Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 17(7): 2329-2344, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32427480

RESUMEN

Ritonavir is a well-known CYP3A4 and CYP2D6 enzyme inhibitor, frequently used to assess the drug-drug interaction (DDI) liability of susceptible drugs. It is also used as a pharmacokinetic booster to increase exposure to CYP3A4 substrates. This study aimed to develop a mechanistic absorption and disposition model to describe exposure to ritonavir following oral dosing of the commercial amorphous solid dispersion tablet, Norvir, under fasted and fed conditions. A mechanistic description of ritonavir absorption from Norvir tablets may help to improve the design of DDI studies. Key parameters of amorphous ritonavir including free base solubility (solubility of the unbound, un-ionized species), bile micelle partition coefficients, formulation wetting/disintegration, and in vivo precipitation parameters were either obtained from the literature or estimated by modeling in vitro biopharmaceutic experiments. Based on variety of in vitro evidence, a main assumption of the model is that ritonavir does not form a crystalline precipitate while resident in the gastrointestinal tract. In the model, if simulated luminal concentration exceeds the amorphous solubility limit, then precipitation to an amorphous form is immediate. Simulated and observed Cmax and AUC0-t parameters were well captured (within 1.5-fold) for both fasted and fed states in healthy volunteers. By accounting for luminal fluid viscosity differences in the different prandial states (affecting drug diffusivity) as well as the effect of drug free fraction on gut wall permeation rates, it was possible to explain the negative food effect observed for Norvir tablets in humans. In summary, a biopharmaceutic in vitro in vivo extrapolation approach provides confidence in (verification of) key input parameters of the physiologically-based pharmacokinetic ritonavir model which resulted in successful simulation of observed plasma profiles.


Asunto(s)
Productos Biológicos/farmacocinética , Ingestión de Alimentos , Ayuno , Absorción Intestinal/efectos de los fármacos , Ritonavir/farmacocinética , Administración Oral , Productos Biológicos/administración & dosificación , Productos Biológicos/química , Biofarmacia , Simulación por Computador , Dieta Alta en Grasa , Interacciones Farmacológicas , Voluntarios Sanos , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Permeabilidad , Ritonavir/administración & dosificación , Ritonavir/química , Solubilidad , Comprimidos , Viscosidad , Agua/química
2.
Mol Pharm ; 14(12): 4305-4320, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28771009

RESUMEN

Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pKa; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.


Asunto(s)
Liberación de Fármacos , Absorción Intestinal/fisiología , Cetoconazol/farmacocinética , Modelos Biológicos , Absorción Fisiológica , Administración Oral , Biofarmacia/métodos , Química Farmacéutica , Simulación por Computador , Humanos , Modelos Químicos , Permeabilidad , Solubilidad
3.
J Pharm Sci ; 108(4): 1604-1618, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30476508

RESUMEN

The physiological relevance of single-phase (aqueous only) and 2-phase (aqueous and organic phase) in vitro dissolution experiments was compared by mechanistic modeling. For orally dosed dipyridamole, stepwise, sequential estimation/confirmation of biopharmaceutical parameters from in vitro solubility-dissolution data was followed, before applying them within a physiologically based pharmacokinetic (PBPK) model. The PBPK model predicted clinical dipyridamole luminal and plasma concentration profiles reasonably well for a range of doses only where the precipitation rate constant was derived from the 2-phase experiment. The population model predicted a distribution of maximal precipitated fractions from 0% to 45% of the 90 mg dose (mean 7.6%). Such population information cannot be obtained directly from a few in vitro experiments; however well they may represent an "average" and several extreme subjects (those with low-high luminal fluid volumes, pH, etc.) because there is no indication of outcome likelihood. For this purpose, direct input of in vitro dissolution/precipitation profiles to a PBPK model is insufficient-mechanistic modeling is required. Biopharmaceutical in vitro-in vivo extrapolation tools can also simulate the effect of key experimental parameters (dissolution volumes, pH, paddle speed, etc.) on dissolution/precipitation behavior, thereby helping to identify critical variables, which may impact the number or design of in vitro experiments.


Asunto(s)
Biofarmacia/métodos , Desarrollo de Medicamentos/métodos , Modelos Biológicos , Administración Oral , Simulación por Computador , Dipiridamol/administración & dosificación , Dipiridamol/farmacocinética , Liberación de Fármacos , Duodeno/metabolismo , Humanos , Absorción Intestinal , Mucosa Intestinal/metabolismo , Solubilidad , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA