Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chembiochem ; 25(13): e202400243, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696752

RESUMEN

Successful implementation of enzymes in practical application hinges on the development of efficient mass production techniques. However, in a heterologous expression system, the protein is often unable to fold correctly and, thus, forms inclusion bodies, resulting in the loss of its original activity. In this study, we present a new and more accurate model for predicting amino acids associated with an increased L-amino acid oxidase (LAO) solubility. Expressing LAO from Rhizoctonia solani in Escherichia coli and combining random mutagenesis and statistical logistic regression, we modified 108 amino acid residues by substituting hydrophobic amino acids with serine and hydrophilic amino acids with alanine. Our results indicated that specific mutations in Euclidean distance, glycine, methionine, and secondary structure increased LAO expression. Furthermore, repeated mutations were performed for LAO based on logistic regression models. The mutated LAO displayed a significantly increased solubility, with the 6-point and 58-point mutants showing a 2.64- and 4.22-fold increase, respectively, compared with WT-LAO. Ultimately, using recombinant LAO in the biotransformation of α-keto acids indicates its great potential as a biocatalyst in industrial production.


Asunto(s)
Escherichia coli , L-Aminoácido Oxidasa , Solubilidad , Escherichia coli/genética , Escherichia coli/metabolismo , L-Aminoácido Oxidasa/genética , L-Aminoácido Oxidasa/metabolismo , L-Aminoácido Oxidasa/química , Modelos Logísticos , Rhizoctonia/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
2.
Molecules ; 28(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687007

RESUMEN

Biomedical studies of the role of organic selenium compounds indicate that the amino acid derivative of L-selenomethionine, α-ketomethylselenobutyrate (KMSB), can be considered a potential anticancer therapeutic agent. It was noted that, in addition to a direct effect on redox signaling molecules, α-ketoacid metabolites of organoselenium compounds are able to change the status of histone acetylation and suppress the activity of histone deacetylases in cancer cells. However, the wide use of KMSB in biomedical research is hindered not only by its commercial unavailability, but also by the fact that there is no detailed information in the literature on possible methods for the synthesis of this compound. This paper describes in detail the procedure for obtaining a high-purity KMSB preparation (purity ≥ 99.3%) with a yield of the target product of more than 67%. L-amino acid oxidase obtained from C. adamanteus was used as a catalyst for the conversion of L-selenomethionine to KMSB. If necessary, this method can be used as a basis both for scaling up the synthesis of KMSB and for developing cost-effective biocatalytic technologies for obtaining other highly purified drugs.


Asunto(s)
Investigación Biomédica , Neoplasias , Selenometionina , Biocatálisis , Acetilación , Antioxidantes , Neoplasias/tratamiento farmacológico
3.
J Biol Chem ; 297(3): 101043, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358565

RESUMEN

A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions.


Asunto(s)
Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Aminoácido Oxidorreductasas/genética , Bacterias/química , Bacterias/genética , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Minería de Datos , Enlace de Hidrógeno , Cinética , Lisina/química , Lisina/metabolismo , Modelos Moleculares
4.
Chembiochem ; 23(16): e202200329, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35713203

RESUMEN

Chiral and enantiopure amines can be produced by enantioselective transaminases via kinetic resolution of amine racemates. This transamination reaction requires stoichiometric amounts of co-substrate. A dual-enzyme recycling system overcomes this limitation: l-amino acid oxidases (LAAO) recycle the accumulating co-product of (S)-selective transaminases in the kinetic resolution of racemic amines to produce pure (R)-amines. However, availability of suitable LAAOs is limited. Here we use the heterologously produced, highly active fungal hcLAAO4 with broad substrate spectrum. H2 O2 as byproduct of hcLAAO4 is detoxified by a catalase. The final system allows using sub-stoichiometric amounts of 1 mol% of the transaminase co-substrate as well as the initial application of l-amino acids instead of α-keto acids. With an optimized protocol, the synthetic potential of this kinetic resolution cascade was proven at the preparative scale (>90 mg) by the synthesis of highly enantiomerically pure (R)-methylbenzylamine (>99 %ee) at complete conversion (50 %).


Asunto(s)
L-Aminoácido Oxidasa , Transaminasas , Aminas/química , Catálisis , Oxidorreductasas , Estereoisomerismo , Especificidad por Sustrato , Transaminasas/metabolismo
5.
Fish Shellfish Immunol ; 120: 222-232, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34838986

RESUMEN

l-amino acid oxidases (LAOs) catalyze the oxidative deamination of l-amino acid and generate α-keto acid, ammonia, and hydrogen peroxide as byproducts. LAOs showed the variety of bioactivity by the resulting hydrogen peroxide. The serum of the red-spotted grouper Epinephelus akaara contains an LAO (Ea-LAO) with the potential to kill bacterial pathogens Aeromonas salmonicida and Vibrio anguillarum via hydrogen peroxide. However, it is unknown how the grouper tolerates the harmful effects of the serum Ea-LAO byproducts. In this study, we analyzed the kinetics of fish LAOs to understand how they escape the toxicity of byproducts. The LAO activity of grouper serum was suppressed in low-salt solutions such as NaCl, CaCl2, MgCl2, and diluted seawater. The activity was non-linearly increased and fitted to the four-parameter log-logistic model. The EC50 of the seawater was calculated to have a 0.72-fold concentration. This result suggested that the Ea-LAO could be activated by mixing with seawater. The results of circular dichroism spectroscopy showed that the α helix content was estimated to be 12.1% and 5.3% in a salt-free buffer (inactive condition) and the original concentration of seawater (active condition), respectively, indicating that the secondary structure of the Ea-LAO in the active condition was randomized. In addition, the Ea-LAO showed reversible LAO activity regulation according to the salt concentration in the environment. Taken together, this indicates that the Ea-LAO is normally on standby as an inactive form, and it could activate as a host-defense molecule to avoid pathogen invasion via a wound when mixed with seawater.


Asunto(s)
Lubina , L-Aminoácido Oxidasa/metabolismo , Agua de Mar , Animales , Lubina/inmunología , Proteínas de Peces/metabolismo , Peróxido de Hidrógeno
6.
J Biol Chem ; 295(32): 11246-11261, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32527725

RESUMEN

l-Lysine oxidase/monooxygenase (l-LOX/MOG) from Pseudomonas sp. AIU 813 catalyzes the mixed bioconversion of l-amino acids, particularly l-lysine, yielding an amide and carbon dioxide by an oxidative decarboxylation (i.e. apparent monooxygenation), as well as oxidative deamination (hydrolysis of oxidized product), resulting in α-keto acid, hydrogen peroxide (H2O2), and ammonia. Here, using high-resolution MS and monitoring transient reaction kinetics with stopped-flow spectrophotometry, we identified the products from the reactions of l-lysine and l-ornithine, indicating that besides decarboxylating imino acids (i.e. 5-aminopentanamide from l-lysine), l-LOX/MOG also decarboxylates keto acids (5-aminopentanoic acid from l-lysine and 4-aminobutanoic acid from l-ornithine). The reaction of reduced enzyme and oxygen generated an imino acid and H2O2, with no detectable C4a-hydroperoxyflavin. Single-turnover reactions in which l-LOX/MOG was first reduced by l-lysine to form imino acid before mixing with various compounds revealed that under anaerobic conditions, only hydrolysis products are present. Similar results were obtained upon H2O2 addition after enzyme denaturation. H2O2 addition to active l-LOX/MOG resulted in formation of more 5-aminopentanoic acid, but not 5-aminopentamide, suggesting that H2O2 generated from l-LOX/MOG in situ can result in decarboxylation of the imino acid, yielding an amide product, and extra H2O2 resulted in decarboxylation only of keto acids. Molecular dynamics simulations and detection of charge transfer species suggested that interactions between the substrate and its binding site on l-LOX/MOG are important for imino acid decarboxylation. Structural analysis indicated that the flavoenzyme oxidases catalyzing decarboxylation of an imino acid all share a common plug loop configuration that may facilitate this decarboxylation.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Pseudomonas/enzimología , Catálisis , Peróxido de Hidrógeno/metabolismo , Hidrólisis , Especificidad por Sustrato
7.
Amino Acids ; 53(1): 111-118, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33398529

RESUMEN

L-lysine α-oxidase (LO) is an L-amino acid oxidase with antitumor, antimicrobial and antiviral properties. Pharmacokinetic (PK) studies were carried out by measuring LO concentration in plasma and tissue samples by enzyme immunoassay. L-lysine concentration in samples was measured spectrophotometrically using LO. After single i.v. injection of 1.0, 1.5, 3.0 mg/kg the circulating T1/2 of enzyme in mice varied from 51 to 74 min and the AUC0-inf values were 6.54 ± 0.46, 8.66 ± 0.59, 9.47 ± 1.45 µg/ml × h, respectively. LO was distributed in tissues and determined within 48 h after administration with maximal accumulation in liver and heart tissues. Mean time to reach the maximum concentration was highest for the liver-9 h, kidney-1 h and 15 min for the tissues of heart, spleen and brain. T1/2 of LO in tissues ranged from 7.75 ± 0.73 to 26.10 ± 2.60 h. In mice, plasma L-lysine decreased by 79% 15 min after LO administration in dose 1.6 mg/kg. The serum L-lysine levels remained very low from 1 to 9 h (< 25 µM, 17%), indicating an acute lack of L-lysine in animals for at least 9 h. Concentration of L-lysine in serum restored only 24 h after LO administration. The results of LO PK study show that it might be considered as a promising enzyme for further investigation as a potential anticancer agent.


Asunto(s)
Aminoácido Oxidorreductasas/farmacocinética , Trichoderma/enzimología , Aminoácido Oxidorreductasas/administración & dosificación , Animales , Proteínas Fúngicas/administración & dosificación , Proteínas Fúngicas/farmacocinética , Lisina/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Distribución Tisular
8.
Appl Microbiol Biotechnol ; 105(12): 4819-4832, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34106313

RESUMEN

Mucus layer that covers the body surface of various animal functions as a defense barrier against microbes, environmental xenobiotics, and predators. Previous studies have reported that L-amino acid oxidase (LAAO), present in several animal fluids, has potent properties against pathogenic bacteria, viruses, and parasites. LAAO catalyzes the oxidative deamination of specific L-amino acids with the generation of hydrogen peroxide and L-amino acid metabolites. Further, the generated hydrogen peroxide is involved in oxidation (direct effect) while the metabolites activate immune responses (indirect effect). Therefore, LAAO exhibits two different mechanisms of bioactivation. Previously, we described the selective, specific, and local oxidative and potent antibacterial actions of various LAAOs as potential therapeutic strategies. In this review, we focus on their biochemical features, enzymatic regulations, and biomedical applications with a view of describing their probable role as biochemical agents and biomarkers for microbial infections, cancer, and autoimmune-mediated diseases. We consider that LAAOs hold implications in biomedicine owing to their antimicrobial activity wherein they can be used in treatment of infectious diseases and as diagnostic biomarkers in the above-mentioned diseased conditions. KEY POINTS: •Focus on biochemical features, enzymatic regulation, and biomedical applications of LAAOs. •Mechanisms of antimicrobial activity, inflammatory regulation, and immune responses of LAAOs. •Potential biomedical application as an antimicrobial and anti-infection agent, and disease biomarker.


Asunto(s)
Antiinfecciosos , L-Aminoácido Oxidasa , Animales , Antibacterianos , Bacterias , Peróxido de Hidrógeno
9.
Biosci Biotechnol Biochem ; 85(4): 972-980, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33580695

RESUMEN

Ammonia is critical for agricultural and chemical industries. The extracellular production of ammonia by yeast (Saccharomyces cerevisiae) using cell surface engineering can be efficient approach because yeast can avoid growth deficiencies caused by knockout of genes for ammonia assimilation. In this study, we produced ammonia outside the yeast cells by displaying an l-amino acid oxidase with a wide substrate specificity derived from Hebeloma cylindrosporum (HcLAAO) on yeast cell surfaces. The HcLAAO-displaying yeast successfully produced 12.6 m m ammonia from a mixture of 20 proteinogenic amino acids (the theoretical conversion efficiency was 63%). We also succeeded in producing ammonia from a food processing waste, soybean residues (okara) derived from tofu production. The conversion efficiency was 88.1%, a higher yield than reported in previous studies. Our study demonstrates that ammonia production outside of yeast cells is a promising strategy to utilize food processing wastes.


Asunto(s)
Amoníaco/metabolismo , Glycine max/metabolismo , L-Aminoácido Oxidasa/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Drug Chem Toxicol ; 44(5): 470-479, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31668098

RESUMEN

One of the deadliest enzymes in the snake venom is l-amino acid oxidase (LAAO) which plays an important role in the pathophysiological effects during snake envenomation. Some effects of this enzyme on the human body are apoptosis, platelet aggregation, edema, hemorrhage, and cytotoxicity. Hence, inhibiting the enzyme activity to reduce its degradation effects is of great medical and pharmacological importance. On the other hand, drug repurposing is a process to find the new existing drug for a new medical indication. Since Crotalus adamanteus LAAO has no crystal structure in the protein data bank, first, its 3D structure was constructed by homology modeling using 1REO as the template and then modeled structure was evaluated by several algorithms. We screened the FDA-approved drugs by structure-based virtual screening, molecular dynamics (MD) simulation, and Molecular Mechanics Poisson Boltzmann Surface Area (MM/PBSA) to identify new inhibitors for the snake venom LAAO. Interestingly, docking results revealed that half of the hits belong to the propionic acid derivatives drugs. In addition, MD simulation was performed to assess the interaction profile of the docked protein-hits complexes. Meanwhile, Arg88, Gln112, Lys345, Trp356 form consistent hydrogen bond interactions with Dexketoprofen, Flurbiprofen, Ketoprofen, Morphine, and Citric acid during simulation. According to the results, each of the four compounds can be an appropriate inhibitor of LAAO and since our study was based on drug repurposing could be evaluated in phase II clinical trials.


Asunto(s)
Venenos de Crotálidos/enzimología , Inhibidores Enzimáticos/farmacología , L-Aminoácido Oxidasa/antagonistas & inhibidores , Animales , Crotalus , Reposicionamiento de Medicamentos , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/aislamiento & purificación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
11.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34884551

RESUMEN

α-Ketoglutaramate (KGM) is an underexamined metabolite of L-glutamine in the metabolic pathway of glutaminase II of α-ketoglutarate formation. Presumably, KGM may be a biomarker of hepatic encephalopathy and other hyperammonemic diseases. This metabolite is a substrate for the ω-amidase enzyme and is used to determine its activity in the study of the biochemistry of various types of cancer. However, the commercial unavailability of KGM hinders its widespread use. Methods for the preparative synthesis of KGM are known, but they either do not provide the proper yield or proper purity of the target product. In this work, a detailed description of the procedures is given that allows the production of KGM with a purity above 97% and a yield of the target product above 75% using L-amino acid oxidase from C. adamanteus as a catalyst of L-glutamine conversion. KGM can be obtained both in the form of a highly concentrated aqueous solution and in the form of crystals of sodium salt. The developed methods can be used both for scaling up the synthesis of KGM and for creating economical biocatalytic technologies for the production of other highly purified preparations.


Asunto(s)
Glutamina/metabolismo , Ácidos Cetoglutáricos/síntesis química , Ácidos Cetoglutáricos/metabolismo , L-Aminoácido Oxidasa/metabolismo , Biocatálisis
12.
Biochem Soc Trans ; 48(2): 719-731, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32267491

RESUMEN

The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.


Asunto(s)
Apoptosis , L-Aminoácido Oxidasa/metabolismo , Fosfolipasas A2/metabolismo , Venenos de Serpiente/enzimología , Animales , Antineoplásicos/farmacología , Ciclo Celular , Muerte Celular/efectos de los fármacos , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Lipólisis , Neoplasias/tratamiento farmacológico , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
13.
Fish Shellfish Immunol ; 98: 962-970, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31783145

RESUMEN

Siganus oraminl-amino acid oxidase (SR-LAAO), isolated from the serum of Siganus oramin, is an innate immune protein with significant antibacterial activity. The aim of this study was to express SR-LAAO in insect cells using a baculovirus expression system and evaluate the function of the recombinant SR-LAAO. To this end, an optimized sequence of the SR-LAAO gene was designed and synthesized, based on the codon bias of insect cells. Bacmid shuttle vectors and recombinant baculovirus were successfully constructed, and the recombinant baculovirus was transfected into Sf9 insect cells. The antibacterial activity and enzymatic characteristics of the recombinant SR-LAAO were investigated. The results showed that the pFastBac-optiSR-LAAO shuttle vectors and Bacmid-optiSR-LAAO were correctly constructed. The Sf9 insect cells exhibited significant cytopathic effects following infection with Bacmid-optiSR-LAAO and Bacmid; the specific PCR analysis proved that the recombinant baculovirus was successfully constructed. The immunofluorescence assay revealed that the recombinant baculovirus rSR-LAAO was abundantly expressed in infected Sf9 insect cells; the results of SDS/PAGE and Western blot analyses showed that a specific band appeared at about 60 kDa. Moreover, the crude rSR-LAAO enzyme displayed strong antibacterial activity against aquatic pathogens, particularly Streptococcus agalactiae and Streptococcus iniae. In addition, the results of catalase interference test implied that the antibacterial activity of rSR-LAAO was directly associated with (H2O2 production). The results of the rSR-LAAO enzymatic characteristics test indicated that the Km value with l-Lysine as a substrate was 16.61 mM when the temperature was under 37 °C, and the optimum pH was 7. The antibacterial activity of rSR-LAAO could be completely inhibited by 10 mg/mL of pepsin, trypsin, and proteinase K compared with both methanol and acetone. Adding an equal volume of ethanol had a minimal impact on the antibacterial activity of rSR-LAAO. The crude enzyme could maintain a high level of antibacterial activity against both Gram-positive and -negative bacteria from 4 °C to 30 °C. In the present study, SR-LAAO was successfully expressed in Sf9 cells using the baculovirus expression system, and provides basic references for further research into the role of LAAO in marine animals and the development of new antimicrobial drugs.


Asunto(s)
Proteínas de Peces/genética , L-Aminoácido Oxidasa/genética , Perciformes/genética , Animales , Antiinfecciosos/inmunología , Baculoviridae/genética , Proteínas de Peces/metabolismo , L-Aminoácido Oxidasa/metabolismo , Perciformes/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9/inmunología , Transfección
14.
Fish Shellfish Immunol ; 106: 685-690, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822860

RESUMEN

An l-amino acid oxidase (LAO) is an amino acid metabolism enzyme that also performs a variety of biological activities. Recently, LAOs have been discovered to be deeply involved in innate immunity in fish because of their antibacterial and antiparasitic activity. The determinant of potent antibacterial/antiparasitic activity is the H2O2 byproduct of LAO enzymatic activity that utilizes the l-amino acid as a substrate. In addition, fish LAOs are upregulated by pathogenic bacteria or parasite infection. Furthermore, some fish LAOs show that the target specificity depends on the virulence of the bacteria. All results reflect that LAOs are new innate immune molecules. This review also describes the potential of the immunomodulatory functions of fish LAOs, not only the innate immune function by a direct oxidation attack of H2O2.


Asunto(s)
Peces/inmunología , L-Aminoácido Oxidasa/inmunología , Animales , Peces/genética , Branquias/inmunología , Inmunomodulación , Intestinos/inmunología , L-Aminoácido Oxidasa/sangre , L-Aminoácido Oxidasa/genética , Piel/inmunología
15.
Appl Microbiol Biotechnol ; 104(22): 9645-9654, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32974743

RESUMEN

L-amino acid oxidases (LAAOs) have antibacterial activity and play important roles in innate immunity. We have previously identified a LAAO of ~52 kDa in size from the mucus layer of the flounder Platichthys stellate (psLAAO1) and have successfully produced psLAAO1 as a secreted bioactive recombinant protein by using Pichia pastoris (P. pastoris). The recombinant psLAAO1 inhibited the growth of bacteria to the same levels as native psLAAO1 present in the mucus layer. In this study, homology modeling of psLAAO1 predicted metal coordination by residues Y241, H348, and D406. We show that the Michaelis constant (Km) of psLAAO1 decreased and the catalytic constant (Kcat/Km) value increased following pre-treatment of the protein with a chelating agent. In contrast to the non-chelated protein sample, enzymatic activity of EDTA-treated psLAAO1 gradually decreased or was absent after one or two freeze-thaw cycles. The H348A psLAAO1 mutant generated by site-directed mutagenesis and recombinantly produced by P. pastoris did not display antibacterial activity. The results of the metal detection assay revealed that for the non-metal coordinating histidine mutant (H209A, control), the levels of iron, zinc, and magnesium were similar to those of wild-type psLAAO1, whereas magnesium was not detected in the H348A mutant sample. A wild-type psLAAO1 sample treated with chelating agent did not contain zinc and magnesium ions. In conclusion, metal coordination by psLAAO1 affects enzymatic activity, and H348 is involved in the coordination of magnesium, and metal coordination by psLAAO1 provides essential structural stability. KEY POINTS: • Homology modeling of psLAAO1 predicted metal coordination by residue H348 • The H348A psLAAO1 mutant showed no antibacterial activity or magnesium coordination • Metal coordination by H348 affects enzyme activity and structural stability.


Asunto(s)
Antibacterianos , Lenguado , L-Aminoácido Oxidasa , Saccharomycetales , Animales , Antibacterianos/farmacología , Proteínas Recombinantes/genética
16.
J Biomol NMR ; 73(1-2): 81-91, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30762170

RESUMEN

We describe a new labeling method that allows for full protonation at the backbone Hα position, maintaining protein side chains with a high level of deuteration. We refer to the method as alpha proton exchange by transamination (α-PET) since it relies on transaminase activity demonstrated here using Escherichia coli expression. We show that α-PET labeling is particularly useful in improving structural characterization of solid proteins by introduction of an additional proton reporter, while eliminating many strong dipolar couplings. The approach benefits from the high sensitivity associated with 1.3 mm samples, more abundant information including Hα resonances, and the narrow proton linewidths encountered for highly deuterated proteins. The labeling strategy solves amide proton exchange problems commonly encountered for membrane proteins when using perdeuteration and backexchange protocols, allowing access to alpha and all amide protons including those in exchange-protected regions. The incorporation of Hα protons provides new insights, as the close Hα-Hα and Hα-HN contacts present in ß-sheets become accessible, improving the chance to determine the protein structure as compared with HN-HN contacts alone. Protonation of the Hα position higher than 90% is achieved for Ile, Leu, Phe, Tyr, Met, Val, Ala, Gln, Asn, Thr, Ser, Glu, Asp even though LAAO is only active at this degree for Ile, Leu, Phe, Tyr, Trp, Met. Additionally, the glycine methylene carbon is labeled preferentially with a single deuteron, allowing stereospecific assignment of glycine alpha protons. In solution, we show that the high deuteration level dramatically reduces R2 relaxation rates, which is beneficial for the study of large proteins and protein dynamics. We demonstrate the method using two model systems, as well as a 32 kDa membrane protein, hVDAC1, showing the applicability of the method to study membrane proteins.


Asunto(s)
Deuterio , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Protones , Marcaje Isotópico , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Canal Aniónico 1 Dependiente del Voltaje
17.
Anal Biochem ; 584: 113335, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176610

RESUMEN

l-Lysine is an essential amino acid important for maintaining human health. To date, many enzymatic methods for assay of l-lysine have been developed. The first method has been developed using l-lysine α-oxidase (l-LysOα). However, low specificity towards l-lysine of l-LysOα is a disadvantage inherent in this method. Recently, methods more specific to l-lysine were developed using newly discovered enzymes such as l-lysine ε-oxidase (l-LysOε), l-amino acid oxidase/monooxygenase (l-AAO/MOG) and l-lysine decarboxylase/oxidase (l-Lys-DC/OD). The present paper reviews recent enzymatic methods used for assay of l-lysine. These l-lysine selective assays rely on detecting and quantifying hydrogen peroxide, a product generated by the oxidase reaction of these enzymes. l-LysOε catalyzes the oxidative deamination of the ε-amino group of l-lysine, thus assays using this enzyme are more specific towards l-lysine than the ones using l-LysOα. The l-AAO/MOG has high substrate specificity towards l-lysine; however it exhibits l-lysine oxidase and monooxygenase activities. The sensitivity of l-AAO/MOG method was improved either by using its mutant, which has reduced monooxygenase activity, or by coupling with an aminoamide-oxidizing enzyme. The l-Lys-DC/OD exhibits both l-lysine decarboxylase and oxidase activities. The sensitivity of the l-Lys-DC/OD method was improved by using putrescine oxidase to oxidize the decarboxylation product of l-lysine.


Asunto(s)
Técnicas Biosensibles/métodos , Lisina/análisis , Oxidorreductasas/metabolismo , Bacterias/enzimología , Lisina/metabolismo
18.
Appl Microbiol Biotechnol ; 103(5): 2229-2241, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30631897

RESUMEN

L-Amino acid oxidases (LAAOs) are flavoproteins, which use oxygen to deaminate L-amino acids and produce the corresponding α-keto acids, ammonia, and hydrogen peroxide. Here we describe the heterologous expression of LAAO4 from the fungus Hebeloma cylindrosporum without signal sequence as fusion protein with a 6His tag in Escherichia coli and its purification. 6His-hcLAAO4 could be activated by exposure to acidic pH, the detergent sodium dodecyl sulfate, or freezing. The enzyme converted 14 proteinogenic L-amino acids with L-glutamine, L-leucine, L-methionine, L-phenylalanine, L-tyrosine, and L-lysine being the best substrates. Methyl esters of these L-amino acids were also accepted. Even ethyl esters were converted but with lower activity. Km values were below 1 mM and vmax values between 19 and 39 U mg-1 for the best substrates with the acid-activated enzyme. The information for an N-terminal aldehyde tag was added to the coding sequence. Co-expressed formylglycine-generating enzyme was used to convert a cysteine residue in the aldehyde tag to a Cα-formylglycine residue. The aldehyde tag did not change the properties of the enzyme. Purified Ald-6His-hcLAAO4 was covalently bound to a hexylamine resin via the Cα-formylglycine residue. The immobilized enzyme could be reused repeatedly to generate phenylpyruvate from L-phenylalanine with a total turnover number of 17,600 and was stable for over 40 days at 25 °C.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Hebeloma/enzimología , L-Aminoácido Oxidasa/metabolismo , Fenilalanina/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , L-Aminoácido Oxidasa/genética , Proteínas Recombinantes de Fusión/genética
19.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31574907

RESUMEN

Snake venom enzymes of the L-amino acid oxidase (LAAO) class are responsible for tissue hemorrhage, edema, and derangement of platelet function. However, what role, if any, these flavoenzymes play in altering plasmatic coagulation have not been well defined. Using coagulation kinetomic analyses (thrombelastograph-based), it was determined that the LAAO derived from Crotalus adamanteus venom displayed a procoagulant activity associated with weak clot strength (no factor XIII activation) similar to thrombin-like enzymes. The procoagulant activity was not modified in the presence of reduced glutathione, demonstrating that the procoagulant activity was likely due to deamination, and not hydrogen peroxide generation by the LAAO. Further, unlike the raw venom of the same species, the purified LAAO was not inhibited by carbon monoxide releasing molecule-2 (CORM-2). Lastly, exposure of the enzyme to phenylmethylsulfonyl fluoride (PMSF) resulted in the LAAO expressing anticoagulant activity, preventing contact activation generated thrombin from forming a clot. In sum, this investigation for the first time characterized the LAAO of a snake venom as both a fibrinogen polymerizing and an anticoagulant enzyme acting via oxidative deamination and not proteolysis as is the case with thrombin-like enzymes (e.g., serine proteases). Using this thrombelastographic approach, future investigation of purified enzymes can define their biochemical nature.


Asunto(s)
Crotalus , L-Aminoácido Oxidasa/metabolismo , L-Aminoácido Oxidasa/farmacología , Venenos de Serpiente/enzimología , Animales , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Calcio/metabolismo , Calcio/farmacología , Coagulantes/química , Coagulantes/metabolismo , Coagulantes/farmacología , Ácido Edético/farmacología , Glutatión/metabolismo , Glutatión/farmacología , Heparina/farmacología , Humanos , Cinética , L-Aminoácido Oxidasa/química , Compuestos Organometálicos/farmacología , Tromboelastografía
20.
Mar Drugs ; 16(12)2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545033

RESUMEN

The marine environment is a rich source of antimicrobial compounds with promising pharmaceutical and biotechnological applications. The Pseudoalteromonas genus harbors one of the highest proportions of bacterial species producing antimicrobial molecules. For decades, the presence of proteins with L-amino acid oxidase (LAAO) and antimicrobial activity in Pseudoalteromonas luteoviolacea has been known. Here, we present for the first time the identification, cloning, characterization and phylogenetic analysis of Pl-LAAO, the enzyme responsible for both LAAO and antimicrobial activity in P. luteoviolacea strain CPMOR-2. Pl-LAAO is a flavoprotein of a broad substrate range, in which the hydrogen peroxide generated in the LAAO reaction is responsible for the antimicrobial activity. So far, no protein with a sequence similarity to Pl-LAAO has been cloned or characterized, with this being the first report on a flavin adenine dinucleotide (FAD)-containing LAAO with antimicrobial activity from a marine microorganism. Our results revealed that 20.4% of the sequenced Pseudoalteromonas strains (specifically, 66.6% of P. luteoviolacea strains) contain Pl-laao similar genes, which constitutes a well-defined phylogenetic group. In summary, this work provides insights into the biological significance of antimicrobial LAAOs in the Pseudoalteromonas genus and shows an effective approach for the detection of novel LAAOs, whose study may be useful for biotechnological applications.


Asunto(s)
Antiinfecciosos/farmacología , Organismos Acuáticos/metabolismo , Proteínas Bacterianas/farmacología , Flavoproteínas/farmacología , L-Aminoácido Oxidasa/farmacología , Pseudoalteromonas/metabolismo , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/metabolismo , Organismos Acuáticos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Pruebas de Enzimas , Flavina-Adenina Dinucleótido/metabolismo , Flavoproteínas/genética , Flavoproteínas/aislamiento & purificación , Flavoproteínas/metabolismo , L-Aminoácido Oxidasa/genética , L-Aminoácido Oxidasa/aislamiento & purificación , L-Aminoácido Oxidasa/metabolismo , Filogenia , Pseudoalteromonas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA