed islet-related genes and proteins and secreted high levels of insulin whether stimulated by low or high levels of glucose. After transplantation of IPCs into diabetic tree shrews, blood glucose levels decreased rapidly to near normal and were significantly lower than the MSC or saline groups for 3 weeks thereafter. CONCLUSION: We present the novel discovery that IPCs derived from human umbilical cord MSCs exert a therapeutic effect in a non-human primate model of diabetes. This study provides a preliminary experimental basis for the use of autologous MSC-derived IPCs in the treatment of human diabetes.


Asunto(s)
Glucemia , Diabetes Mellitus , Animales , Humanos , Glucemia/metabolismo , Ditizona , Insulina/metabolismo , Primates/metabolismo
15.
Mol Cell Neurosci ; 123: 103784, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228967

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disease still without any cure. Brain-derived neurotrophic factor (BDNF) has shown therapeutic potential in PD, which is limited by its short half-life and inability to penetrate the blood-brain barrier. Stem cells not only present migration, differentiation and neurotrophy characteristics, but also can be used as delivery vectors for BDNF. This study aimed to investigate the therapeutic effects and possible mechanisms of BDNF-modified human umbilical cord mesenchymal stem cells (hUC-MSCs)-derived dopaminergic (DAergic)-like neurons in the PD rats. Results showed that transplantation of BDNF-modified hUC-MSCs-derived DAergic-like neurons improved the apomorphine induced rotation behavior of PD rats, increased the dopamine concentration and the expression of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) in the striatum, promoted the expression of tyrosine hydroxylase (TH), nuclear receptor-related factor 1 (Nurr1), pituitary homeobox 3 (Pitx3), BDNF, tyrosine kinase B (TrkB), phosphatidylinositol-3-hydroxykinase (PI3K), phosphorylated protein kinase B (p-Akt), heat shock protein 60 (Hsp60), toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) and inhibited the neural apoptosis in the substantia nigra (SN) and striatum. Results suggest that BDNF-modified hUC-MSCs-derived DAergic-like neurons improve the rotation of PD rats might through neuroprotection and anti-neuroinflammation by regulating the BDNF-TrkB-PI3K/Akt and Hsp60-TLR4/MyD88 signaling pathways, respectively.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor Toll-Like 4/metabolismo , Neuroprotección , Enfermedades Neurodegenerativas/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas Sprague-Dawley , Neuronas/metabolismo , Cordón Umbilical/metabolismo , Neuronas Dopaminérgicas/metabolismo
16.
Cell Tissue Bank ; 24(4): 769-778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37221283

RESUMEN

Mesenchymal stem cells (MSCs) derived extracellular vesicles, which have been shown to possess therapeutic effects for many diseases. However, how hypoxic conditions would affect exosomal microRNA expression in human umbilical cord MSCs (hUC-MSCs) is currently not investigated. This study aims to investigate the potential function of in vitro microRNAs of hUC-MSC cultured under normoxic and hypoxic conditions. Extracellular vesicles secreted from hUC-MSCs cultured in normoxic (21% O2) and hypoxic (5% O2) conditions were collected for microRNA identification. Zeta View Laser Scattering and transmission electron microscopy were used to observe the size and morphology of extracellular vesicles. qRT-PCR was performed to measure the expression of related microRNAs. The Gene Ontology and KEGG pathway were used to predict the function of microRNAs. Finally, the effects of hypoxia on the expression of related mRNAs and cellular activity were examined. This study identified 35 upregulated and 8 downregulated microRNAs in the hypoxia group. We performed target genes analysis to explore the potential function of these microRNA upregulated in the hypoxia group. Significant enrichment of the cell proliferation, pluripotency of stem cells, MAPK, Wnt, and adherens junction pathways were observed in the GO and KEGG pathways. Under hypoxic conditions, the expression levels of 7 target genes were lower than that of the normal environment. In conclusion, this study demonstrated for the first time that microRNA expression in extracellular vesicles of human umbilical vein stem cells cultured under hypoxia is different from that under normal conditions, and these microRNAs may be markers for detecting hypoxia.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Humanos , MicroARNs/genética , Hipoxia/metabolismo , Cordón Umbilical , Vesículas Extracelulares/metabolismo
17.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240246

RESUMEN

Renal ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), with high mortality. Recent studies have reported that human umbilical cord mesenchymal stem cells (HucMSCs) play an important role in repairing organ and tissue injuries because of their unique characteristics. However, the potential of HucMSC extracellular vesicles (HucMSC-EVs) to promote the repair of renal tubular cells remains to be explored. This study found that HucMSC-EVs derived from HucMSCs played a protective role and were associated with kidney I/R injury. We found that miR-148b-3p in HucMSC-EVs had a protective effect against kidney I/R injury. HK-2 cells overexpressing miR-148b-3p were protected against I/R injury by inhibiting apoptosis. Next, the target mRNA of miR-148b-3p was predicted online, and the target mRNA, pyruvate dehydrogenase kinase 4 (PDK4), was identified and verified using dual luciferase. We discovered that I/R injury significantly increased endoplasmic reticulum (ER) stress, whereas siR-PDK4 inhibited these effects and protected against I/R injury. Interestingly, after administrating HucMSC-EVs to HK-2 cells, PDK4 expression and ER stress induced by I/R injury were significantly inhibited. HK-2 ingested miR-148b-3p from HucMSC-EVs, and its ER induced by I/R injury was significantly deregulated. This study suggests that HucMSC-EVs protect kidneys from I/R injury during the early I/R stage. These results suggest a new mechanism for HucMSC-EVs in treating AKI and provide a new treatment strategy for I/R injury.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Daño por Reperfusión , Humanos , Riñón/metabolismo , Vesículas Extracelulares/metabolismo , Lesión Renal Aguda/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Reperfusión , Células Madre Mesenquimatosas/metabolismo , Estrés del Retículo Endoplásmico/genética , Cordón Umbilical/metabolismo
18.
Funct Integr Genomics ; 22(5): 813-824, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35484307

RESUMEN

This work unraveled the action of human umbilical cord mesenchymal stem cells-released exosomes (huc-MSCs-EXO) transfer of miR-140-5p in preeclampsia (PE). miR-140-5p and follistatin-like 3 (FSTL3) expression in placental tissues of PE patients was tested. EXO were isolated from huc-MSCs. Hypoxic trophoblast cells were co-cultured with huc-MSCs-EXO. Cell biological functions, angiogenesis, and inflammation were evaluated. Suppressed miR-140-5p and induced FSTL3 levels were measured in PE. Huc-MSCs-EXO drove biological functions and angiogenesis while hindering inflammation in hypoxic trophoblast cells. Increasing miR-140-5p further improved the positive role of huc-MSCs-EXO for hypoxic trophoblast cells, but the miR-140-5p-mediated effect in hypoxic trophoblast cells was abrogated by overexpressing FSTL3. miR-140-5p from huc-MSCs-EXO suppresses PE through repressing FSTL3.


Asunto(s)
Exosomas , Proteínas Relacionadas con la Folistatina , Células Madre Mesenquimatosas , MicroARNs , Preeclampsia , Exosomas/genética , Exosomas/metabolismo , Femenino , Folistatina/metabolismo , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Humanos , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , Cordón Umbilical/metabolismo
19.
Mol Med ; 28(1): 155, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36514009

RESUMEN

BACKGROUND: Exenatide is a stable analogue of glucagon-like peptide 1 that can reduce postprandial hyperglycemia and has been utilized as adjunctive therapy for type 1 diabetes mellitus (T1DM). The human umbilical cord is a rich source of MSCs, and human umbilical cord mesenchymal stem cells (hUCMSCs) also show potential to enhance insulin secretion. Here, we aimed to explore the effects of hUCMSCs carrying exenatide in T1DM and further identify the possible mechanisms involved. METHODS: hUCMSCs were isolated from human umbilical cord tissues, identified, and transduced with recombinant lentivirus carrying exenatide to obtain exenatide-carrying hUCMSCs (hUCMSCs@Ex-4). RESULTS: The results showed that hUCMSCs@Ex-4 restored the blood glucose levels and body weight of NOD mice, and repressed immune cell infiltration and islet tissue changes. Additionally, in T1DM mice, treatment with hUCMSCs@Ex-4 reduced the blood glucose levels and promoted repair of islet tissue damage. Moreover, hUCMSCs@Ex-4 attenuated renal tissue lesions in T1DM mice. Applying bioinformatic analysis, the effects of hUCMSCs@Ex-4 were suggested to correlate with decreased abundance of pro-inflammatory intestinal bacteria and increased abundance of anti-inflammatory intestinal bacteria. CONCLUSION: Overall, the study indicated that hUCMSCs carrying exenatide might improve beneficial intestinal microflora abundance and promote islet tissue damage repair, thereby alleviating T1DM.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Exenatida/farmacología , Glucemia , Ratones Endogámicos NOD
20.
J Recept Signal Transduct Res ; 42(3): 268-278, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34096448

RESUMEN

Exosomes from human umbilical cord mesenchymal stem cells (HUCMSCs) containing microRNAs (miRNAs) have been underscored as possible therapeutic options for cancers. Hence, our goal here was to investigate the relevance of miR-320a-containing exosomes from HUCMSCs to lung cancer. First, H1299 and H460 cells were co-cultured with the exosomes overexpressing miR-320a from HUCMSCs. The data displayed that HUCMSCs-secreted exosomes expressing miR-320a exerted anti-tumor effects in vitro and in vivo. Online analysis available at TargetScan database revealed that miR-320a bound to sex-determining region Y-box 4 (SOX4), and the luciferase reporter gene assay clarified this targeting relationship. Next, a ß-catenin-specific agonist WAY-262611 was delivered into the H1299 and H460 cells to assess the effects of the Wnt/ß-catenin pathway on lung cancer cellular processes. The results demonstrated that WAY-262611 potentiated lung cancer cell viability, invasion, and migration, but inhibited cell apoptosis. Altogether, exosomes carrying miR-320a from HUCMSCs might suppress lung cancer cell growth via the SOX4/Wnt/ß-catenin axis, which highpoints the potency of exosomes expressing miR-320a as a possible therapeutic option for lung cancer treatment.


Asunto(s)
Exosomas , Neoplasias Pulmonares , Células Madre Mesenquimatosas , MicroARNs , Proliferación Celular/genética , Exosomas/genética , Exosomas/metabolismo , Exosomas/patología , Humanos , Neoplasias Pulmonares/patología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Cordón Umbilical/metabolismo , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA