Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(2): e2211977120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595694

RESUMEN

Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.


Asunto(s)
Artritis Reumatoide , Probióticos , Ratas , Humanos , Animales , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Péptidos/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Probióticos/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico
2.
Korean J Physiol Pharmacol ; 28(4): 323-333, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38926840

RESUMEN

Polychlorinated biphenyls (PCBs) were once used throughout various industries; however, because of their persistence in the environment, exposure remains a global threat to the environment and human health. The Kv1.3 and Kv1.5 channels have been implicated in the immunotoxicity and cardiotoxicity of PCBs, respectively. We determined whether 3,3',4,4'-tetrachlorobiphenyl (PCB77), a dioxin-like PCB, alters human Kv1.3 and Kv1.5 currents using the Xenopus oocyte expression system. Exposure to 10 nM PCB77 for 15 min enhanced the Kv1.3 current by approximately 30.6%, whereas PCB77 did not affect the Kv1.5 current at concentrations up to 10 nM. This increase in the Kv1.3 current was associated with slower activation and inactivation kinetics as well as right-shifting of the steady-state activation curve. Pretreatment with PCB77 significantly suppressed tumor necrosis factor-α and interleukin-10 production in lipopolysaccharide-stimulated Raw264.7 macrophages. Overall, these data suggest that acute exposure to trace concentrations of PCB77 impairs immune function, possibly by enhancing Kv1.3 currents.

3.
Arch Biochem Biophys ; 746: 109719, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591369

RESUMEN

Kv1.3 channel has been shown to participate in regulating inflammatory activation, proliferation and apoptosis in several cell types. However, most of those existing studies focused on the ion-conducting properties of Kv1.3 in maintaining the resting potential and regulating Ca2+ influx. The aim of our study was to explore whether the Kv1.3-JAK2/STAT3 signaling pathway was involved in oxidized low density lipoprotein (ox-LDL) induced vascular smooth muscle cell (VSMC) proliferation. VSMCs from mouse aorta were cultured and treated with ox-LDL (25 µg/mL). The cell counting kit-8 was used to assess cell proliferation, and western blotting was performed to detect expression levels of Kv1.3, JAK2/STAT3, phosphorylated JAK2/STAT3, cyclin B1 and cyclin D1 in treated VSMCs. VSMCs were transfected with Kv1.3 small interfering RNA (Kv1.3-siRNA) or infected with a Kv1.3 lentiviral expression vector (Lv-Kv1.3) and treated with a JAK2 inhibitor LY2784544 to assess the role of Kv1.3 and JAK2/STAT3 signaling in mediating VSMC proliferation induced by ox-LDL. Ox-LDL induced cell proliferation and upregulated the expression of Kv1.3 in mouse VSMCs. In VSMCs transfected with Kv1.3-siRNA, ox-LDL was not efficient in inducing cell proliferation or the levels of proliferation associated proteins, cyclin B1 and cyclin D1. However, cell proliferation, cyclin B1 and cyclin D1 levels increased in VSMCs infected with Lv-Kv1.3. Levels of phosphorylated JAK2 and STAT3 were increased in ox-LDL-treated VSMCs, and this increase was prevented in VSMCs transfected with Kv1.3-siRNA. Treatment with the JAK2 inhibitor LY2784544 also prevented the increase in VSMCs proliferation treated with ox-LDL. Our findings demonstrated that Kv1.3 promoted proliferation of VSMCs treated with ox-LDL, and that this effect might be mediated through activation of the JAK2/STAT3 signaling pathway.


Asunto(s)
Ciclina D1 , Músculo Liso Vascular , Animales , Ratones , Proliferación Celular , Ciclina B1 , ARN Interferente Pequeño , Transducción de Señal , Canal de Potasio Kv1.3
4.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762510

RESUMEN

Loss of photoreceptors in retinal degenerative diseases also impacts the inner retina: bipolar cell dendrites retract, neurons rewire, and protein expression changes. ON-bipolar cells (OBCs) represent an attractive target for optogenetic vision restoration. However, the above-described maladaptations may negatively impact the quality of restored vision. To investigate this question, we employed human post-mortem retinas and transgenic rd1_Opto-mGluR6 mice expressing the optogenetic construct Opto-mGluR6 in OBCs and carrying the retinal degeneration rd1 mutation. We found significant changes in delayed rectifier potassium channel expression in OBCs of degenerative retinas. In particular, we found an increase in Kv1.3 expression already in early stages of degeneration. Immunohistochemistry localized Kv1.3 channels specifically to OBC axons. In whole-cell patch-clamp experiments, OBCs in the degenerated murine retina were less responsive, which could be reversed by application of the specific Kv1.3 antagonist Psora-4. Notably, Kv1.3 block significantly increased the amplitude and kinetics of Opto-mGluR6-mediated light responses in OBCs of the blind retina and increased the signal-to-noise ratio of light-triggered responses in retinal ganglion cells. We propose that reduction in Kv1.3 activity in the degenerated retina, either by pharmacological block or by KCNA3 gene silencing, could improve the quality of restored vision.

5.
Arch Biochem Biophys ; 730: 109394, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36100082

RESUMEN

Macrophage inflammatory response is crucial for the initiation and progression of atherosclerosis. The voltage-gated potassium channel Kv1.3 plays an important role in the modulation of macrophage function. The aim of this study was to investigate the effect and possible mechanism of Kv1.3 on inflammation in oxidized low-density lipoprotein (ox-LDL)-induced RAW264.7 macrophages. Treatment with Kv1.3-siRNA attenuated the expression of IL-6 and TNF-α and reduced the phosphorylation of ERK1/2 and NF-κB in ox-LDL-induced macrophages. In contrast, overexpression of Kv1.3 with Lv-Kv1.3 promoted the expression of IL-6 and TNF-α, and increased ERK1/2 and NF-κB phosphorylation in macrophages. PD-98059, a specific inhibitor of ERK, reversed the expression of IL-6 and TNF-α in ox-LDL-treated macrophages. Kv1.3-siRNA did not inhibit inflammation any further when cells were treated with PD-98059. This suggests that ERK acts as a downstream regulator of the Kv1.3 channel. In conclusion, Kv1.3 may be an indispensable membrane protein in ox-LDL-induced RAW264.7 macrophage inflammation in atherosclerosis through the ERK/NF-κB pathway.


Asunto(s)
Aterosclerosis , Canal de Potasio Kv1.3 , Animales , Ratones , Aterosclerosis/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Canal de Potasio Kv1.3/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
6.
Biochem Genet ; 60(2): 504-526, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34286408

RESUMEN

Different toxins acting on Kv1.3 channel have been isolated from animal venom. MeuKTX toxin from Mesobuthus eupeus phillipsi scorpion and shtx-k toxin from Stichodactyla haddoni sea anemone have been identified as two effective Kv1.3 channel blockers. In this work, we characterized the genomic organization of both toxins. MeuKTX gene contains one intron and two exons, similar to the most scorpion toxins. There are a few reports of genomic structure of sea anemone toxins acting on Kv channels. The sequence encoding mature peptide of shtx-k was located in an exon separated by an intron from the coding exon of the propeptide and signal region. In order to make a peptide with more affinity for Kv1.3 channel and greater stability, the shtx-k/ MeuKTX chimeric peptide was designed and constructed using splicing by overlap extension-PCR (SOE-PCR) method. MeuKTX, shtx-k, and shtx-k/MeuKTX were cloned and the expression of the soluble proteins in E. coli was determined. Molecular docking studies indicated more inhibitory effect of shtx-k/MeuKTX on Kv1.3 channel compared to shtx-k and MeuKTX toxins. Key amino acids binding channel from both toxins, also involved in interaction of chimeric peptide with channel. Our results showed that the fusion peptide, shtx-k/MeuKTX could be an effective agent to target Kv1.3 channel.


Asunto(s)
Venenos de Escorpión , Anémonas de Mar , Secuencia de Aminoácidos , Animales , Escherichia coli , Genómica , Simulación del Acoplamiento Molecular , Péptidos/química , Péptidos/genética , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Venenos de Escorpión/química , Venenos de Escorpión/genética , Escorpiones/química , Escorpiones/genética , Escorpiones/metabolismo , Anémonas de Mar/química , Anémonas de Mar/genética , Anémonas de Mar/metabolismo
7.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35163644

RESUMEN

Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP-MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP-MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP-MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP-MgTx as a component of an analytical system based on the hybrid KcsA-Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP-MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Canal de Potasio Kv1.3 , Péptidos/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Sitios de Unión , Humanos , Canal de Potasio Kv1.3/análisis , Canal de Potasio Kv1.3/metabolismo , Ligandos , Unión Proteica
8.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328733

RESUMEN

Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Linfocitos T , Actinas/metabolismo , Humanos , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana , Sinapsis/metabolismo , Linfocitos T/metabolismo
9.
Molecules ; 27(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35630703

RESUMEN

Voltage-gated potassium channels of the Kv1.3 type are considered a potential new molecular target in several pathologies, including some cancer disorders and COVID-19. Lipophilic non-toxic organic inhibitors of Kv1.3 channels, such as statins and flavonoids, may have clinical applications in supporting the therapy of some cancer diseases, such as breast, pancreas, and lung cancer; melanoma; or chronic lymphocytic leukemia. This study focuses on the influence of the co-application of statins-simvastatin (SIM) or mevastatin (MEV)-with flavonoids 8-prenylnaringenin (8-PN), 6-prenylnarigenin (6-PN), xanthohumol (XANT), acacetin (ACAC), or chrysin on the activity of Kv1.3 channels, viability, and the apoptosis of cancer cells in the human T cell line Jurkat. We showed that the inhibitory effect of co-application of the statins with flavonoids was significantly more potent than the effects exerted by each compound applied alone. Combinations of simvastatin with chrysin, as well as mevastatin with 8-prenylnaringenin, seem to be the most promising. We also found that these results correlate with an increased ability of the statin-flavonoid combination to reduce viability and induce apoptosis in cancer cells compared to single compounds. Our findings suggest that the co-application of statins and flavonoids at low concentrations may increase the effectiveness and safety of cancer therapy. Thus, the simultaneous application of statins and flavonoids may be a new and promising anticancer strategy.


Asunto(s)
COVID-19 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias , Apoptosis , Línea Celular , Flavonoides/farmacología , Flavonoides/uso terapéutico , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Canal de Potasio Kv1.3/metabolismo , Neoplasias/tratamiento farmacológico , Simvastatina/farmacología
10.
Med Res Rev ; 41(4): 2423-2473, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33932253

RESUMEN

The KV 1.3 voltage-gated potassium ion channel is involved in many physiological processes both at the plasma membrane and in the mitochondria, chiefly in the immune and nervous systems. Therapeutic targeting KV 1.3 with specific peptides and small molecule inhibitors shows great potential for treating cancers and autoimmune diseases, such as multiple sclerosis, type I diabetes mellitus, psoriasis, contact dermatitis, rheumatoid arthritis, and myasthenia gravis. However, no KV 1.3-targeted compounds have been approved for therapeutic use to date. This review focuses on the presentation of approaches for discovering new KV 1.3 peptide and small-molecule inhibitors, and strategies to improve the selectivity of active compounds toward KV 1.3. Selectivity of dalatazide (ShK-186), a synthetic derivate of the sea anemone toxin ShK, was achieved by chemical modification and has successfully reached clinical trials as a potential therapeutic for treating autoimmune diseases. Other peptides and small-molecule inhibitors are critically evaluated for their lead-like characteristics and potential for progression into clinical development. Some small-molecule inhibitors with well-defined structure-activity relationships have been optimized for selective delivery to mitochondria, and these offer therapeutic potential for the treatment of cancers. This overview of KV 1.3 inhibitors and methodologies is designed to provide a good starting point for drug discovery to identify novel effective KV 1.3 modulators against this target in the future.


Asunto(s)
Venenos de Cnidarios , Anémonas de Mar , Animales , Química Farmacéutica , Humanos , Canal de Potasio Kv1.3 , Bloqueadores de los Canales de Potasio/farmacología
11.
Toxicol Appl Pharmacol ; 411: 115365, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33316272

RESUMEN

Polychlorinated biphenyls (PCBs) are persistent and serious organic pollutants and can theoretically form 209 congeners. PCBs can be divided into two categories: dioxin-like (DL) and non-DL (NDL). NDL-PCBs, which lack aryl hydrocarbon receptor affinity, have been shown to perturb the functions of Jurkat T cells, cerebellar granule cells, and uterine cells. Kv1.3 and Kv1.5 channels are important in immune and heart functions, respectively. We investigated the acute effects of 2,2',6-trichlorinated biphenyl (PCB19), an NDL-PCB, on the currents of human Kv1.3 and Kv1.5 channels. PCB19 acutely blocked the Kv1.3 peak currents concentration-dependently with an IC50 of ~2 µM, without changing the steady-state current. The PCB19-induced inhibition of the Kv1.3 peak current occurred rapidly and voltage-independently, and the effect was irreversible, excluding the possibility of genomic regulation. PCB19 increased the time constants of both activation and inactivation of Kv1.3 channels, resulting in the slowing down of both ultra-rapid activation and intrinsic inactivation. However, PCB19 failed to alter the steady-state curves of activation and inactivation. Regarding the Kv1.5 channel, PCB19 affected neither the peak current nor the steady-state current at the same concentrations tested in the Kv1.3 experiments, showing selective inhibition of PCB19 on the Kv1.3 than the Kv1.5. The presented data indicate that PCB19 could acutely affect the human Kv1.3 channel through a non-genomic mechanism, possibly causing toxic effects on various human physiological functions related to the Kv1.3 channel, such as immune and neural systems.


Asunto(s)
Contaminantes Ambientales/toxicidad , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.5/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Bloqueadores de los Canales de Potasio/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Potenciales de la Membrana , Oocitos , Factores de Tiempo , Xenopus laevis
12.
FASEB J ; 34(11): 15492-15503, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32981181

RESUMEN

Kv1.3 potassium channel is considered as a target for the treatment of autoimmune diseases such as multiple sclerosis (MS), since Kv1.3 blockade suppresses memory T cell activation including cytotoxic CD8+ T cells. However, the underlying signaling pathway related to autoimmune CD8+ T cell inhibition by Kv1.3 channel in neuroinflammatory diseases remains unclear. We found that ImK, a selective Kv1.3 blocker, reduced auto-reactive CD8+ T cell infiltration in the spinal cords of experimental autoimmune encephalomyelitis (EAE) rats, an animal model of MS. ImK suppressed transcriptional factor Blimp-1 expression and reduced the cytotoxicity of CD8+ T cells on neuronal cells. Furthermore, ImK upregulated co-inhibitory molecule PD-1 to inhibit B lymphocyte-induced maturation protein (Blimp-1) in an IL-2 independent way. In addition, PD-1 inhibitor impaired the suppression of ImK on CD8+ T cells and accelerated EAE progression. Our study demonstrated a novel regulatory mechanism of Kv1.3 blockade on modulating CD8+ T cell differentiation through PD-1/Blimp-1 signaling. This work expands the understanding of Kv1.3 channel for modulating neuroinflammation.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Inflamación/prevención & control , Canal de Potasio Kv1.3/antagonistas & inhibidores , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Regulación de la Expresión Génica , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Receptor de Muerte Celular Programada 1/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal
13.
J Mol Struct ; 1230: 129905, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33437096

RESUMEN

Voltage-gated potassium channels are integral membrane proteins selectively permeable for potassium ions and activated upon change of membrane potential. Voltage-gated potassium channels of the Kv1.3 type were discovered both in plasma membrane and in inner mitochondrial membrane (mito Kv1.3 channels). For some time Kv1.3 channels located both in plasma membrane and in mitochondria are considered as a potentially new molecular target in several pathologies including some cancer disorders. Lipophilic nontoxic organic inhibitors of Kv1.3 channels may potentially find a clinical application to support therapy of some cancer diseases such as breast, pancreas and lung cancer, melanoma or chronic lymphocytic leukaemia (B-CLL). Inhibition of T lymphocyte Kv1.3 channels may be also important in treatment of chronic and acute respiratory diseases including severe pulmonary complication in corona virus disease Covid 19, however further studies are needed to confirm this supposition. Statins are small-molecule organic compounds, which are lipophilic and are widely used in treatment of hypercholesterolemia and atherosclerosis. Electrophysiological studies performed in our laboratory showed that statins: pravastatin, mevastatin and simvastatin are effective inhibitors of Kv1.3 channels in cancer cells of human T cell line Jurkat. We showed that application of the statins in the concentration range from 1.5 µM to 50 µM inhibited the channels in a concentration-dependent manner. The inhibitory effect was the most potent in case of simvastatin and the least potent in case of pravastatin. The inhibition was partially irreversible in case of simvastatin and fully reversible in case of pravastatin and mevastatin. It was accompanied by a significant acceleration of the current inactivation rate without any significant change of the activation rate. Mechanism of the inhibition is probably complex, including a direct interaction with the channel protein and perturbation of lipid bilayer structure, leading to stabilization of the inactivated state of the channels.

14.
Cell Physiol Biochem ; 54(5): 842-852, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32886870

RESUMEN

BACKGROUND/AIMS: Kv1.3 channel is the only voltage-dependent potassium channel in plasma membrane of human lymphocytes. Bearing in mind a rather steep voltage-dependence of Kv1.3 activation and inactivation, its modulation by B and T cells activation and by co-culture with stromal bone-marrow cells was addressed. METHODS: Patch-clamp technique in the whole cell mode was applied to human resting and activated human B and T cells, in monoculture and co-culture with stromal OP9 cells. RESULTS: Polyclonal activation of B and T cells in monoculture caused Kv1.3 current in B cells to activate at more negative and in T cells at more positive potentials, whereas the inactivation of Kv1.3 current in resting T cells occurred at more negative voltages. Co-culture with OP9 cells abolished the shift of voltage dependence upon the polyclonal activation but fixed the substantial difference between B and T cells, resting or activated, with both activation and inactivation negatively shifted by 15 mV for T lymphocytes. However, activated B cells displayed an incomplete inactivation, which was augmented by the co-culture. Neither activation nor co-culture caused substantial changes in the Kv1.3 current density. CONCLUSION: The combination of activation and inactivation processes yields the fraction of steady-state Kv1.3 current (window current), which was higher in activated B cells, partly due to an incomplete inactivation. A relatively smaller window current in resting B cells and resting T cells in co-culture correlated with a more depolarized resting membrane potential. Rather than insignificant changes in the Kv1.3 channels functional expression, the modulation of their voltage dependence by activation and co-culture with bone-marrow stromal cells was essential for the control of membrane potential.


Asunto(s)
Linfocitos B/metabolismo , Canal de Potasio Kv1.3/metabolismo , Linfocitos T/metabolismo , Adulto , Médula Ósea/metabolismo , Técnicas de Cocultivo , Femenino , Voluntarios Sanos , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio Kv1.3/fisiología , Activación de Linfocitos/fisiología , Linfocitos/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Células del Estroma/metabolismo
15.
Biochem Biophys Res Commun ; 532(2): 265-270, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32863001

RESUMEN

Methotrexate (MTX) has been widely used for the treatment of many types of autoimmune diseases, such as rheumatoid arthritis, psoriasis and dermatomyositis. However, its pharmacological mechanism is still unclear completely. In this study, we found that MTX is a potent and selective inhibitor of the Kv1.3 channel, a class of potassium channels highly associated with autoimmune diseases. Electrophysiological experiments showed that MTX inhibited human Kv1.3 channel with an IC50 of 41.5 ± 24.9 nM, and 1 µM MTX inhibited 32.6 ± 1.3% and 25.6 ± 2.2% of human Kv1.1 and Kv1.2 channel currents, respectively. These data implied the unique selectivity of MTX towards the Kv1.3 channel. Excitingly, using channel activation and chimeric experiments, we found that MTX bound to the outer pore region of Kv1.3 channel. Mutagenesis experiments in the Kv.3 channel extracellular pore region further showed that the Dsp371, Thr373 and His399 residues of outer pore region of Kv1.3 channel played important roles in MTX inhibiting activities. In conclusion, MTX inhibited Kv1.3 channel by targeting extracellular pore region, which is different form all the report small molecules, such as PAP-1 and 4-AP, but similar with many natural animal toxin peptides, such as ChTX, ShK and BmKTX. To the best of our knowledge, MTX is the first small molecular scaffold targeting the Kv1.3 channel extracellular pore region, suggesting its potential applications for designing novel Kv1.3 lead drugs and treating Kv1.3 channel-associated autoimmune diseases.


Asunto(s)
Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/metabolismo , Metotrexato/química , Metotrexato/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Sitios de Unión , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Células HEK293 , Humanos , Canal de Potasio Kv1.3/genética , Metotrexato/administración & dosificación , Mutagénesis , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/administración & dosificación , Bloqueadores de los Canales de Potasio/química
16.
Dermatology ; 236(2): 123-132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31536992

RESUMEN

BACKGROUND: The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by effector memory T cells (TEM) and plays an important role in their activation and proliferation. Mycosis fungoides (MF), the most common subtype of cutaneous T-cell lymphoma (CTCL), was recently proposed to be a malignancy of skin-resident TEM. However, the expression of Kv1.3 in CTCL has not been investigated. OBJECTIVES: This study aims to examine the expression of Kv1.3 in situ and in vitro in CTCL. METHODS: The expression of Kv1.3 was examined by immunohistochemistry in skin lesions from 38 patients with MF, 4 patients with Sézary syndrome (SS), and 27 patients with benign dermatosis. In 4 malignant T-cell lines of CTCL (Myla2059, PB2B, SeAx, and Mac2a) and a non-malignant T-cell line (MyLa1850), the expression of Kv1.3 was determined by flow cytometry. The proliferation of those cell lines treated with various concentrations of Kv1.3 inhibitor ShK was measured by 3H-thymdine incorporation. RESULTS: Half of the MF patients (19/38) displayed partial Kv1.3 expression including 1 patient with moderate Kv1.3 positivity, while the other half (19/38) exhibited Kv1.3 negativity. An almost identical distribution was observed in patients with benign conditions, that is, 44.4% (12/27) were partially positive for Kv1.3 including 1 patient with moderate Kv1.3 positivity, while 55.6% (15/27) were Kv1.3 negative. In contrast, 3 in 4 SS patients displayed partial Kv1.3 positivity including 2 patients with weak staining and 1 with moderate staining, while 1 in 4 SS patients was Kv1.3 negative. In addition, all malignant T-cell lines, and a non-malignant T-cell line, displayed low Kv1.3 surface expression with a similar pattern. Whereas 2 cell lines (PB2B and Mac2a) were sensitive to Kv1.3 blockade, the other 2 (Myla2059 and SeAx) were completely resistant. CONCLUSIONS: We provide the first evidence of a heterogeneous Kv1.3 expression in situ in CTCL lesions.


Asunto(s)
Dermatitis/metabolismo , Canal de Potasio Kv1.3/biosíntesis , Linfoma Cutáneo de Células T/metabolismo , Neoplasias Cutáneas/metabolismo , Piel/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biopsia , Línea Celular Tumoral , Niño , Dermatitis/patología , Femenino , Humanos , Inmunohistoquímica , Canal de Potasio Kv1.3/antagonistas & inhibidores , Linfoma Cutáneo de Células T/patología , Masculino , Persona de Mediana Edad , Piel/patología , Neoplasias Cutáneas/patología , Adulto Joven
17.
Cell Physiol Biochem ; 46(3): 1112-1121, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29669325

RESUMEN

BACKGROUND/AIMS: The replacement of the amino acid valine at position 388 (Shaker position 438) in hKv1.3 channels or at the homologue position 370 in hKv1.2 channels resulted in a channel with two different ion conducting pathways: One pathway was the central, potassium-selective α-pore, that was sensitive to block by peptide toxins (CTX or KTX in the hKv1.3_V388C channel and CTX or MTX in the hKv1.2_V370C channel). The other pathway (σ-pore) was behind the central α-pore creating an inward current at potentials more negative than -100 mV, a potential range where the central α-pore was closed. In addition, current through the σ-pore could not be reduced by CTX, KTX or MTX in the hKv1.3_V388C or the hKv1.2_V370C channel, respectively. METHODS: For a more detailed characterization of the σ-pore, we created a trimer consisting of three hKv1.3_V388C α-subunits linked together and characterized current through this trimeric hKv1.3_V388C channel. Additionally, we determined which amino acids line the σ-pore in the tetrameric hKv1.3_V388C channel by replacing single amino acids in the tetrameric hKv1.3_V388C mutant channel that could be involved in σ-pore formation. RESULTS: Overexpression of the trimeric hKv1.3_V388C channel in COS-7 cells yielded typical σ-pore currents at potentials more negative than -100 mV similar to what was observed for the tetrameric hKv1.3_V388C channel. Electrophysiological properties of the trimeric and tetrameric channel were similar: currents could be observed at potentials more negative than -100 mV, were not carried by protons or chloride ions, and could not be reduced by peptide toxins (CTX, MTX) or TEA. The σ-pore was mostly permeable to Na+ and Li+. In addition, in our site-directed mutagenesis experiments, we created a number of new double mutant channels in the tetrameric hKv1.3_V388C background channel. Two of these tetrameric double mutant channels (hKv1.3_V388C_T392Y and hKv1.3_V388C_Y395W) did not show currents through the σ-pore. CONCLUSIONS: From our experiments with the trimeric hKv1.3_V388C channel we conclude that the σ-pore exists in hKv1.3_V388C channels independently of the α-pore. From our site-directed mutagenesis experiments in the tetrameric hKv1.3_V388C channel we conclude that amino acid position 392 and 395 (Shaker position 442 and 445) line the σ-pore.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Animales , Células COS , Caribdotoxina/toxicidad , Chlorocebus aethiops , Clonación Molecular , Humanos , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana/efectos de los fármacos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Estructura Cuaternaria de Proteína
18.
J Membr Biol ; 251(5-6): 695-704, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187077

RESUMEN

The influence of a prenylated flavonoid-6-prenylnaringenin (6-PR) and selected non-prenylated flavonoids: acacetin, chrysin, baicalein, wogonin, and luteolin on the activity of voltage-gated potassium channels Kv1.3 was investigated in human leukemic Jurkat T cells. Electrophysiological measurements were accompanied by studies on the cytotoxic effect of the examined compounds on Jurkat T cells. Electrophysiological studies were performed using the whole-cell patch-clamp technique. Cell viability was determined using the MTT assay. 6-PR inhibited Kv1.3 channels in Jurkat T cells in a concentration-dependent manner. The estimated value of the half-blocking concentration (EC50) was about 5.76 µM. Among non-prenylated flavonoids, acacetin and chrysin inhibited Kv1.3 channels in Jurkat T cells when applied at the concentration of 30 µM, whereas baicalein, wogonin, and luteolin were ineffective at this concentration. The inhibitory effects of acacetin and chrysin on Kv1.3 channels were significantly less potent than the inhibition caused by 6-PR. All tested compounds inhibited growth of Jurkat T cells in a concentration-dependent manner. Wogonin and chrysin were the most cytotoxic flavonoids tested, whereas baicalein and 6-PR were the least cytotoxic compounds. In accordance to our hypothesis the prenylated flavonoid (6-PR) was much more effective inhibitor of Kv1.3 channels than non-prenylated compounds selected for this study. The inhibition of Kv1.3 channels by 6-PR, acacetin, and chrysin was not related to cytotoxicity of these compounds. The channels' inhibition might be involved in anti-proliferative and pro-apoptotic effects of 6-PR, acacetin and chrysin observed in cancer cell lines expressing these channels.


Asunto(s)
Flavonoides/metabolismo , Flavonoides/farmacología , Canal de Potasio Kv1.3/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chalconas/química , Humanos , Células Jurkat , Técnicas de Placa-Clamp , Prenilación
19.
Cell Physiol Biochem ; 44(1): 172-184, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29131061

RESUMEN

BACKGROUND/AIMS: The human-voltage gated Kv1.3 channel (hKv1.3) is expressed in T- and B lymphocytes. Verapamil is able to block hKv1.3 channels. We characterized the effect of verapamil on currents through hKv1.3 channels paying special attention to the on-rate (kon) of verapamil. By comparing on-rates obtained in wild-type (wt) and mutant channels a binding pocket for verapamil and impacts of different amino acid residues should be investigated. METHODS: Using the whole-cell patch clamp technique the action of verapamil on currents through wild-type and six hKv1.3 mutant channels in the open state was investigated by measuring the time course of the open channel block in order to calculate kon of verapamil. RESULTS: The on-rate of verapamil to block current through hKv1.3_T419C mutant channels is similar to that obtained for hKv1.3_wt channels whereas the on-rate of verapamil to block currents through hKv1.3_L417C and hKv1.3_L418C mutant channels was ∼ 3 times slower compared to in wt channels. The on-rate of verapamil to block currents through hKv1.3_L346C and the double mutant hKv1.3_L346C_L418C channel was ∼ 2 times slower compared to that obtained in the wt channel. The hKv1.3_I420C mutant channel reduced the on-rate of verapamil to block currents ∼ 6 fold. CONCLUSIONS: We conclude that position 420 in hKv1.3 channels maximally interferes with verapamil reaching its binding site to block the channel. Positions 417 and 418 in hKv1.3 channels partially hinder verapamil reaching its binding site to block the channel whereas position 419 may not interfere with verapamil at all. Mutant hKv1.3_L346C and hKv1.3_L346C_L418C mutant channels might indirectly influence the ability of verapamil reaching its binding site to block current.


Asunto(s)
Canal de Potasio Kv1.3/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Verapamilo/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Cinética , Canal de Potasio Kv1.3/genética , Potenciales de la Membrana/efectos de los fármacos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Unión Proteica , Estructura Terciaria de Proteína , Verapamilo/química , Verapamilo/farmacología
20.
J Neuroinflammation ; 14(1): 166, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830445

RESUMEN

BACKGROUND: Acute CNS damage is commonly studied using rat and mouse models, but increasingly, molecular analysis is finding species differences that might affect the ability to translate findings to humans. Microglia can undergo complex molecular and functional changes, often studied by in vitro responses to discrete activating stimuli. There is considerable evidence that pro-inflammatory (M1) activation can exacerbate tissue damage, while anti-inflammatory (M2) states help resolve inflammation and promote tissue repair. However, in assessing potential therapeutic targets for controlling inflammation, it is crucial to determine whether rat and mouse microglia respond the same. METHODS: Primary microglia from Sprague-Dawley rats and C57BL/6 mice were cultured, then stimulated with interferon-γ + tumor necrosis factor-α (I + T; M1 activation), interleukin (IL)-4 (M2a, alternative activation), or IL-10 (M2c, acquired deactivation). To profile their activation responses, NanoString was used to monitor messenger RNA (mRNA) expression of numerous pro- and anti-inflammatory mediators, microglial markers, immunomodulators, and other molecules. Western analysis was used to measure selected proteins. Two potential targets for controlling inflammation-inward- and outward-rectifier K+ channels (Kir2.1, Kv1.3)-were examined (mRNA, currents) and specific channel blockers were applied to determine their contributions to microglial migration in the different activation states. RESULTS: Pro-inflammatory molecules increased after I + T treatment but there were several qualitative and quantitative differences between the species (e.g., iNOS and nitric oxide, COX-2). Several molecules commonly associated with an M2a state differed between species or they were induced in additional activation states (e.g., CD206, ARG1). Resting levels and/or responses of several microglial markers (Iba1, CD11b, CD68) differed with the activation state, species, or both. Transcripts for several Kir2 and Kv1 family members were detected in both species. However, the current amplitudes (mainly Kir2.1 and Kv1.3) depended on activation state and species. Treatment-induced changes in morphology and migratory capacity were similar between the species (migration reduced by I + T, increased by IL-4 or IL-10). In both species, Kir2.1 block reduced migration and Kv1.3 block increased it, regardless of activation state; thus, these channels might affect microglial migration to damage sites. CONCLUSIONS: Caution is recommended in generalizing molecular and functional responses of microglia to activating stimuli between species.


Asunto(s)
Movimiento Celular/fisiología , Mediadores de Inflamación/metabolismo , Canal de Potasio Kv1.3/metabolismo , Microglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Animales , Animales Recién Nacidos , Antiinflamatorios/metabolismo , Secuencia de Bases , Proliferación Celular/fisiología , Canal de Potasio Kv1.3/genética , Ratones , Ratones Endogámicos C57BL , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA