Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 145: 109292, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145783

RESUMEN

Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.


Asunto(s)
Lubina , Virus , Animales , Interferón gamma/genética , Lubina/metabolismo , Transducción de Señal , Interferones
2.
Fish Shellfish Immunol ; 148: 109441, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38354965

RESUMEN

The battle between host and viral is ubiquitous across all ecosystems. Despite this, research is scarce on the antiviral characteristics of fish, particularly in those that primarily rely on innate immune responses. This study, comprehensively explored the genetic and antiviral features of ISG15 in spotted seabass, focusing on its response to largemouth bass ulcerative syndrome virus (LBUSV). Through whole-genome BLAST and PCR cloning, two ISG15 homologs, namely LmISG15a and LmISG15b, were identified in spotted seabass, both encoding highly conserved proteins. However, a distinctive contrast emerged in their expression patterns, with LmISG15a exhibiting high expression in immune organs while LmISG15b remained largely silent across various organs. Regulatory elements analysis indicated an asymmetric evolution of the two ISG15s, with the minimal expression of LmISG15b may attribute to the loss of a necessary ISRE and an additional instability "ATTTA" motif. Association analysis demonstrated a significant correlation between LmISG15a expression and LBUSV infection. Subsequent antiviral activity detection revealed that LmISG15a interacted with LBUSV, inhibiting its replication by activating ISGylation and downstream pro-inflammatory mediators. In summary, this study unveils a distinct evolutionary strategy of fish antiviral gene ISG15 and delineates its kinetic characteristics in response to LBUSV infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Virosis , Animales , Ecosistema , Proteínas de Peces , Inmunidad Innata/genética , Antivirales
3.
Fish Shellfish Immunol ; 142: 109176, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858784

RESUMEN

Tripartite motif 21 (TRIM21), a member of the TRIM family, plays an important role in apoptosis, autophagy and ubiquitination in human, and has been proven to play antiviral roles in different organisms. In this study, the TRIM21 gene of Micropterus salmoides (MsTRIM21) was cloned, and it encoded 376 amino acids, which showed 89.3% similarity with Micropterus dolomieu and 38.3% with homo sapiens. Bioinformatics analysis revealed MsTRIM21 contained four domains: C4HC3-type RING-variant (RINGv), coiled coil, PRY and SPRY. The high expression level of MsTRIM21 could be detected in liver, stomach and muscle of healthy Micropterus salmoides, and it was significantly upregulated in head kidney, muscle, gill and brain and significantly down-regulated in the stomach of Micropterus salmoides infected with largemouth bass ulcer syndrome virus (LBUSV). The overexpression of MsTRIM21 could significantly inhibit the viral replication in vitro, evidenced by the reduction of CPE severity and the downregulation of the viral gene transcription. In addition, the overexpression of MsTRIM21 could significantly increase the expression level of interferon regulatory factor (IRF) 3, IRF7, myxovirus resistance 1 (Mx1), interferon stimulated gene 15 (ISG15), double-stranded RNA-activated protein kinase (PKR) and tumor necrosis factor α (TNF-α) in vitro, indicating the enhancement of innate immune response and inflammatory response, which may directly affect the replication of LBUSV. Thus, these results provide new lights on the roles of fish TRIM21 in innate immune response against iridovirus.


Asunto(s)
Lubina , Enfermedades de los Peces , Humanos , Animales , Úlcera , Interferones , Inmunidad Innata/genética , Antivirales
4.
Fish Shellfish Immunol ; 100: 317-323, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32173450

RESUMEN

Largemouth bass ulcerative syndrome virus (LBUSV) is an important virus induce the mortality of largemouth bass (Micropterus Salmoides). In this study, we reported a single-walled carbon nanotubes (SWCNTs) containing LBUSV major capsid protein (MCP) subunit vaccine (SWCNTs-MCP) which was evaluated for its protective effect on largemouth bass by immersion immunization. We found an elevation in serum antibody levels, enzyme activities, complement C3 content and immune-related genes (IgM, TGF-ß, IL-1ß, IL-8, TNF-α and CD4) expression, in the SWCNTs-MCP immunized groups compared with the pure MCP group. The survival rates for control group, pure MCP protein groups (40 mg L-1) and four SWCNTs-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) were 0%, 27.78%, 30.56%, 50.00%, 66.67% and 80.56%, respectively. The results suggests that with the assistance of SWCNTs, the immune protection of the SWCNTs-MCP group (40 mg L-1) increased up 52.78%-80.1% compared with pure MCP group (40 mg L-1). Our results demonstrate that the single-walled carbon nanotube subunit vaccine can be used as a new immunization method against LBUSV showing protection following challenge with LBUSV. Taken together, our results demonstrate that the single-walled carbon nanotube subunit vaccine can be used as a new method against LBUSV and have a high immune protection during the largemouth bass farm.


Asunto(s)
Lubina/inmunología , Infecciones por Virus ADN/veterinaria , Virus ADN/inmunología , Enfermedades de los Peces/prevención & control , Inmunización/veterinaria , Nanotubos de Carbono/química , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Lubina/virología , Infecciones por Virus ADN/prevención & control , Enfermedades de los Peces/virología , Inmersión , Inmunización/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Virales/administración & dosificación
5.
Fish Shellfish Immunol ; 107(Pt A): 269-276, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068760

RESUMEN

To reduce the largemouth bass ulcer syndrome (LBUSV) aquatic economic losses, it must take effective preventive measures and coping strategies should be urgently investigated. In this research, the effects of a functionalized single-walled carbon nanotubes (SWCNTs) applied as a delivery vehicle for DNA vaccine administration in largemouth bass (Micropterus Salmoides) against LBUSV were studied. Our results showed that SWCNTs loaded with DNA vaccine induced a better protection to largemouth bass against LBUSV. We found more than 10 times increase in serum antibody levels, enzyme activities and immune-related genes (IL-6, IL-8, IFN-γ, IgM and TNF-α) expression, in the SWCNTs-pcDNA-MCP immunized groups compared with PBS group and the pure SWCNTs group. The survival rates for control group (PBS), pure SWCNTs groups (40 mg L-1), four pcDNA-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) and four SWCNTs-pcDNA-MCP groups (5 mg L-1, 10 mg L-1, 20 mg L-1 and 40 mg L-1) were 0%, 0%, 0%, 2.77%, 11.11%, 19.44%, 27.78%, 38.89%, 52.78% and 61.11%, respectively. Our results demonstrate that the SWCNTs-DNA vaccine can be used as a new method against LBUSV showing protection following challenge with LBUSV.


Asunto(s)
Lubina/inmunología , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/prevención & control , Iridoviridae/inmunología , Vacunación/veterinaria , Vacunas Virales/administración & dosificación , Animales , Infecciones por Virus ADN/prevención & control , Infecciones por Virus ADN/virología , Enfermedades de los Peces/virología , Inmunidad Innata , Inmunización/veterinaria , Nanotubos de Carbono/análisis , Vacunas de ADN/administración & dosificación
6.
Environ Pollut ; 342: 123054, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043770

RESUMEN

Microplastics (MPs) pollution is a hot issue of global concern. Polypropylene microplastics (PP-MPs) age quickly in the marine environment and break down into smaller particles because of their relatively low temperature resistance, poor ultraviolet resistance, and poor antioxidant capacity, making them one of the major pollutants in the ocean. We assessed whether long-term exposure to micron-sized PP-MPs influences fish susceptibility to viral diseases. We found that exposure to PP-MPs (1-6 µm and 10-30 µm) at concentrations of 500 and 5000 µg/L resulted in uptake into spleen and kidney tissues of Lateolabrax maculatus. Increased activation of melanomacrophage centers was visible in histopathological sections of spleen from fish exposed to PP-MPs, and greater deterioration was observed in the spleen of fish infected by largemouth bass ulcerative syndrome virus after PP-MPs exposure. Additionally, exposure to PP-MPs led to significant cytotoxicity and a negative impact on the antiviral ability of cells. PP-MPs exposure had inhibitory or toxic effects on the immune system in spotted sea bass, which accelerated virus replication in vivo and decreased the expression of the innate immune- and acquired immune related genes in spleen and kidney tissues, thus increasing fish susceptibility to viral diseases. These results indicate that the long-term presence of micron-sized PP-MPs might impact fish resistance to disease, thereby posing a far-reaching problem for marine organisms.


Asunto(s)
Lubina , Virosis , Animales , Lubina/fisiología , Microplásticos , Plásticos , Polipropilenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA