RESUMEN
General anesthetics cause a profound loss of behavioral responsiveness in all animals. In mammals, general anesthesia is induced in part by the potentiation of endogenous sleep-promoting circuits, although "deep" anesthesia is understood to be more similar to coma (Brown et al., 2011). Surgically relevant concentrations of anesthetics, such as isoflurane and propofol, have been shown to impair neural connectivity across the mammalian brain (Mashour and Hudetz, 2017; Yang et al., 2021), which presents one explanation why animals become largely unresponsive when exposed to these drugs. It remains unclear whether general anesthetics affect brain dynamics similarly in all animal brains, or whether simpler animals, such as insects, even display levels of neural connectivity that could be disrupted by these drugs. Here, we used whole-brain calcium imaging in behaving female Drosophila flies to investigate whether isoflurane anesthesia induction activates sleep-promoting neurons, and then inquired how all other neurons across the fly brain behave under sustained anesthesia. We were able to track the activity of hundreds of neurons simultaneously during waking and anesthetized states, for spontaneous conditions as well as in response to visual and mechanical stimuli. We compared whole-brain dynamics and connectivity under isoflurane exposure to optogenetically induced sleep. Neurons in the Drosophila brain remain active during general anesthesia as well as induced sleep, although flies become behaviorally inert under both treatments. We identified surprisingly dynamic neural correlation patterns in the waking fly brain, suggesting ensemble-like behavior. These become more fragmented and less diverse under anesthesia but remain wake-like during induced sleep.SIGNIFICANCE STATEMENT When humans are rendered immobile and unresponsive by sleep or general anesthetics, their brains do not shut off - they just change how they operate. We tracked the activity of hundreds of neurons simultaneously in the brains of fruit flies that were anesthetized by isoflurane or genetically put to sleep, to investigate whether these behaviorally inert states shared similar brain dynamics. We uncovered dynamic patterns of neural activity in the waking fly brain, with stimulus-responsive neurons constantly changing through time. Wake-like neural dynamics persisted during induced sleep but became more fragmented under isoflurane anesthesia. This suggests that, like larger brains, the fly brain might also display ensemble-like behavior, which becomes degraded rather than silenced under general anesthesia.
Asunto(s)
Anestésicos Generales , Isoflurano , Animales , Humanos , Femenino , Drosophila , Drosophila melanogaster/fisiología , Encéfalo/fisiología , Anestesia General , MamíferosRESUMEN
General anesthesia shares many similarities with natural sleep in behavior and electroencephalogram (EEG) patterns. The latest evidence suggests that general anesthesia and sleep-wake behavior may share overlapping neural substrates. The GABAergic neurons in the basal forebrain (BF) have recently been demonstrated to play a key role in controlling wakefulness. It was hypothesized that BF GABAergic neurons may participate in the regulation of general anesthesia. Here, using in vivo fiber photometry, we found that the activity of BF GABAergic neurons was generally inhibited during isoflurane anesthesia, having obviously decreased during the induction of anesthesia and being gradually restored during the emergence from anesthesia, in Vgat-Cre mice of both sexes. Activation of BF GABAergic neurons with chemogenetic and optogenetic approaches decreased sensitivity to isoflurane, delayed induction, and accelerated emergence from isoflurane anesthesia. Optogenetic activation of BF GABAergic neurons decreased EEG δ power and the burst suppression ratio (BSR) during 0.8% and 1.4% isoflurane anesthesia, respectively. Similar to the effects of activating BF GABAergic cell bodies, photostimulation of BF GABAergic terminals in the thalamic reticular nucleus (TRN) also strongly promoted cortical activation and behavioral emergence from isoflurane anesthesia. Collectively, these results showed that the GABAergic BF is a key neural substrate for general anesthesia regulation that facilitates behavioral and cortical emergence from general anesthesia via the GABAergic BF-TRN pathway. Our findings may provide a new target for attenuating the depth of anesthesia and accelerating emergence from general anesthesia.SIGNIFICANCE STATEMENT The basal forebrain (BF) is a key brain region controlling sleep-wake behavior. Activation of GABAergic neurons in the BF potently promotes behavioral arousal and cortical activity. Recently, many sleep-wake-related brain structures have been reported to participate in the regulation of general anesthesia. However, it is still unclear what role BF GABAergic neurons play in general anesthesia. In this study, we aim to reveal the role of BF GABAergic neurons in behavioral and cortical emergence from isoflurane anesthesia and elucidate the underlying neural pathways. Understanding the specific role of BF GABAergic neurons in isoflurane anesthesia would improve our understanding of the mechanisms of general anesthesia and may provide a new strategy for accelerating emergence from general anesthesia.
Asunto(s)
Prosencéfalo Basal , Isoflurano , Masculino , Femenino , Ratones , Animales , Isoflurano/farmacología , Prosencéfalo Basal/fisiología , Neuronas GABAérgicas/fisiología , Sueño/fisiología , Electroencefalografía , Anestesia GeneralRESUMEN
The common marmoset is an essential model for understanding social cognition and neurodegenerative diseases. This study explored the structural and functional brain connectivity in a marmoset under isoflurane anesthesia, aiming to statistically overcome the effects of high inter-individual variability and noise-related confounds such as physiological noise, ensuring robust and reliable data. Similarities and differences in individual subject data, including assessments of functional and structural brain connectivities derived from resting-state functional MRI and diffusion tensor imaging were meticulously captured. The findings highlighted the high consistency of structural neural connections within the species, indicating a stable neural architecture, while functional connectivity under anesthesia displayed considerable variability. Through independent component and dual regression analyses, several distinct brain connectivities were identified, elucidating their characteristics under anesthesia. Insights into the structural and functional features of the marmoset brain from this study affirm its value as a neuroscience research model, promising advancements in the field through fundamental and translational studies.
Asunto(s)
Anestésicos por Inhalación , Encéfalo , Callithrix , Imagen de Difusión Tensora , Isoflurano , Imagen por Resonancia Magnética , Animales , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Masculino , Conectoma/métodos , Femenino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiologíaRESUMEN
Anesthesia is often required during magnetic resonance imaging (MRI) examinations in animal studies. Anesthetic drugs differ in their capacity to interfere with homeostatic mechanisms responsible for glucose metabolism in the brain, which may create a constraint in the study design. Recent studies suggest that the chemical exchange saturation transfer (CEST) MRI scanning technique can detect localized metabolic changes in rodent brains induced by the uptake of glucose or its analogs; however, most of these studies do not account for the impact of anesthesia type on the brain metabolism. Herein, we aimed to evaluate the effect of reduced isoflurane levels on the preclinical imaging of glucosamine (GlcN) uptake in healthy mouse brains to establish optimal conditions for future brain imaging studies using the CEST MRI technique. The commonly used anesthesia protocol for longitudinal MRI examinations using 1.5% isoflurane level was compared to that using a mixture of low isoflurane (0.8%) level combined with midazolam (2 mg/kg, SC). Magnetization transfer ratio asymmetry (MTRasym) and area under the curve (AUC) analyses were used to characterize GlcN signals in the brain. The results indicated that mice injected with GlcN and anesthetized with 1.5% isoflurane exhibited low and insignificant changes in the MTRasym and AUC signals in the frontal cortex, whereas mice administered with 0.8% isoflurane combined with midazolam demonstrated a significant increase in these signals in the frontal cortex. This study highlights the diverse GlcN metabolic changes observed in mouse brains under variable levels of isoflurane anesthesia using the CEST MRI method. The results suggest that it is feasible to maintain anesthesia with low-dose isoflurane by integrating midazolam, which may enable the investigation of GlcN uptake in the brain. Thus, reducing isoflurane levels may support studies into mouse brain metabolism using the CEST MRI method and should be considered in future studies.
Asunto(s)
Anestésicos por Inhalación , Encéfalo , Glucosamina , Isoflurano , Imagen por Resonancia Magnética , Animales , Isoflurano/farmacología , Imagen por Resonancia Magnética/métodos , Glucosamina/metabolismo , Ratones , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Midazolam/farmacocinéticaRESUMEN
Cortical electro-encephalography (EEG) served as the clinical reference for monitoring unconsciousness during general anesthesia. The existing EEG-based monitors classified general anesthesia states as underdosed, adequate, or overdosed, lacking predictive power due to the absence of transition phases among these states. In response to this limitation, we undertook an analysis of the EEG signal during isoflurane-induced general anesthesia in mice. Adopting a data-driven approach, we applied signal processing techniques to track θ- and δ-band dynamics, along with iso-electric suppressions. Combining this approach with machine learning, we successfully developed an automated algorithm. The findings of our study revealed that the dampening of the δ-band occurred several minutes before the onset of significant iso-electric suppression episodes. Furthermore, a distinct γ-frequency oscillation was observed, persisting for several minutes during the recovery phase subsequent to isoflurane-induced overdose. As a result of our research, we generated a map summarizing multiple brain states and their transitions, offering a tool for predicting and preventing overdose during general anesthesia. The transition phases identified, along with the developed algorithm, have the potential to be generalized, enabling clinicians to prevent inadequate anesthesia and, consequently, tailor anesthetic regimens to individual patients.
Asunto(s)
Isoflurano , Humanos , Ratones , Animales , Isoflurano/farmacología , Electroencefalografía , Anestesia General , Inconsciencia , EncéfaloRESUMEN
Isoflurane is one of the most widely used anesthetic agents in rodent imaging studies. However, the impact of isoflurane on brain metabolism has not been fully characterized to date, primarily due to a scarcity of noninvasive technologies to quantitatively measure the brain's metabolic rate in vivo. In this study, using noncontrast MRI techniques, we dynamically measured cerebral metabolic rate of oxygen (CMRO2) under varying doses of isoflurane anesthesia in mice. Concurrently, systemic parameters of heart and respiration rates were recorded alongside CMRO2. Additionally, electroencephalogram (EEG) recording was used to identify changes in neuronal activities under the same anesthetic regimen employed in the MRI experiments. We found suppression of the CMRO2 by isoflurane in a dose-dependent manner, concomitant with a diminished high-frequency EEG activity. The degree of metabolic suppression by isoflurane was strongly correlated with the respiration rate, which offers a potential approach to calibrate CMRO2 measurements. Furthermore, the metabolic level associated with neural responses of the somatosensory and motor cortices in mice was estimated as 308.2 µmol/100 g/min. These findings may facilitate the integration of metabolic parameters into future studies involving animal disease models and anesthesia usage.
RESUMEN
OBJECTIVE: This study aimed to explore the effects of sedative doses of propofol and isoflurane on microcirculation in septic mice compared to controls. Isoflurane, known for its potential as a sedation drug in bedside applications, lacks clarity regarding its impact on the microcirculation system. The hypothesis was that propofol would exert a more pronounced influence on the microvascular flow index, particularly amplified in septic conditions. MATERIAL AND METHODS: Randomized study was conducted from December 2020 to October 2021 involved 60 BALB/c mice, with 52 mice analyzed. Dorsal skinfold chambers were implanted, followed by intraperitoneal injections of either sterile 0.9 % saline or lipopolysaccharide for the control and sepsis groups, respectively. Both groups received propofol or isoflurane treatment for 120 min. Microcirculatory parameters were obtained via incident dark-field microscopy videos, along with the mean blood pressure and heart rate at three time points: before sedation (T0), 30 min after sedation (T30), and 120 min after sedation (T120). Endothelial glycocalyx thickness and syndecan-1 concentration were also analyzed. RESULTS: In healthy controls, both anesthetics reduced blood pressure. However, propofol maintained microvascular flow, differing significantly from isoflurane at T120 (propofol, 2.8 ± 0.3 vs. isoflurane, 1.6 ± 0.9; P < 0.001). In the sepsis group, a similar pattern occurred at T120 without statistical significance (propofol, 1.8 ± 1.1 vs. isoflurane, 1.2 ± 0.7; P = 0.023). Syndecan-1 levels did not differ between agents, but glycocalyx thickness index was significantly lower in the isoflurane-sepsis group than propofol (P = 0.001). CONCLUSIONS: Propofol potentially offers protective action against microvascular flow deterioration compared to isoflurane, observed in control mice. Furthermore, a lower degree of sepsis-induced glycocalyx degradation was evident with propofol compared to isoflurane.
Asunto(s)
Anestésicos por Inhalación , Isoflurano , Propofol , Sepsis , Animales , Ratones , Propofol/farmacología , Isoflurano/farmacología , Microcirculación , Sindecano-1 , Anestésicos por Inhalación/farmacología , Sepsis/tratamiento farmacológico , Anestésicos Intravenosos/farmacologíaRESUMEN
A-scan ultrasonography enables precise measurement of internal ocular structures. Historically, its use has underpinned fundamental studies of eye development and aberrant eye growth in animal models of myopia; however, the procedure typically requires anaesthesia. Since anaesthesia affects intra-ocular pressure (IOP), we investigated changes in internal ocular structures with isoflurane exposure and compared measurements with those taken in awake animals using optical coherence tomography (OCT). Continuous A-scan ultrasonography was undertaken in tri-coloured guinea pigs aged 21 (n = 5), 90 (n = 5) or 160 (n = 5) days while anaesthetised (up to 36 min) with isoflurane (5% in 1.5L/min O2). Peaks were selected from ultrasound traces corresponding to the boundaries of the cornea, crystalline lens, retina, choroid and sclera. OCT scans (Zeiss Cirrus Photo 800) of the posterior eye layers were taken in 28-day-old animals (n = 19) and compared with ultrasound traces, with choroid and scleral thickness adjusted for the duration of anaesthesia based on the changes modelled in 21-day-old animals. Ultrasound traces recorded sequentially in left and right eyes in 14-day-old animals (n = 30) were compared, with each adjusted for anaesthesia duration. The thickness of the cornea was measured in enucleated eyes (n = 5) using OCT following the application of ultrasound gel (up to 20 min). Retinal thickness was the only ultrasound internal measure unaffected by anaesthesia. All other internal distances rapidly changed and were well fitted by exponential functions (either rise-to-max or decay). After 10 and 20 min of anaesthesia, the thickness of the cornea, crystalline lens and sclera increased by 17.1% and 23.3%, 0.4% and 0.6%, and 5.2% and 6.5% respectively, whilst the anterior chamber, vitreous chamber and choroid decreased by 4.4% and 6.1%, 0.7% and 1.1%, and 10.7% and 11.8% respectively. In enucleated eyes, prolonged contact of the cornea with ultrasound gel resulted in an increase in thickness of 9.3% after 10 min, accounting for approximately half of the expansion observed in live animals. At the back of the eye, ultrasound measurements of the thickness of the retina, choroid and sclera were highly correlated with those from posterior segment OCT images (R2 = 0.92, p = 1.2 × 10-13, R2 = 0.55, p = 4.0 × 10-4, R2 = 0.72, p = 5.0 × 10-6 respectively). Furthermore, ultrasound measures for all ocular components were highly correlated in left and right eyes measured sequentially, when each was adjusted for anaesthetic depth. This study shows that the depth of ocular components can change dramatically with anaesthesia. Researchers should therefore be wary of these concomitant effects and should employ adjustments to better render 'true' values.
Asunto(s)
Anestésicos por Inhalación , Isoflurano , Tomografía de Coherencia Óptica , Ultrasonografía , Animales , Tomografía de Coherencia Óptica/métodos , Cobayas , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Coroides/efectos de los fármacos , Coroides/diagnóstico por imagen , Envejecimiento/fisiología , Presión Intraocular/efectos de los fármacos , Presión Intraocular/fisiología , Córnea/efectos de los fármacos , Córnea/diagnóstico por imagen , Retina/efectos de los fármacos , Retina/diagnóstico por imagen , Esclerótica/efectos de los fármacos , Esclerótica/diagnóstico por imagen , Factores de Tiempo , Ojo/diagnóstico por imagen , Ojo/efectos de los fármacos , Modelos Animales de Enfermedad , Cristalino/diagnóstico por imagen , Cristalino/efectos de los fármacosRESUMEN
Enterococcus faecalis (E. faecalis) is one of the major pathogenic bacteria responsible for surgical site infections. Biofilm infections are major hospital-acquired infections. Previous studies suggested that ions could regulate biofilm formation in microbes. Volatile anesthetics, frequently administered in surgical setting, target ion channels. Here, we investigated the role of ion channels/transporters and volatile anesthetics in the biofilm formation by E. faecalis MMH594 strain and its ion transporter mutants. We found that a chloride transporter mutant significantly reduced biofilm formation compared to the parental strain. Downregulation of teichoic acid biosynthesis in the chloride transporter mutant impaired biofilm matrix formation and cellular adhesion, leading to mitigated biofilm formation. Among anesthetics, isoflurane exposure enhanced biofilm formation in vitro and in vivo. The upregulation of de novo purine biosynthesis pathway by isoflurane exposure potentially enhanced biofilm formation, an essential process for DNA, RNA, and ATP synthesis. We also demonstrated that isoflurane exposure to E. faecalis increased cyclic-di-AMP and extracellular DNA production, consistent with the increased purine biosynthesis. We further showed that isoflurane enhanced the enzymatic activity of phosphoribosyl pyrophosphate synthetase (PRPP-S). With the hypothesis that isoflurane directly bound to PRPP-S, we predicted isoflurane binding site on it using rigid docking. Our study provides a better understanding of the underlying mechanisms of E. faecalis biofilm formation and highlights the potential impact of an ion transporter and volatile anesthetic on this process. These findings may lead to the development of novel strategies for preventing E. faecalis biofilm formation and improving patient outcomes in clinical settings.
Asunto(s)
Anestésicos , Infecciones Bacterianas , Isoflurano , Humanos , Isoflurano/farmacología , Cloruros , Biopelículas , Proteínas de Transporte de Membrana , AMP Cíclico , EnterococcusRESUMEN
The glutamatergic-mediated excitatory system in the brain is vital for the regulation of sleep-wake and general anesthesia. Specifically, the paraventricular hypothalamic nucleus (PVH), which contains mainly glutamatergic neurons, has been shown to play a critical role in sleep-wake. Here, we sought to explore whether the PVH glutamatergic neurons have an important effect on the process of general anesthesia. We used c-fos staining and in vivo calcium signal recording to observe the activity changes of the PVH glutamatergic neurons during isoflurane anesthesia and found that both c-fos expression in the PVH and the calcium activity of PVH glutamatergic neurons decreased in isoflurane anesthesia and significantly increased during the recovery process. Chemogenetic activation of PVH glutamatergic neurons prolonged induction time and shortened emergence time from anesthesia by decreasing the depth of anesthesia. Using chemogenetic inhibition of PVH glutamatergic neurons under isoflurane anesthesia, we found that inhibition of PVH glutamatergic neurons facilitated the induction process and delayed the emergence accompanied by deepening the depth of anesthesia. Together, these results identify a crucial role for PVH glutamatergic neurons in modulating isoflurane anesthesia.
Asunto(s)
Isoflurano , Ratones , Animales , Isoflurano/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Anestesia GeneralRESUMEN
The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.
Asunto(s)
Anestésicos por Inhalación , Neuronas GABAérgicas , Isoflurano , Zona Incerta , Animales , Isoflurano/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Zona Incerta/efectos de los fármacos , Zona Incerta/metabolismo , Anestésicos por Inhalación/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Periodo de Recuperación de la AnestesiaRESUMEN
BACKGROUND: Dopaminergic psychostimulants can restore arousal in anaesthetised animals, and dopaminergic signalling contributes to hippocampal-dependent memory formation. We tested the hypothesis that dopaminergic psychostimulants can antagonise the amnestic effects of isoflurane on visuospatial working memory. METHODS: Sixteen adult Sprague-Dawley rats were trained on a trial-unique nonmatching-to-location (TUNL) task which assessed the ability to identify a novel touchscreen location after a fixed delay. Once trained, the effects of low-dose isoflurane (0.3 vol%) on task performance and activity, assessed by infrared beam breaks, were assessed. We attempted to rescue deficits in performance and activity with a dopamine D1 receptor agonist (chloro-APB), a noradrenergic reuptake inhibitor (atomoxetine), and a mixed dopamine/norepinephrine releasing agent (dextroamphetamine). Anaesthetic induction, emergence, and recovery from anaesthesia were also investigated. RESULTS: Low-dose isoflurane impaired working memory in a sex-independent and intra-trial delay-independent manner as assessed by task performance, and caused an overall reduction in activity. Administration of chloro-APB, atomoxetine, or dextroamphetamine did not restore visuospatial working memory, but chloro-APB and dextroamphetamine recovered arousal to levels observed in the baseline awake state. Performance did not differ between induction and emergence. Animals recovered to baseline performance within 15 min of discontinuing isoflurane. CONCLUSIONS: Low-dose isoflurane impairs visuospatial working memory in a nondurable and delay-independent manner that potentially implicates non-hippocampal structures in isoflurane-induced memory deficits. Dopaminergic psychostimulants counteracted sedation but did not reverse memory impairments, suggesting that isoflurane-induced amnesia and isoflurane-induced sedation have distinct underlying mechanisms that can be antagonised independently.
Asunto(s)
Anestésicos por Inhalación , Isoflurano , Trastornos de la Memoria , Ratas Sprague-Dawley , Animales , Isoflurano/farmacología , Masculino , Ratas , Anestésicos por Inhalación/farmacología , Trastornos de la Memoria/inducido químicamente , Nivel de Alerta/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Femenino , Memoria a Corto Plazo/efectos de los fármacos , Agonistas de Dopamina/farmacologíaRESUMEN
BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.
Asunto(s)
Anestésicos por Inhalación , Animales Recién Nacidos , Isoflurano , Cotransportadores de K Cl , Miembro 2 de la Familia de Transportadores de Soluto 12 , Simportadores , Animales , Isoflurano/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/metabolismo , Anestésicos por Inhalación/farmacología , Anestésicos por Inhalación/efectos adversos , Ratas , Ratones , Ratas Sprague-Dawley , Masculino , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/metabolismo , Femenino , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismoRESUMEN
Isoflurane, a commonly used inhaled anesthetic, has been found to have a cardioprotective effect. However, the precise mechanisms have not been fully elucidated. Here, we found that isoflurane preconditioning enhanced OGD/R-induced upregulation of miR-210, a hypoxia-responsive miRNA, in AC16 human myocardial cells. To further test the roles of miR-210 in regulating the effects of isoflurane preconditioning on OGD/R-induced cardiomyocyte injury, AC16 cells were transfected with anti-miR-210 or control anti-miRNA. Results showed that isoflurane preconditioning attenuated OGD/R-induced cardiomyocyte cytotoxicity (as assessed by cell viability, LDH and CK-MB levels), which could be reversed by anti-miR-210. Isoflurane preconditioning also prevented OGD/R-induced increase in apoptotic rate, caspase-3 and caspase-9 activities, and Bax level and decrease in Bcl-2 expression level, while anti-miR-210 blocked these effects. We also found that anti-miR-210 prevented the inhibitory effects of isoflurane preconditioning on OGD/R-induced decrease in adenosine triphosphate content; mitochondrial volume; citrate synthase activity; complex I, II, and IV activities; and p-DRP1 and MFN2 expression. Besides, the expression of BNIP3, a reported direct target of miR-210, was significantly decreased under hypoxia condition and could be regulated by isoflurane preconditioning. In addition, BNIP3 knockdown attenuated the effects of miR-210 silencing on the cytoprotection of isoflurane preconditioning. These findings suggested that isoflurane preconditioning exerted protective effects against OGD/R-induced cardiac cytotoxicity by regulating the miR-210/BNIP3 axis.
Asunto(s)
Isoflurano , Proteínas de la Membrana , MicroARNs , Miocitos Cardíacos , MicroARNs/genética , MicroARNs/metabolismo , Isoflurano/farmacología , Isoflurano/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Apoptosis/efectos de los fármacos , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/farmacología , Supervivencia Celular/efectos de los fármacos , Línea Celular , Hipoxia de la Célula/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genéticaRESUMEN
BACKGROUND: Emergence agitation is a complex syndrome of altered consciousness after emergence from anesthesia. It can result in injury to patients and staff and is associated with other postoperative complications. Sevoflurane has been associated with emergence agitation, potentially due to low tissue solubility and therefore speed of emergence. Prior meta-analyses comparing emergence agitation incidence between sevoflurane and isoflurane anesthetics did not demonstrate a statistically significant difference. Given the publication of additional relevant studies not included in prior meta-analyses as well as improved diagnosis of emergence agitation, we aim to perform an updated, comprehensive meta-analysis comparing emergence agitation incidence between sevoflurane and isoflurane anesthetics in children. METHODS: We conducted an updated systematic review and meta-analysis of clinical trials comparing sevoflurane to isoflurane in children <18 years of age, reporting emergence agitation as an outcome, published before July 2023 using databases and registers. Our primary outcome was the incidence of emergence agitation. Secondary outcomes were time to extubation, awakening time, and length of stay in the postanesthetic care unit. We assessed the risk of bias using the Cochrane Risk of Bias tool version 2. We pooled the effect size for the outcomes using the fixed effects model if we had low heterogeneity, otherwise, we used a random-effects model. RESULTS: Eight randomized controlled trials (523 children) were included in the final analysis. The incidence of emergence agitation after isoflurane was significantly lower compared to sevoflurane (risk ratio: 0.62 (95% CI: [0.46-0.83]; I2 = 40.01%, p < .001)). Time to extubation, awakening times, and postanesthetic care unit duration were not significantly different. The protective effect of isoflurane compared to sevoflurane remained significant in subgroups of patients who received premedication or intraoperative systemic analgesics (risk ratios: (0.48 [0.28-0.82]; I2 = 60.78%, p = .01), (0.52 [0.37-0.75]; I2 = 0.00%, p < .001), respectively). CONCLUSION: The risk of emergence agitation in children after maintenance anesthesia with sevoflurane is significantly greater than with isoflurane; we did not find evidence of prolonged emergence or postanesthetic length of stay. When possible, isoflurane should be considered for maintenance anesthesia over sevoflurane in patients at high risk of emergence agitation.
Asunto(s)
Anestésicos por Inhalación , Delirio del Despertar , Isoflurano , Sevoflurano , Niño , Humanos , Anestesia General , Anestésicos por Inhalación/efectos adversos , Delirio del Despertar/epidemiología , Incidencia , Isoflurano/efectos adversos , Sevoflurano/efectos adversosRESUMEN
BACKGROUND: Individuals with mitochondrial defects, especially those in Complex I of the electron transport chain, exhibit behavioral hypersensitivity and toxicity to volatile anesthetics. In Drosophila melanogaster, mutation of ND23 (NDUFS8 in mammals), which encodes a subunit of the matrix arm of Complex I, sensitizes flies to toxicity from isoflurane but not an equipotent dose of sevoflurane. Also, in ND23 flies, both anesthetics activate expression of stress response genes, but to different extents. Here, we investigated the generality of these findings by examining flies mutant for ND2 (ND2 in mammals), which encodes a subunit of the membrane arm of Complex I. METHODS: The serial anesthesia array was used to expose ND2del1 and ND2360114 flies to precise doses of isoflurane, sevoflurane, and oxygen. Behavioral sensitivity was assessed by a climbing assay and toxicity by percent mortality within 24 h of exposure. Changes in expression were determined by qRT-PCR of RNA isolated from heads at 0.5 h after anesthetic exposure. RESULTS: Unlike ND2360114, ND2del1 did not affect behavioral sensitivity to isoflurane or sevoflurane. Furthermore, sevoflurane in hyperoxia as well as anoxia caused mortality of ND2del1 but not ND2360114 flies. Finally, the mutations had different effects on induction of stress response gene expression by the anesthetics. CONCLUSION: Mutations in different arms of Complex I resulted in different behavioral sensitivities and toxicities to isoflurane and sevoflurane, indicating that (i) the anesthetics have mechanisms of action that involve arms of Complex I to different extents and (ii) the lack of behavioral hypersensitivity does not preclude susceptibility to anesthetic toxicity.
Asunto(s)
Anestésicos por Inhalación , Drosophila melanogaster , Complejo I de Transporte de Electrón , Isoflurano , Mutación , Sevoflurano , Animales , Anestésicos por Inhalación/toxicidad , Anestésicos por Inhalación/farmacología , Complejo I de Transporte de Electrón/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Sevoflurano/farmacología , Isoflurano/toxicidad , Isoflurano/farmacología , Conducta Animal/efectos de los fármacos , Mitocondrias/efectos de los fármacosRESUMEN
Perioperative neurocognitive disorders (PND) are a cognitive impairment that occurs after anesthesia, especially in elderly patients and significantly affects their quality of life. The hippocampus, as a critical region for cognitive function and an important location in PND research, has recently attracted increasing attention. However, in the hippocampus the impact of anesthesia and its underlying mechanisms remain unclear. This review focuses on investigation of the effects of anesthesia on the hippocampal dopamine (DA) system and explores its potential association with PND. Through comprehensive review of existing studies, it was found that anesthesia affects the hippocampus through various pathways involved in metabolism, synaptic plasticity and oxygenation. Anesthesia may also influence the DA neurotransmitter system in the brain which plays a role in emotions, rewards, learning and memory functions. Specifically, anesthesia may participate in the pathogenesis of PND by affecting the DA system within the hippocampus. Future studies should explore the molecular mechanisms of these effects through techniques such as neuroimaging to study real-time effects to improve animal models to better simulate clinical observations. For clinical application, it is recommended that physicians exercise caution when selecting and managing anesthetic drugs by adopting comprehensive cognitive assessment methods to reduce post-anesthesia cognitive risk. Overall, this review provides a better understanding of the relationship between the hippocampal DA system and perioperative neurocognitive function and provides valuable guidance for prevention and treatment strategies for PND.
Asunto(s)
Disfunción Cognitiva , Dopamina , Animales , Humanos , Anciano , Dopamina/metabolismo , Dopamina/farmacología , Calidad de Vida , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/patología , Hipocampo/metabolismoRESUMEN
OBJECTIVE: This study aimed to investigate the mechanism of emulsified isoflurane in reducing myocardial ischemia-reperfusion injury (MIRI). MATERIALS AND METHODS: Forty-eight healthy male Sprague-Dawley rats were randomly divided into four groups (n = 12). In the sham group (group S) and ischemia-reperfusion group (group I/R), saline (4 ml/kg/h) was administered intravenously for 30 min. In intralipid group (group L), intralipid (4 ml/kg/h) was administered intravenously. In the emulsified isoflurane group (group EI), emulsified isoflurane (4 ml/kg/h) was administered intravenously. The infusion was then discontinued for 15 min during the washout period. Apart from group S, ischemia was produced by occlusion of the left anterior descending artery (LADA) for 30 min. After 30 min of occlusion, all groups received reperfusion for two hours. RESULTS: Creatine kinase MB (CK-MB), cardiac troponin I (cTnI), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). Myocardial infarct size was measured using triphenyl tetrazolium chloride staining. According to the result, pretreatment with emulsified isoflurane attenuated CK-MB and cTnI concentrations (p < 0.05). And serum TNF-α and IL-6 levels and infarct size in the emulsified isoflurane group obviously decreased. An obvious decrease in the expression of the toll-like receptor-4 (TLR-4) mRNA in group EI was observed compared with group I/R. DISCUSSION AND CONCLUSION: Emulsified isoflurane precondition had a potent cardioprotective effect against myocardial ischemia-reperfusion injury. The mechanisms involved may be related to the decrease in the expression of TLR-4 and the reduced inflammatory response.
RESUMEN
Disruption of any stage of iron homeostasis, including uptake, utilization, efflux, and storage, can cause progressive damage to peripheral organs. The health hazards associated with occupational exposure to inhalation anesthetics (IA) in combination with chronic iron overload are not well documented. This study aimed to investigate changes in the concentration of essential metals in the peripheral organs of rats after iron overload in combination with IA. The aim was also to determine how iron overload in combination with IA affects tissue metal homeostasis, hepcidin-ferritin levels, and MMP levels according to physiological, functional, and tissue features. According to the obtained results, iron accumulation was most pronounced in the liver (19×), spleen (6.7×), lungs (3.1×), and kidneys (2.5×) compared to control. Iron accumulation is associated with elevated heavy metal levels and impaired essential metal concentrations due to oxidative stress (OS). Notably, the use of IA increases the iron overload toxicity, especially after Isoflurane exposure. The results show that the regulation of iron homeostasis is based on the interaction of hepcidin, ferritin, and other proteins regulated by inflammation, OS, free iron levels, erythropoiesis, and hypoxia. Long-term exposure to IA and iron leads to the development of numerous adaptation mechanisms in response to toxicity, OS, and inflammation. These adaptive mechanisms of iron regulation lead to the inhibition of MMP activity and reduction of oxidative stress, protecting the organism from possible damage.
Asunto(s)
Anestésicos por Inhalación , Hepcidinas , Complejo Hierro-Dextran , Hierro , Estrés Oxidativo , Animales , Ratas , Hepcidinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hierro/metabolismo , Masculino , Anestésicos por Inhalación/efectos adversos , Anestésicos por Inhalación/toxicidad , Complejo Hierro-Dextran/administración & dosificación , Complejo Hierro-Dextran/toxicidad , Ferritinas/metabolismo , Sobrecarga de Hierro/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Ratas Wistar , Homeostasis/efectos de los fármacos , Isoflurano/efectos adversosRESUMEN
OBJECTIVE: To screen modulators of biogenic amine (BA) neurotransmission for the ability to cause fentanyl to decrease isoflurane minimum alveolar concentration (MAC) in cats, and to test whether fentanyl plus a combination of modulators decreases isoflurane MAC more than fentanyl alone. STUDY DESIGN: Prospective, experimental study. ANIMALS: A total of six adult male Domestic Short Hair cats. METHODS: Each cat was anesthetized in three phases with a 1 week washout between studies. In phase 1, anesthesia was induced and maintained with isoflurane, and MAC was measured in duplicate using a tail clamp stimulus and standard bracketing technique. A 21 ng mL-1 fentanyl target-controlled infusion was then administered and MAC measured again. In phase 2, a single cat was administered a single BA modulator (buspirone, haloperidol, dexmedetomidine, pregabalin, ramelteon or trazodone) in a pilot drug screen, and isoflurane MAC was measured before and after fentanyl administration. In phase 3, isoflurane MAC was measured before and after fentanyl administration in cats co-administered trazodone and dexmedetomidine, the two BA modulator drugs associated with fentanyl MAC-sparing in the screen. Isoflurane MAC-sparing by fentanyl alone, trazodone-dexmedetomidine and trazodone-dexmedetomidine-fentanyl was evaluated using paired t tests with p < 0.05 denoting significant effects. RESULTS: The MAC of isoflurane was 1.87% ± 0.09 and was not significantly affected by fentanyl administration (p = 0.09). In the BA screen, cats administered trazodone or dexmedetomidine exhibited 26% and 22% fentanyl MAC-sparing, respectively. Trazodone-dexmedetomidine co-administration decreased isoflurane MAC to 1.50% ± 0.14 (p < 0.001), and the addition of fentanyl further decreased MAC to 0.95% ± 0.16 (p < 0.001). CONCLUSIONS AND CLINICAL RELEVANCE: Fentanyl alone does not affect isoflurane MAC in cats, but co-administration of trazodone and dexmedetomidine causes fentanyl to significantly decrease isoflurane requirement.