Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Oral Health ; 24(1): 1087, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277754

RESUMEN

BACKGROUND: Different materials have been used as wound dressings after vital pulp therapies. Some of them have limitations such as delayed setting, difficult administration, slight degree of cytotoxicity, crown discoloration and high cost. Therefore, to overcome these disadvantages, composite scaffolds have been used in regenerative dentistry. This study aims to construct and characterize the physicochemical behavior of a novel injectable alginate hydrogel loaded with different bioactive glass nanoparticles in various concentrations as a regenerative pulpotomy filling material. METHODS: Alginate hydrogels were prepared by dissolving alginate powder in alcoholic distilled water containing mesoporous bioactive glass nanoparticles (MBG NPs) or boron-doped MBG NPs (BMBG NPs) at 10 and 20 wt% concentrations. The mixture was stirred and incubated overnight in a water bath at 50 0 C to ensure complete solubility. A sterile dual-syringe system was used to mix the alginate solution with 20 wt% calcium chloride solution, forming the hydrogel upon extrusion. Then, constructed hydrogel specimens from all groups were characterized by FTIR, SEM, water uptake percentage (WA%), bioactivity and ion release, and cytotoxicity. Statistical analysis was done using One-Way ANOVA test for comparisons between groups, followed by multiple pairwise comparisons using Bonferroni adjusted significance level (p < 0.05). RESULTS: Alginate/BMBG loaded groups exhibited remarkable increase in porosity and pore size diameter [IIB1 (168), IIB2 (183) (µm)]. Similarly, WA% increased (~ 800%) which was statistically significant (p < 0.05). Alginate/BMBG loaded groups exhibited the strongest bioactive capability displaying prominent clusters of hydroxyapatite precipitates on hydrogel surfaces. Ca/P ratio of precipitates in IIA2 and IIB1 (1.6) were like Ca/P ratio for stoichiometric pure hydroxyapatite (1.67). MTT assay data revealed that the cell viability % of human gingival fibroblast cells have declined with increasing the concentration of both powders and hydrogel extracts in all groups after 24 and 48 h but still higher than the accepted cell viability % of (˃70%). CONCLUSIONS: The outstanding laboratory performance of the injectable alginate/BMBGNPs (20 wt%) composite hydrogel suggested it as promising candidate for pulpotomy filling material potentially enhancing dentin regeneration in clinical applications.


Asunto(s)
Alginatos , Materiales Biocompatibles , Boro , Dentina , Hidrogeles , Nanopartículas , Alginatos/química , Humanos , Boro/química , Materiales Biocompatibles/química , Dentina/efectos de los fármacos , Porosidad , Supervivencia Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Ensayo de Materiales , Espectroscopía Infrarroja por Transformada de Fourier , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Microscopía Electrónica de Rastreo , Endodoncia Regenerativa/métodos , Vidrio/química , Fibroblastos/efectos de los fármacos , Cerámica/química , Agua/química
2.
Adv Healthc Mater ; 13(17): e2303588, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678393

RESUMEN

Targeted delivery and retention are essential requirements for implantable tissue-engineered products. Non-invasive imaging methods that can confirm location, retention, and biodistribution of transplanted cells attached to implanted tissue engineering scaffolds will be invaluable for the optimization and enhancement of regenerative therapies. To address this need, an injectable tissue engineering scaffold consisting of highly porous microspheres compatible with transplantation of cells is modified to contain the computed tomography (CT) contrast agent barium sulphate (BaSO4). The trackable microspheres show high x-ray absorption, with contrast permitting whole-body tracking. The microspheres are cellularized with GFP+ Luciferase+ mesenchymal stem cells and show in vitro biocompatibility. In vivo, cellularized BaSO4-loaded microspheres are delivered into the hindlimb of mice where they remain viable for 14 days. Co-registration of 3D-bioluminescent imaging and µCT reconstructions enable the assessment of scaffold material and cell co-localization. The trackable microspheres are also compatible with minimally-invasive delivery by ultrasound-guided transthoracic intramyocardial injections in rats. These findings suggest that BaSO4-loaded microspheres can be used as a novel tool for optimizing delivery techniques and tracking persistence and distribution of implanted scaffold materials. Additionally, the microspheres can be cellularized and have the potential to be developed into an injectable tissue-engineered combination product for cardiac regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Microesferas , Ingeniería de Tejidos , Andamios del Tejido , Tomografía Computarizada por Rayos X , Animales , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Ratones , Ratas , Tomografía Computarizada por Rayos X/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Sulfato de Bario/química , Medios de Contraste/química
3.
Adv Mater ; 36(33): e2400700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842622

RESUMEN

The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Animales , Procedimientos Quirúrgicos Mínimamente Invasivos , Regeneración , Inyecciones
4.
ACS Biomater Sci Eng ; 10(9): 5701-5713, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39171932

RESUMEN

Covalent adaptable networks (CANs) are polymeric networks with cross-links that can break and reform in response to external stimuli, including pH, shear, and temperature, making them potential materials for use as injectable cell delivery vehicles. In the native niche, cells rearrange the extracellular matrix (ECM) to undergo basic functions including migration, spreading, and proliferation. Bond rearrangement enables these hydrogels to mimic viscoelastic properties of the native ECM which promote migration and delivery from the material to the native tissue. In this work, we characterize thioester CANs to inform their design as effective cell delivery vehicles. Using bulk rheology, we characterize the rearrangement of these networks when they are subjected to strain, which mimics the strain applied by a syringe, and using multiple particle tracking microrheology (MPT) we measure cell-mediated remodeling of the pericellular region. Thioester networks are formed by photopolymerizing 8-arm poly(ethylene glycol) (PEG)-thiol and PEG-thioester norbornene. Bulk rheology measures scaffold properties during low and high strain and demonstrates that thioester scaffolds can recover rheological properties after high strain is applied. We then 3D encapsulated human mesenchymal stem cells (hMSCs) in thioester scaffolds. Using MPT, we characterize degradation in the pericellular region. Encapsulated hMSCs degrade these scaffolds within ≈4 days post-encapsulation. We hypothesize that this degradation is mainly due to cytoskeletal tension that cells apply to the matrix, causing adaptable thioester bonds to rearrange, leading to degradation. To verify this, we inhibited cytoskeletal tension using blebbistatin, a myosin-II inhibitor. Blebbistatin-treated cells can degrade these networks only by secreting enzymes including esterases. Esterases hydrolyze thioester bonds, which generate free thiols, leading to bond exchange. Around treated cells, we measure a decrease in the extent of pericellular degradation. We also compare cell area, eccentricity, and speed of untreated and treated cells. Inhibiting cytoskeletal tension results in significantly smaller cell area, more rounded cells, and lower cell speeds when compared to untreated cells. Overall, this work shows that cytoskeletal tension plays a major role in hMSC-mediated degradation of thioester networks. Cytoskeletal tension is also important for the spreading and motility of hMSCs in these networks. This work informs the design of thioester scaffolds for tissue regeneration and cell delivery.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Reología , Compuestos de Sulfhidrilo , Hidrogeles/química , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Compuestos de Sulfhidrilo/química , Polietilenglicoles/química , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Ésteres/química , Andamios del Tejido/química
5.
Biomaterials ; 277: 121072, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454373

RESUMEN

Various conventional treatment strategies for volumetric muscle loss (VML) are often hampered by the extreme donor site morbidity, the limited availability of quality muscle flaps, and complicated, as well as invasive surgical procedures. The conventional biomaterial-based scaffolding systems carrying myoblasts have been extensively investigated towards improving the regeneration of the injured muscle tissues, as well as their injectable forms. However, the applicability of such designed systems has been restricted due to the lack of available vascular networks. Considering these facts, here we present the development of a unique set of two minimally invasively injectable modular microtissues, consisting of mouse myoblast (C2C12)-laden poly(lactic-co-glycolic acid) porous microspheres (PLGA PMs), or the micro-muscles, and human umbilical vein endothelial cell (HUVEC)-laden poly(ethylene glycol) hollow microrods (PEG HMs), or the microvessels. Besides systematic in vitro investigations, the myogenic performance of these modular composite microtissues, when co-injected, was explored in vivo using a mouse VML model, which confirmed improved in situ muscle regeneration and remolding. Together, we believe that the construction of these injectable modular microtissues and their combination for minimally invasive therapy provides a promising method for in situ tissue healing.


Asunto(s)
Materiales Biocompatibles , Regeneración , Inyecciones , Microesferas , Músculo Esquelético , Andamios del Tejido
6.
Tissue Eng Part A ; 27(11-12): 748-760, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33108972

RESUMEN

Traumatic joint injuries can result in significant cartilage defects, which can greatly increase the risk of osteoarthritis development. Due to the limited self-healing capacity of avascular cartilage, tissue engineering approaches are required for filling defects and promoting cartilage regeneration. Current approaches utilize invasive surgical procedures for extraction and implantation of autologous chondrocytes; therefore, injectable biomaterials have gained interest to minimize the risk of infection as well as patient pain and discomfort. In this study, we engineered biomimetic, hyaluronic acid (HA)-based cryogel scaffolds that possess shape-memory properties as they contract and regain their shape after syringe injection to noninvasively fill cartilage defects. The cryogels, fabricated with HA and glycidyl methacrylate at -20°C, resulted in an elastic, macroporous, and highly interconnected network that provided a conducive microenvironment for chondrocytes to remain viable and metabolically active after injection through a syringe needle. Chondrocytes seeded within cryogels and cultured for 15 days exhibited enhanced cell proliferation, metabolism, and production of cartilage extracellular matrix glycosaminoglycans compared with HA-based hydrogels. Furthermore, immunohistochemical staining revealed production of collagen type II from chondrocyte-seeded cryogels, indicating the maintenance of cell phenotype. These results demonstrate the potential of chondrocyte-seeded, HA-based, injectable cryogel scaffolds to promote regeneration of cartilage tissue for nonsurgically invasive defect repair. Impact statement Hyaluronic acid-based shape-memory cryogels provide a conducive microenvironment for chondrocyte adhesion, proliferation, and matrix biosynthesis for use in repair of cartilage defects. Due to their sponge-like elastic properties, cryogels can fully recover their original shape back after injection while not impacting metabolism or viability of encapsulated cells. Clinically, they provide an opportunity for filling focal cartilage defects by using a single, minimally invasive injection of a cell encapsulating biocompatible three-dimensional scaffold that can return to its original structure to fit the defect geometry and enable matrix regeneration.


Asunto(s)
Cartílago Articular , Criogeles , Cartílago , Condrocitos , Humanos , Ácido Hialurónico/farmacología , Porosidad , Ingeniería de Tejidos , Andamios del Tejido
7.
ACS Appl Mater Interfaces ; 12(51): 56712-56722, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33306365

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is a promising new class of hematological malignancy treatment. However, CAR T cells are rarely effective in solid tumor therapy mainly because of the poor trafficking of injected CAR T cells to the tumor site and their limited infiltration and survival in the immunosuppressive and hypoxic tumor microenvironment (TME). Here, we built an injectable immune-microchip (i-G/MC) system to intratumorally deliver CAR T cells and enhance their therapeutic efficacy in solid tumors. In the i-G/MC, oxygen carriers (Hemo) are released to disrupt the TME, and then, CAR T cells migrate from IL-15-laden i-G/MCs into the tumor stroma. The results indicate that Hemo and IL-15 synergistically enhanced CAR T cell survival and expansion under hypoxic conditions, promoting the potency and memory of CAR T cells. This i-G/MC not only serves as a cell carrier but also builds an immune-niche, enhancing the efficacy of CAR T cells.


Asunto(s)
Hemoglobinas/uso terapéutico , Hidrogeles/química , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Oxígeno/metabolismo , Linfocitos T/inmunología , Alginatos/química , Animales , Portadores de Fármacos/química , Hemoglobinas/química , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-15/química , Masculino , Ratones Endogámicos BALB C , Microesferas , Porosidad , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/trasplante , Microambiente Tumoral/efectos de los fármacos
8.
Adv Healthc Mater ; 8(17): e1900709, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31353829

RESUMEN

For treating bone defects in periarticular fractures, there is a lack of biomaterial with injectable characteristics, tough structure, and osteogenic capacity for providing a whole-structure support and osteogenesis in the defect area. An injectable hydrogel is an ideal implant, however is weak as load-bearing scaffolds. Herein, a new strategy, i.e., an in situ formation of "active" composite double network (DN), is raised for the preparation of an injectable strong hydrogel particularly against compression. As a demonstration, 4-carboxyphenylboronic acid grafted poly(vinyl alcohol) (PVA) is crosslinked using calcium ions to provide a tough frame while bioactive glass (BG) microspheres are associated by poly(ethylene glycol) to obtain an interpenetrated inorganic network for reinforcement. The injected PVA/BG DN hydrogel gains compressive strength, modulus, and fracture energy of 34 MPa, 0.8 MPa, and 40 kJ m-2 , respectively. Then, the properties can be "autostrengthened" to 57 MPa, 2 MPa, and 65 kJ m-2 by mineralization in 14 days. In vivo experiments prove that the injected DN hydrogel is more efficient to treat femoral supracondylar bone defects than the implanted bulk DN gel. The work suggests a facile way to obtain a strong hydrogel with injectability, cytocompatibility, and tailorable functionality.


Asunto(s)
Huesos/fisiología , Hidrogeles/farmacología , Animales , Huesos/efectos de los fármacos , Huesos/patología , Línea Celular , Vidrio , Inyecciones , Ratones , Polietilenglicoles/química , Alcohol Polivinílico , Microtomografía por Rayos X
9.
Carbohydr Polym ; 202: 91-98, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30287047

RESUMEN

Microfabrication technologies have been widely explored to produce microgels that can be assembled in functional constructs for tissue engineering and regenerative medicine applications. Here, we propose microfluidics coupled to a source of UV light to produce multifunctional methacrylated laminarin microparticles with narrow distribution of sizes using photopolymerization. The multifunctional microparticles were loaded with platelet lysates and further conjugated with an adhesive peptide. The adhesive peptides dictated cell adhesiveness to the laminarin microparticles, the incorporation of platelet lysates have resulted in improved cell expansion compared to clear microparticles. Overall, our findings demonstrate that multifunctional methacrylated laminarin microparticles provide an effective support for cell attachment and expansion. Moreover, expanded cells provide the link for microparticles aggregation resulting in robust 3D structures. This suggest the potential for using the methacrylated laminarin microplatforms capable to be assembled by the action of cells to rapidly produce large tissue engineered constructs.


Asunto(s)
Glucanos/química , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Glucanos/síntesis química , Glucanos/farmacología , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Tamaño de la Partícula , Procesos Fotoquímicos , Polimerizacion , Propiedades de Superficie , Ingeniería de Tejidos
10.
J Tissue Eng ; 8: 2041731417717677, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717506

RESUMEN

Scaffolds are materials used for delivery of cells for regeneration of tissues. They support three-dimensional organization and improve cell survival. For the repair of small skeletal muscles, injections of small volumes of cells are attractive, and injectable scaffolds for delivery of cells offer a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid)-based microparticles supported prolonged proliferation. Myoblasts released from the alginate and fibrin gels were studied, and cells released from these scaffolds had retained the ability to proliferate and differentiate. Thus, the study shows that human myogenic cells combined with injectable scaffold materials are guided into different states depending on the choice of scaffold. This opens for in vivo experiments, including testing of the significance of the cell state on regeneration potential of primary human myoblasts.

11.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 745-752, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770950

RESUMEN

The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are formulated and characterized. In particular, injectability and shear viscosity at room temperature, time-to-gel at body temperature, morphology and mechanical properties of gels are investigated. The highly hydrophobic growth factor is favorably incorporated and retained by the gel. Gels undergo a slow erosion process when immersed in PBS at 37°C that opens up their porous structure. The prolonged hydrothermal treatment leads to structural rearrangements towards tougher networks with increased dynamic shear modulus. Preliminary biological evaluations confirm absence of cytotoxicity and the ability of these scaffolds to host cells and promote their proliferation.


Asunto(s)
Cartílago/fisiología , Fenómenos Químicos , Factores de Crecimiento de Fibroblastos/farmacología , Geles/química , Glucanos/química , Fenómenos Mecánicos , Xilanos/química , Animales , Cartílago/efectos de los fármacos , Bovinos , Proliferación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Glucanos/síntesis química , Inyecciones , Peso Molecular , Andamios del Tejido/química , Viscosidad , Xilanos/síntesis química
12.
Tissue Eng Regen Med ; 13(1): 21-30, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30603381

RESUMEN

This study aimed to evaluate the in vitro biological effectiveness of chitosan microparticles crosslinked with sodium tripolyphosphate (TPP) in combination with activated pure platelet-rich plasma (aP-PRP) as an injectable composite scaffold for growth factors release, cell proliferation and osteogenic differentiation. Two main novelties were addressed in the field of scaffolds in regenerative medicine: the first is the approach including simultaneously the three vertices of the proliferation triangle formed by the capabilities genic progenitor cells, conductive scaffolds and inductive growth factors, which are provided by platelet rich plasma (PRP); secondly, the approach of an injectable composite scaffolds formed by the fibrin network from aP-PRP and the chitosan microparticles crosslinked with TPP. The microparticles were prepared by vortexing the chitosan and TPP solutions. The ionic crosslinking of chitosan with TPP was made at mass ratios of 2:1, 5:1, and 10:1 at pH 4.0. P-PRP was obtained via the controlled centrifugation of whole blood. The composite scaffolds were prepared by adding the microparticles to immediately activated P-PRP. The results showed that the microparticles had adequate physicochemical and mechanical properties for injection. Furthermore, the microparticles controlled the release of growth factors from P-PRP. The proliferation of human adipose-derived mesenchymal stem cells was lower than in aP-PRP alone but significant at a 2:1 chitosan-TPP mass ratio. Osteogenic differentiation was stimulated at all studied mass ratios, as indicated by the alkaline phosphatase activity. These results offer perspectives for optimizing the composite scaffold, and to prove its potential as an injectable scaffold in regenerative medicine.

13.
ACS Biomater Sci Eng ; 2(11): 1914-1925, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29503863

RESUMEN

Microvascular endothelial cells (MVEC) are a preferred cell source for autologous revascularization strategies, since they can be harvested and propagated from small tissue biopsies. Biomaterials-based strategies for therapeutic delivery of cells are aimed at tailoring the cellular microenvironment to enhance the delivery, engraftment, and tissue-specific function of transplanted cells. In the present study, we investigated a modular tissue engineering approach to therapeutic revascularization using fibrin-based microtissues containing embedded human MVEC and human fibroblasts (FB). Microtissues were formed using a water-in-oil emulsion process that produced populations of spheroidal tissue modules with a diameter of 100-200 µm. The formation of MVEC sprouts within a fibrin matrix over 7 days in culture was dependent on the presence of FB, with the most robust sprouting occurring at a 1:3 MVEC:FB ratio. Cell viability in microtissues was high (>90%) and significant FB cell proliferation was observed over time in culture. Robust sprouting from microtissues was evident, with larger vessels developing over time and FB acting as pericyte-like cells by enveloping endothelial tubes. These neovessels were shown to form an interconnected vascular plexus over 14 days of culture when microtissues were embedded in a surrounding fibrin hydrogel. Vessel networks exhibited branching and inosculation of sprouts from adjacent microtissues, resulting in MVEC-lined capillaries with hollow lumens. Microtissues maintained in suspension culture aggregated to form larger tissue masses (1-2 mm in diameter) over 7 days. Vessels formed within microtissue aggregates at a 1:1 MVEC:FB ratio were small and diffuse, whereas the 1:3 MVEC:FB ratio produced large and highly interconnected vessels by day 14. This study highlights the utility of human MVEC as a cell source for revascularization strategies, and suggests that the ratio of endothelial to support cells can be used to tailor vessel characteristics. The modular microtissue format may allow minimally invasive delivery of populations of prevascularized microtissues for therapeutic applications.

14.
J Biomed Mater Res A ; 102(12): 4371-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24678010

RESUMEN

Even though inducing structural features on the nanometric scale has been shown to be a powerful tool in tissue engineering, almost all nanostructuring techniques available today cannot be applied to injectable hydrogel scaffolds. The current research explores such a novel technique and its effect on scaffold's properties, cell morphology, and cell-material interaction. Nanostructuring is achieved by covalently binding Pluronic(®) F127 molecules to biosynthetic hydrogels. Analysis of cell morphology revealed spindled cell morphologies at day 4 in culture. The bound Pluronic(®) F127 diminished the swelling ability and enhanced the Young modulus, thus indicating that the bound molecules crosslink the hydrogel. The relation between matrix characteristics and cell morphology was analyzed and the importance of nanostructuring was demonstrated.


Asunto(s)
Fibroblastos/metabolismo , Hidrogeles , Ensayo de Materiales , Nanoestructuras/química , Andamios del Tejido/química , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/citología , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Poloxámero/química , Poloxámero/farmacología
15.
Adv Healthc Mater ; 3(10): 1529-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24616443

RESUMEN

Injectable scaffolds (IS) are polymeric solutions that are injected in vivo and undergo gelation in response to physiological or non-physiological stimuli. Interest in using IS in regenerative medicine has been increasing this past decade. IS are administered in vivo using minimally invasive surgery, which reduces hospitalization time and risk of surgical wound infection. Here, chitosan is explored as an excellent candidate for developing IS. A literature search reveals that 27% of IS publications in the past decade investigated injectable chitosan scaffolds (ICS). This increasing interest in chitosan stems from its many desirable physicochemical properties. The first section of this Progress Report is a comprehensive study of all physical, chemical, and biological stimuli that have been explored to induce ICS gelation in vivo. Second, the use of ICS is investigated in four major regenerative medicine applications, namely bone, cartilage, cardiovascular, and neural regeneration. Finally, an overall critique of the ICS literature in light of clinical translatability is presented. Even though ICS have been widely explored in the literature, very few have progressed to clinical trials. The authors discuss the current barriers to moving ICS into the clinic and provide suggestions regarding what is needed to overcome those challenges.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Quitosano/administración & dosificación , Medicina Regenerativa/métodos , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Línea Celular , Quitosano/química , Humanos , Inyecciones , Ensayo de Materiales , Ingeniería de Tejidos
16.
Prog Biomater ; 3: 143-151, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27547693

RESUMEN

Cartilage is a tissue with limited repair capacity and also sparse population of cells entrapped within a dense extracellular matrix, therefore, delivery of the cells to site of damaged cartilage can improve its healing potential. Synthetic biomaterials such as poly (d,l-lactide-co-glycolide) (PLGA) have been used as both preformed or injectable scaffolds in tissue engineering in order to carry and keep cells in the site of injury with minimal side effects. The injectable biocompatible polymeric scaffolds can reach to effected area via minimally invasive injection without need to open the joint, less painful approach and also having possibility to fill complicated shape defects. In this study, it was hypothesized that PLGA solved in n-methyl pyrrolidine (NMP) may act as a proper carrier for cell delivery to the site of the damage and also supports their growth. The results of in vitro assays including both live/dead (AO/PI) and MTT showed the majority of the cells were remained alive between 3 up to 21 days, respectively. The amount of resealed GAG from the mesenchymal stem cells (MSCs) which were in contact with both PLGA and alginate constructs (used as control) indicated that for day 7 MSCs in contact with alginate secreted more GAG (3.45 ± 0.453 µg/mL for alginate and 2.36 ± 0.422 µg/mL for PLGA matrices), but at longer times (21 days) cells in contact with PLGA elicited more GAG (6.26 ± 0.968 µg/mL for alginate and 8.47 ± 0.871 µg/mL for the PLGA matrices). Sol-gel systems comprising PLGA, NMP, and cells as well as alginate/cells were subcutaneously injected into four nude mice (each mouse had three injection sites). PLGA/NMP was solidify immediately and formed an interconnecting 3-D porous structure that allowed body fluid to penetrate through them. In vivo evaluation showed that PLGA/NMP scaffolds could support injected cells as a fibrocartilage tissue was formed after 6 months of injection. We found that PLGA/NMP system might be a proper minimally invasive therapeutics option for cartilage repair.

17.
Future Sci OA ; 4(4): FSO284, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29682319
18.
J Biomed Mater Res A ; 100(2): 450-61, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22105887

RESUMEN

Injectable scaffolds present compelling opportunities for wound repair and regeneration because of their ability to fill irregularly shaped defects and deliver biologics such as growth factors. In this study, we investigated the properties of injectable polyurethane (PUR) biocomposite scaffolds and their application in cutaneous wound repair using a rat excisional model. The scaffolds have a minimal reaction exotherm and clinically relevant working and setting times. Moreover, the biocomposites have mechanical and thermal properties consistent with rubbery elastomers. In the rat excisional wound model, injection of settable biocomposite scaffolds stented the wounds at early time points, resulting in a regenerative rather than a scarring phenotype at later time points. Measurements of wound length and thickness revealed that the treated wounds were less contracted at day 7 compared to blank wounds. Analysis of cell proliferation and apoptosis showed that the scaffolds were biocompatible and supported tissue ingrowth. Myofibroblast formation and collagen fiber organization provided evidence that the scaffolds have a positive effect on extracellular matrix remodeling by disrupting the formation of an aligned matrix under elevated tension. In summary, we have developed an injectable biodegradable PUR biocomposite scaffold that enhances cutaneous wound healing in a rat model.


Asunto(s)
Poliuretanos/farmacología , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Heridas y Lesiones/patología , Animales , Apoptosis/efectos de los fármacos , Carboximetilcelulosa de Sodio/química , Proliferación Celular/efectos de los fármacos , Colágeno/biosíntesis , Modelos Animales de Enfermedad , Ácido Hialurónico/química , Inmunohistoquímica , Inyecciones , Isocianatos/química , Antígeno Ki-67/metabolismo , Lisina/análogos & derivados , Lisina/química , Masculino , Polietilenglicoles/química , Ratas Sprague-Dawley , Reología/efectos de los fármacos
19.
Med Devices (Auckl) ; 2: 19-25, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-22915910

RESUMEN

OBJECTIVE: Millimeter size gelatin sponges are commonly used as an embolic agent for transcatheter arterial embolization (TAE). However the preparation of the fragments is troublesome and carries a risk of contamination. The purpose of this study was to develop gelatin sponge millispheres (GSMs), a convenient and reliable agent, and characterize them in vitro. METHOD: The size of GSMs was controlled by modifying the previously reported method to include the use of caprylic triglyceride and isopropanol. Analytical and microbiological tests were conducted to detect impurities (caprylic triglyceride, isopropanol, endotoxins, bacteria, and fungus). The effects of syringe volume (1.0 to 5.0 ml) and contrast media viscosity (1.6 to 13.6 mPa * s) on the in vitro injectability of GSMs through microcatheters of various inner diameters (ID) (0. 43 to 0.53 mm) were examined via in-line pressure monitoring. RESULTS: The GSMs were found to be water-insoluble particles containing interconnected pores. The short and long diameters of the GSMs were 1.82 ± 0.2 mm and 2.37 ± 0.3 mm, respectively. The results of tests for impurities indicated that GSMs have the general properties necessary for medical devices. The GSMs were successfully injected without clogging through a microcatheter (ID: 0.53 mm) attached to a 1.0 or 2.5 ml syringe. CONCLUSION: GSMs have the basic properties and injectability necessary to be considered reliable biomaterials (eg, embolic agents).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA