Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39393813

RESUMEN

OBJECTIVES: Genetic characterization of the antibiotic resistance determinants and associated mobile genetic elements (MGEs) among Streptococcus pyogenes [Group A streptococci (GAS)] clinical isolates of an M77 serotype collected in Poland between 2003 and 2017. METHODS: The genomes of 136 M77 GAS isolates were sequenced using Illumina, and selected with long-read approach (Oxford Nanopore). Whole genome sequences were analyzed to determine the presence of macrolide resistance determinants, and their genetic context. RESULTS: The strains used in the study were collected in the two multicenter surveys from in- and outpatients. Sequencing data analysis revealed that all strains carried the tet(O) gene (100%, N=136). They were classified as a single sequence type ST63. For erythromycin resistance, the unique determinant was erm(TR) detected in 76.5% (N=104) isolates. A single appearance of tet(M) and erm(B) on Tn3872 was noticed. The mefA, mefE, and msr(D) genes were detected in neither of the genomes. This correlated with the detected strain phenotypes - 11 exhibited cMLSB, 93 - iMLSB, and no M phenotype.The erm(TR) gene was predominantly (N=74) found within a novel hybrid Integrative Conjugative Element composed of the ICESp1108-like sequence and ICESp2906 variant which was then named ICESp1109. However, in strains isolated before 2008, erm(TR) was located within ICESp2905 (N=27). The erm(TR) gene was detected within stand-alone ICESp1108-like sequences in 3 strains. CONCLUSIONS: Based on phylogenetic analysis results the clonal dissemination of the macrolide-resistant S. pyogenes M77/ST63 strain with hybrid ICESp1109 was observed between 2008 and 2017. ICESp1109 is the novel hybrid ICE in Gram-positive bacteria.

2.
BMC Genomics ; 25(1): 734, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080539

RESUMEN

Dairy industries apply selected lactococcal strains and mixed cultures to produce diverse fermented products with distinctive flavor and texture properties. Innovation of the starter culture functionality in cheese applications embraces natural biodiversity of the Lactococcus species to identify novel strains with alternative flavor or texture forming capacities and/or increased processing robustness and phage resistance. Mobile genetic elements (MGE), like integrative conjugative elements (ICEs) play an important role in shaping the biodiversity of bacteria. Besides the genes involved in the conjugation of ICEs from donor to recipient strains, these elements also harbor cargo genes that encode a wide range of functions. The definition of such cargo genes can only be achieved by accurate identification of the ICE boundaries (delimiting). Here, we delimited 25 ICEs in lactococcal genome sequences with low contig numbers using insertion-sites flanking single-copy core-genome genes as markers for each of the distinct ICE-integrases we identified previously within the conserved ICE-core genes. For ICEs in strains for which genome information with large numbers of contigs is available, we exemplify that CRISPR-Cas9 driven ICE-curing, followed by resequencing, allows accurate delimitation and cargo definition of ICEs. Finally, we compare and contrast the cargo gene repertoire of the 26 delimited lactococcal ICEs, identifying high plasticity among the cargo of lactococccal ICEs and a range of encoded functions that is of apparent industrial interest, including restriction modification, abortive infection, and stress adaptation genes.


Asunto(s)
Genoma Bacteriano , Lactococcus/genética , Secuencias Repetitivas Esparcidas/genética , Sistemas CRISPR-Cas , Conjugación Genética
3.
BMC Genomics ; 25(1): 324, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561675

RESUMEN

Lactococcus lactis is widely applied by the dairy industry for the fermentation of milk into products such as cheese. Adaptation of L. lactis to the dairy environment often depends on functions encoded by mobile genetic elements (MGEs) such as plasmids. Other L. lactis MGEs that contribute to industrially relevant traits like antimicrobial production and carbohydrate utilization capacities belong to the integrative conjugative elements (ICE). Here we investigate the prevalence of ICEs in L. lactis using an automated search engine that detects colocalized, ICE-associated core-functions (involved in conjugation or mobilization) in lactococcal genomes. This approach enabled the detection of 36 candidate-ICEs in 69 L. lactis genomes. By phylogenetic analysis of conserved protein functions encoded in all lactococcal ICEs, these 36 ICEs could be classified in three main ICE-families that encompass 7 distinguishable ICE-integrases and are characterized by apparent modular-exchangeability and plasticity. Finally, we demonstrate that phylogenetic analysis of the conjugation-associated VirB4 ATPase function differentiates ICE- and plasmid-derived conjugation systems, indicating that conjugal transfer of lactococcal ICEs and plasmids involves genetically distinct machineries. Our genomic analysis and sequence-based classification of lactococcal ICEs creates a comprehensive overview of the conserved functional repertoires encoded by this family of MGEs in L. lactis, which can facilitate the future exploitation of the functional traits they encode by ICE mobilization to appropriate starter culture strains.


Asunto(s)
Lactococcus lactis , Lactococcus lactis/genética , Filogenia , Plásmidos/genética , Proteínas/metabolismo , Genoma , Conjugación Genética , Elementos Transponibles de ADN
4.
World J Microbiol Biotechnol ; 40(10): 319, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261358

RESUMEN

The present work reports the development and validation of a chromosomal expression system in Streptococcus pneumoniae which permits gene expression under the control of Lactococcus lactis lantibiotic nisin. The system is based on the integrative and conjugative element (ICE) Tn5253 of S. pneumoniae capable of site-specific chromosomal integration and conjugal transfer to a variety of bacterial species. We constructed an insertion vector that integrates in Tn5251, an ICE contained in Tn5253, which carries the tetracycline resistance tet(M) gene. The vector contains the nisRK regulatory system operon, the L. lactis nisin inducible promoter PnisA upstream of a multiple cloning site for target DNA insertion, and is flanked by two DNA regions of Tn5251 which drive homologous recombination in ICE Tn5253. For system evaluation, the emm6.1::ha1 fusion gene was cloned and integrated into the chromosome of the Tn5253-carrying pneumococcal strain FR24 by transformation. This gene encodes a fusion protein containing the signal peptide, the 122 N-terminal and the 140 C-terminal aa of the Streptococcus pyogenes M6 surface protein joined to the HA1 subunit of the influenza virus A hemagglutinin. Quantitative RT-PCR analysis carried out on total RNA purified from nisin treated and untreated cultures showed an increase in emm6.1::ha1 transcript copy number with growing nisin concentration. The expression of M6-HA1 protein was detected by Western blot and quantified by Dot blot, while Flow cytometry analysis confirmed the presence on the pneumococcal surface. Recombinant ICE Tn5253::[nisRK]-[emm6.1::ha1] containing the nisin-inducible expression system was successfully transferred by conjugation in different streptococcal species including Streptococcus gordonii, S. pyogenes, Streptococcus agalactiae and Enterococcus faecalis. As for S. pneumoniae, the emm6.1::ha1 transcript copy number and the amount of M6-HA1 protein produced correlated with the nisin concentration used for induction in all investigated bacterial hosts. We demonstrated that this host-vector expression system is stably integrated as a single copy within the bacterial chromosome, is transferable to both transformable and non transformable bacterial species, and allows fine tuning of protein expression modulated by nisin concentration. These characteristics make our system suitable for a wide range of applications including complementation assays, physiological studies, host-pathogen interaction studies.


Asunto(s)
Cromosomas Bacterianos , Elementos Transponibles de ADN , Nisina , Streptococcus pneumoniae , Nisina/farmacología , Nisina/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/efectos de los fármacos , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , Regulación Bacteriana de la Expresión Génica , Enterococcus/genética , Enterococcus/efectos de los fármacos , Vectores Genéticos/genética , Conjugación Genética , Streptococcus/genética , Streptococcus/efectos de los fármacos , Streptococcus/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
Appl Microbiol Biotechnol ; 107(16): 5209-5224, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37405434

RESUMEN

The biocatalysis of ß-myrcene into value-added compounds, with enhanced organoleptic/therapeutic properties, may be performed by resorting to specialized enzymatic machinery of ß-myrcene-biotransforming bacteria. Few ß-myrcene-biotransforming bacteria have been studied, limiting the diversity of genetic modules/catabolic pathways available for biotechnological research. In our model Pseudomonas sp. strain M1, the ß-myrcene catabolic core-code was identified in a 28-kb genomic island (GI). The lack of close homologs of this ß-myrcene-associated genetic code prompted a bioprospection of cork oak and eucalyptus rhizospheres, from 4 geographic locations in Portugal, to evaluate the environmental diversity and dissemination of the ß-myrcene-biotransforming genetic trait (Myr+). Soil microbiomes were enriched in ß-myrcene-supplemented cultures, from which ß-myrcene-biotransforming bacteria were isolated, belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia classes. From a panel of representative Myr+ isolates that included 7 bacterial genera, the production of ß-myrcene derivatives previously reported in strain M1 was detected in Pseudomonas spp., Cupriavidus sp., Sphingobacterium sp., and Variovorax sp. A comparative genomics analysis against the genome of strain M1 found the M1-GI code in 11 new Pseudomonas genomes. Full nucleotide conservation of the ß-myrcene core-code was observed throughout a 76-kb locus in strain M1 and all 11 Pseudomonas spp., resembling the structure of an integrative and conjugative element (ICE), despite being isolated from different niches. Furthermore, the characterization of isolates not harboring the Myr+-related 76-kb locus suggested that they may biotransform ß-myrcene via alternative catabolic loci, being thereby a novel source of enzymes and biomolecule catalogue for biotechnological exploitation. KEY POINTS: • The isolation of 150 Myr+ bacteria hints the ubiquity of such trait in the rhizosphere. • The Myr+ trait is spread across different bacterial taxonomic classes. • The core-code for the Myr+ trait was detected in a novel ICE, only found in Pseudomonas spp.


Asunto(s)
Bacterias , Rizosfera , Monoterpenos Acíclicos , Bacterias/genética , Pseudomonas/genética , Pseudomonas/metabolismo
6.
BMC Genomics ; 23(1): 742, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36344949

RESUMEN

Pantoea agglomerans DAPP-PG 734 was isolated as endophyte from knots (tumors) caused by Pseudomonas savastanoi pv. savastanoi DAPP-PG 722 in olive trees. To understand the plant pathogen-endophyte interaction on a genomic level, the whole genome of P. agglomerans DAPP-PG 734 was sequenced and annotated. The complete genome had a total size of 5'396'424 bp, containing one circular chromosome and four large circular plasmids. The aim of this study was to identify genomic features that could play a potential role in the interaction between P. agglomerans DAPP-PG 734 and P. savastanoi pv. savastanoi DAPP-PG 722. For this purpose, a comparative genomic analysis between the genome of P. agglomerans DAPP-PG 734 and those of related Pantoea spp. was carried out. In P. agglomerans DAPP-PG 734, gene clusters for the synthesis of the Hrp-1 type III secretion system (T3SS), type VI secretion systems (T6SS) and autoinducer, which could play an important role in a plant-pathogenic community enhancing knot formation in olive trees, were identified. Additional gene clusters for the biosynthesis of two different antibiotics, namely dapdiamide E and antibiotic B025670, which were found in regions between integrative conjugative elements (ICE), were observed. The in-depth analysis of the whole genome suggested a characterization of the P. agglomerans DAPP-PG 734 isolate as endophytic bacterium with biocontrol activity rather than as a plant pathogen.


Asunto(s)
Olea , Pantoea , Pantoea/genética , Enfermedades de las Plantas/microbiología , Olea/genética , Olea/microbiología , Endófitos/genética , Genómica
7.
Proc Natl Acad Sci U S A ; 116(30): 15200-15209, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285337

RESUMEN

Although microorganisms are known to dominate Earth's biospheres and drive biogeochemical cycling, little is known about the geographic distributions of microbial populations or the environmental factors that pattern those distributions. We used a global-level hierarchical sampling scheme to comprehensively characterize the evolutionary relationships and distributional limitations of the nitrogen-fixing bacterial symbionts of the crop chickpea, generating 1,027 draft whole-genome sequences at the level of bacterial populations, including 14 high-quality PacBio genomes from a phylogenetically representative subset. We find that diverse Mesorhizobium taxa perform symbiosis with chickpea and have largely overlapping global distributions. However, sampled locations cluster based on the phylogenetic diversity of Mesorhizobium populations, and diversity clusters correspond to edaphic and environmental factors, primarily soil type and latitude. Despite long-standing evolutionary divergence and geographic isolation, the diverse taxa observed to nodulate chickpea share a set of integrative conjugative elements (ICEs) that encode the major functions of the symbiosis. This symbiosis ICE takes 2 forms in the bacterial chromosome-tripartite and monopartite-with tripartite ICEs confined to a broadly distributed superspecies clade. The pairwise evolutionary relatedness of these elements is controlled as much by geographic distance as by the evolutionary relatedness of the background genome. In contrast, diversity in the broader gene content of Mesorhizobium genomes follows a tight linear relationship with core genome phylogenetic distance, with little detectable effect of geography. These results illustrate how geography and demography can operate differentially on the evolution of bacterial genomes and offer useful insights for the development of improved technologies for sustainable agriculture.


Asunto(s)
Cicer/microbiología , Transferencia de Gen Horizontal , Genoma Bacteriano , Mesorhizobium/genética , Consorcios Microbianos/genética , Evolución Biológica , Conjugación Genética , Mesorhizobium/clasificación , Metagenómica/métodos , Fijación del Nitrógeno/fisiología , Filogenia , Filogeografía , Suelo/clasificación , Microbiología del Suelo , Simbiosis/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-33199394

RESUMEN

Integrative conjugative elements (ICEs) are a kind of novel self-transmissible mobile genetic element. In this study, a novel ICE was identified in Glaesserella (Haemophilus) parasuis We confirmed that it could mediate the migration of antimicrobial resistance genes in G. parasuis and found that there may have been a transferring potential between different serovar strains of G. parasuis These findings demonstrate that the ICE is crucial to the horizontal transfer of antimicrobial resistance among G. parasuis strains.


Asunto(s)
Resistencia a Múltiples Medicamentos , Transferencia de Gen Horizontal , Conjugación Genética , Serogrupo
9.
BMC Genomics ; 21(1): 14, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31906858

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is a cause of nosocomial infections, especially in patients with cystic fibrosis and burn wounds. PAO1 strain and its derivatives are widely used to study the biology of this bacterium, however recent studies demonstrated differences in the genomes and phenotypes of derivatives from different laboratories. RESULTS: Here we report the genome sequence of P. aeruginosa PAO1161 laboratory strain, a leu-, RifR, restriction-modification defective PAO1 derivative, described as the host of IncP-8 plasmid FP2, conferring the resistance to mercury. Comparison of PAO1161 genome with PAO1-UW sequence revealed lack of an inversion of a large genome segment between rRNA operons and 100 nucleotide polymorphisms, short insertions and deletions. These included a change in leuA, resulting in E108K substitution, which caused leucine auxotrophy and a mutation in rpoB, likely responsible for the rifampicin resistance. Nonsense mutations were detected in PA2735 and PA1939 encoding a DNA methyltransferase and a putative OLD family endonuclease, respectively. Analysis of revertants in these two genes showed that PA2735 is a component of a restriction-modification system, independent of PA1939. Moreover, a 12 kb RPG42 prophage and a novel 108 kb PAPI-1 like integrative conjugative element (ICE) encompassing a mercury resistance operon were identified. The ICEPae1161 was transferred to Pseudomonas putida cells, where it integrated in the genome and conferred the mercury resistance. CONCLUSIONS: The high-quality P. aeruginosa PAO1161 genome sequence provides a reference for further research including e.g. investigation of horizontal gene transfer or comparative genomics. The strain was found to carry ICEPae1161, a functional PAPI-1 family integrative conjugative element, containing loci conferring mercury resistance, in the past attributed to the FP2 plasmid of IncP-8 incompatibility group. This indicates that the only known member of IncP-8 is in fact an ICE.


Asunto(s)
Conjugación Genética/genética , Genoma Bacteriano/genética , Plásmidos/genética , Pseudomonas aeruginosa/genética , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal/genética , Humanos , Mercurio/farmacología , Mutación , Operón , Fenotipo , Polimorfismo de Nucleótido Simple , Pseudomonas aeruginosa/clasificación , Pseudomonas putida/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
10.
Emerg Infect Dis ; 26(5): 841-848, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32308193

RESUMEN

A 3-month outbreak of invasive group A Streptococcus disease at an eldercare facility, in which 5 persons died, was biphasic. Although targeted chemoprophylaxis contained the initial outbreak, a second phase of the outbreak occurred after infection control processes ended. To retrospectively investigate the genomic epidemiology of the biphasic outbreak, we used whole-genome sequencing and multiple bioinformatics approaches. Analysis of isolates from the outbreak and isolates prospectively collected during the outbreak response indicated a single S. pyogenes emm81 clone among residents and staff members. Outbreak isolates differed from nonoutbreak emm81 isolates by harboring an integrative conjugative genomic element that contained the macrolide resistance determinant erm(TR). This study shows how retrospective high-resolution genomic investigations identified rapid spread of a closed-facilty clonal outbreak that was controlled, but not readily cleared, by infection control management procedures.


Asunto(s)
Antibacterianos , Infecciones Estreptocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brotes de Enfermedades , Farmacorresistencia Bacteriana , Humanos , Macrólidos , Nueva Zelanda/epidemiología , Estudios Retrospectivos , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Streptococcus pyogenes/genética
11.
Clin Microbiol Rev ; 31(4)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30068738

RESUMEN

Strains of bacteria resistant to antibiotics, particularly those that are multiresistant, are an increasing major health care problem around the world. It is now abundantly clear that both Gram-negative and Gram-positive bacteria are able to meet the evolutionary challenge of combating antimicrobial chemotherapy, often by acquiring preexisting resistance determinants from the bacterial gene pool. This is achieved through the concerted activities of mobile genetic elements able to move within or between DNA molecules, which include insertion sequences, transposons, and gene cassettes/integrons, and those that are able to transfer between bacterial cells, such as plasmids and integrative conjugative elements. Together these elements play a central role in facilitating horizontal genetic exchange and therefore promote the acquisition and spread of resistance genes. This review aims to outline the characteristics of the major types of mobile genetic elements involved in acquisition and spread of antibiotic resistance in both Gram-negative and Gram-positive bacteria, focusing on the so-called ESKAPEE group of organisms (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli), which have become the most problematic hospital pathogens.


Asunto(s)
Bacterias/genética , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Evolución Biológica
12.
Artículo en Inglés | MEDLINE | ID: mdl-30910904

RESUMEN

Klebsiella aerogenes is a nosocomial pathogen associated with drug resistance and outbreaks in intensive care units. In a 5-month period in 2017, we experienced an increased incidence of cultures for carbapenem-resistant K. aerogenes (CR-KA) from an adult cardiothoracic intensive care unit (CICU) involving 15 patients. Phylogenomic analysis following whole-genome sequencing (WGS) identified the outbreak CR-KA isolates to group together as a tight monoclonal cluster (with no more than six single nucleotide polymorphisms [SNPs]), suggestive of a protracted intraward transmission event. No clonal relationships were identified between the CICU CR-KA strains and additional hospital CR-KA patient isolates from different wards and/or previous years. Carbapenemase-encoding genes and drug-resistant plasmids were absent in the outbreak strains, and carbapenem resistance was attributed to mutations impacting AmpD activity and membrane permeability. The CICU outbreak strains harbored an integrative conjugative element (ICE) which has been associated with pathogenic Klebsiella pneumoniae lineages (ICEKp10). Comparative genomics with global K. aerogenes genomes showed our outbreak strains to group closely with global sequence type 4 (ST4) strains, which, along with ST93, likely represent dominant K. aerogenes lineages associated with human infections. For poorly characterized pathogens, scaling analyses to include sequenced genomes from public databases offer the opportunity to identify emerging trends and dominant clones associated with specific attributes, syndromes, and geographical locations.


Asunto(s)
Carbapenémicos/farmacología , Enterobacter aerogenes/patogenicidad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Enterobacter aerogenes/efectos de los fármacos , Hospitales , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Porinas/genética , Porinas/metabolismo , Virulencia
13.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247061

RESUMEN

Integrative conjugative elements (ICEs) are chromosomal elements that are widely distributed in bacterial genomes, hence contributing to genome plasticity, adaptation, and evolution of bacteria. Conjugation requires a contact between both the donor and the recipient cells and thus likely depends on the composition of the cell surface envelope. In this work, we investigated the impact of different cell surface molecules, including cell surface proteins, wall teichoic acids, lipoteichoic acids, and exopolysaccharides, on the transfer and acquisition of ICESt3 from Streptococcus thermophilus The transfer of ICESt3 from wild-type (WT) donor cells to mutated recipient cells increased 5- to 400-fold when recipient cells were affected in lipoproteins, teichoic acids, or exopolysaccharides compared to when the recipient cells were WT. These mutants displayed an increased biofilm-forming ability compared to the WT, suggesting better cell interactions that could contribute to the increase of ICESt3 acquisition. Microscopic observations of S. thermophilus cell surface mutants showed different phenotypes (aggregation in particular) that can also have an impact on conjugation. In contrast, the same mutations did not have the same impact when the donor cells, instead of recipient cells, were mutated. In that case, the transfer frequency of ICESt3 decreased compared to that with the WT. The same observation was made when both donor and recipient cells were mutated. The dominant effect of mutations in donor cells suggests that modifications of the cell envelope could impair the establishment or activity of the conjugation machinery required for DNA transport.IMPORTANCE ICEs contribute to horizontal gene transfer of adaptive traits (for example, virulence, antibiotic resistance, or biofilm formation) and play a considerable role in bacterial genome evolution, thus underlining the need of a better understanding of their conjugative mechanism of transfer. While most studies focus on the different functions encoded by ICEs, little is known about the effect of host factors on their conjugative transfer. Using ICESt3 of S. thermophilus as a model, we demonstrated the impact of lipoproteins, teichoic acids, and exopolysaccharides on ICE transfer and acquisition. This opens up new avenues to control gene transfer mediated by ICEs.


Asunto(s)
Conjugación Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Streptococcus thermophilus/genética , Evolución Molecular
14.
Curr Top Microbiol Immunol ; 413: 115-141, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29536357

RESUMEN

Conjugative DNA transfer is the most important means to transfer antibiotic resistance genes and virulence determinants encoded by plasmids, integrative conjugative elements (ICE), and pathogenicity islands among bacteria. In gram-positive bacteria, there exist two types of conjugative systems, (i) type IV secretion system (T4SS)-dependent ones, like those encoded by the Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Clostridia mobile genetic elements and (ii) T4SS-independent ones, as those found on Streptomyces plasmids. Interestingly, very recently, on the Streptococcus suis genome, the first gram-positive T4SS not only involved in conjugative DNA transfer but also in effector translocation to the host was detected. Although no T4SS core complex structure from gram-positive bacteria is available, several structures from T4SS protein key factors from Enterococcus and Clostridia plasmids have been solved. In this chapter, we summarize the current knowledge on the molecular mechanisms and structure-function relationships of the diverse conjugation machineries and emerging research needs focused on combatting infections and spread of multiple resistant gram-positive pathogens.


Asunto(s)
Bacterias Grampositivas , ADN , Plásmidos , Sistemas de Secreción Tipo IV , Factores de Virulencia
15.
Artículo en Inglés | MEDLINE | ID: mdl-28993328

RESUMEN

The objective of this study was to perform molecular surveillance for assessing the spread of carbapenemase-producing Pseudomonas aeruginosa in Czech hospitals. One hundred thirty-six carbapenemase-producing isolates were recovered from 22 hospitals located throughout the country. Sequence type 357 (ST357) dominated (n = 120) among carbapenemase producers. One hundred seventeen isolates produced IMP-type (IMP-7 [n = 116] and IMP-1 [n = 1]) metallo-ß-lactamases (MßLs), 15 produced the VIM-2 MßL, and the remaining isolates expressed the GES-5 enzyme. The blaIMP-like genes were located in three main integron types, with In-p110-like being the most prevalent (n = 115). The two other IMP-encoding integrons (In1392 and In1393) have not been described previously. blaVIM-2-carrying integrons included In59-like, In56, and a novel element (In1391). blaGES-5 was carried by In717. Sequencing data showed that In-p110-like was associated with a Tn4380-like transposon inserted in genomic island LESGI-3 in the P. aeruginosa chromosome. The other integrons were also integrated into the P. aeruginosa chromosome. These findings indicated the clonal spread of ST357 P. aeruginosa, carrying the IMP-7-encoding integron In-p110, in Czech hospitals. Additionally, the sporadic emergence of P. aeruginosa producing different carbapenemase types, associated with divergent or novel integrons, punctuated the ongoing evolution of these bacteria.


Asunto(s)
Cromosomas Bacterianos/química , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Pseudomonas/epidemiología , Pseudomonas aeruginosa/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Carbapenémicos/farmacología , República Checa/epidemiología , Monitoreo Epidemiológico , Expresión Génica , Islas Genómicas , Genotipo , Hospitales , Humanos , Incidencia , Integrones , Isoenzimas/genética , Isoenzimas/metabolismo , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/aislamiento & purificación , beta-Lactamasas/metabolismo
16.
J Microbiol Methods ; 221: 106943, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705209

RESUMEN

Bovine respiratory disease (BRD) is an important health and economic burden to the cattle industry worldwide. Three bacterial pathogens frequently associated with BRD (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) can possess integrative and conjugative elements (ICEs), a diverse group of mobile genetic elements that acquire antimicrobial resistance (AMR) genes (ARGs) and decrease the therapeutic efficacy of antimicrobial drugs. We developed a duplex recombinase polymerase amplification (RPA) assay to detect up to two variants of ICEs in these Pasteurellaceae. Whole genome sequence analysis of M. haemolytica, P. multocida, and H. somni isolates harbouring ICEs revealed the presence of tnpA or ebrB next to tet(H), a conserved ARG that is frequently detected in ICEs within BRD-associated bacteria. This real-time multiplex RPA assay targeted both ICE variants simultaneously, denoted as tetH_tnpA and tetH_ebrB, with a limit of detection (LOD) of 29 (95% CI [23, 46]) and 38 genome copies (95% CI [30, 59]), respectively. DNA was extracted from 100 deep nasopharyngeal swabs collected from feedlot cattle on arrival. Samples were tested for ICEs using a real-time multiplex RPA assay, and for M. haemolytica, P. multocida, H. somni, and Mycoplasma bovis using both culture methods and RPA. The assay provided sensitive and accurate identification of ICEs in extracted DNA, providing a useful molecular tool for timely detection of potential risk factors associated with the development of antimicrobial-resistant BRD in feedlot cattle.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Nasofaringe , Recombinasas , Animales , Bovinos , Nasofaringe/microbiología , Recombinasas/genética , Reacción en Cadena de la Polimerasa Multiplex/métodos , Reacción en Cadena de la Polimerasa Multiplex/veterinaria , Secuencias Repetitivas Esparcidas/genética , Enfermedades de los Bovinos/microbiología , Enfermedades de los Bovinos/diagnóstico , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Complejo Respiratorio Bovino/microbiología , Conjugación Genética , Sensibilidad y Especificidad , Mannheimia haemolytica/genética , Mannheimia haemolytica/aislamiento & purificación , Pasteurellaceae/genética , Pasteurellaceae/aislamiento & purificación
17.
Microorganisms ; 12(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39065090

RESUMEN

Proteus mirabilis is a leading cause of urinary tract infections and a common commensal of the gastrointestinal tract. Our recent study (JB) showed that P. mirabilis strain BL95 employs a novel contact-dependent killing system against enteric bacteria in the mouse gut and in vitro. To uncover the genetic determinants of this system, we performed whole-genome sequencing of BL95 and compared it with 98 complete genomes of P. mirabilis. BL95 carries 56 coding sequences (CDSs) not found in other P. mirabilis. Over half of these unique genes are located on a novel integrative conjugative element (ICE) named ICEPm2, inserted in tRNA-Phe and exclusive to BL95. ICEPm2 has integration, conjugation, and DNA replication modules nearly identical to ICEPm1 (common in P. mirabilis), but ICEPm2 of BL95 carries two unique operons for P. mirabilis-a phenazine biosynthesis and a contact-dependent growth inhibition (CDI) system. ICEPm2 is absent in the P. mirabilis (AR_0156) closest to BL95 and it is present in the genomes of several Escherichia coli from mouse intestines, indicating its recent horizontal mobilization. BL95 shares over 100 genes of five different secretion systems with other P. mirabilis, mostly poorly studied, making a large pool of candidate genes for the contact-dependent growth inhibition.

18.
Front Microbiol ; 14: 1056790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007518

RESUMEN

Background: Studies on Citrobacter spp. are limited, hindering our understanding of its species evolution and medical relevance. Methods: A total of 164 clinical Citrobacter spp. isolates were collected from 2017 to 2020 and identified by VITEK MALDI-TOF MS or VITEK-2 Gram-Negative Identification Card. All isolates were further analyzed by whole-genome sequencing using a HiSeq sequencer. All sequences were processed using different modules of the PGCGAP integrated package: Prokka and fastANI were used for annotation and average nucleotide identification (ANI), respectively. Antibiotic resistance and virulence genes were identified by searching CARD, ResFinder, and VFDB databases, respectively. Strains were identified using Ribosomal Multi-locus Sequence Typing (rMLST) classification based on 53 ribosome protein subunits (rps). The evolutionary relationship was analyzed using kSNP3 and visualized by iTOL editor v1_1. Genetic environments were compared by BLAST and visualized by Easyfig 2.2.5. The pathogenicity of some Citrobacter freundii isolates was confirmed by Galleria mellonella larvae infection test. Results: A total of 14 species of Citrobacter spp. were identified from 164 isolates. However, 27 and 11 isolates were incorrectly identified as C. freundii and Citrobacter braakii by MALDI-TOF MS, respectively. In addition, MS also failed to identify Citrobacter portucalensis. The virulence genes mainly encoded proteins related to flagella and iron uptake systems. Citrobacter koseri isolates (n = 28) contained two iron uptake systems, coding yersiniabactin and aerobactin, respectively. C. braakii isolates (n = 32), like Salmonella, carried Vi capsule polysaccharide synthesis genes. The yersiniabactin gene clusters identified in five C. freundii isolates are located on various ICEkp elements and have not been reported previously. Moreover, ICEkp-carrying C. freundii showed diverse pathogenic features. Conclusion: Conventional methods have significant defects in identifying Citrobacter spp. ICEkp-like elements-mediated acquirement of the Yersinia high-pathogenicity island was identified for the first time in C. freundii.

19.
Antibiotics (Basel) ; 12(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36978411

RESUMEN

Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry the tetracycline resistance gene tet(M) in fixed genomic positions amongst five predominant clonal clades. In the UK, GBS resistance to clindamycin and erythromycin has increased from 3% in 1991 to 11.9% (clindamycin) and 20.2% (erythromycin), as reported in this study. Here, a systematic investigation of antimicrobial resistance genomic content sought to fully characterise the associated mobile genetic elements within phenotypically resistant GBS isolates from 193 invasive and non-invasive infections of UK adult patients collected during 2014 and 2015. Resistance to erythromycin and clindamycin was mediated by erm(A) (16/193, 8.2%), erm(B) (16/193, 8.2%), mef(A)/msr(D) (10/193, 5.1%), lsa(C) (3/193, 1.5%), lnu(C) (1/193, 0.5%), and erm(T) (1/193, 0.5%) genes. The integrative conjugative elements (ICEs) carrying these genes were occasionally found in combination with high gentamicin resistance mediating genes aac(6')-aph(2″), aminoglycoside resistance genes (ant(6-Ia), aph(3'-III), and/or aad(E)), alternative tetracycline resistance genes (tet(O) and tet(S)), and/or chloramphenicol resistance gene cat(Q), mediating resistance to multiple classes of antibiotics. This study provides evidence of the retention of previously reported ICESag37 (n = 4), ICESag236 (n = 2), and ICESpy009 (n = 3), as well as the definition of sixteen novel ICEs and three novel transposons within the GBS lineage, with no evidence of horizontal transfer.

20.
Microbiol Spectr ; 11(3): e0466722, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995244

RESUMEN

Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.


Asunto(s)
Microbiota , Streptococcus thermophilus , Animales , Ratones , Humanos , Streptococcus thermophilus/genética , Conjugación Genética , Tracto Gastrointestinal , Transferencia de Gen Horizontal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA